NONLINEAR BIHARMONIC EQUATION WITH POLYNOMIAL GROWTH NONLINEAR TERM

TACKSUN JUNG* AND Q-HEUNG CHOI

ABSTRACT. We investigate the existence of solutions of the nonlinear biharmonic equation with variable coefficient polynomial growth nonlinear term and Dirichlet boundary condition. We get a theorem which shows that there exists a bounded solution and a large norm solution depending on the variable coefficient. We obtain this result by variational method, generalized mountain pass geometry and critical point theory.

1. Introduction

Let Ω be a bounded domain in \mathbb{R}^n with smooth boundary $\partial \Omega$. Let Δ be the elliptic operator and Δ^2 be the biharmonic operator. Choi and Jung [3] showed that the problem

$$\Delta^2 u + c\Delta u = bu^+ + s \quad \text{in } \Omega,$$

$$u = 0, \quad \Delta u = 0 \quad \text{on } \partial \Omega$$

has at least two nontrivial solutions when $(c < \lambda_1, \lambda_1(\lambda_1 - c) < b < \lambda_2(\lambda_2 - c) \text{ and } s < 0)$ or $(\lambda_1 < c < \lambda_2, \, b < \lambda_1(\lambda_1 - c) \text{ and } s > 0)$.
We obtained these results by using variational reduction method. Jung and Choi [5] also proved that when $c < \lambda_1$, $\lambda_1(\lambda_1 - c) < b < \lambda_2(\lambda_2 - c)$ and $s < 0$, (1.1) has at least three nontrivial solutions by using degree theory. Tarantello [10] also studied

$$\Delta^2u + c\Delta u = b((u + 1)^+ - 1), \quad (1.2)$$

$$u = 0, \quad \Delta u = 0 \quad \text{on } \partial\Omega.$$

She showed that if $c < \lambda_1$ and $b \geq \lambda_1(\lambda_1 - c)$, then (1.4) has a negative solution. She obtained this result by degree theory. Micheletti and Pistoia [8] also proved that if $c < \lambda_1$ and $b \geq \lambda_2(\lambda_2 - c)$ then (1.2) has at least four solutions by variational linking theorem and Leray-Schauder degree theory.

In this paper we consider the following nonlinear biharmonic equation with Dirichlet boundary condition

$$\Delta^2u + c\Delta u = a(x)g(u) \quad \text{in } \Omega, \quad (1.3)$$

$$u = 0, \quad \Delta u = 0 \quad \text{on } \partial\Omega,$$

where we assume that $c \in \mathbb{R}$ is not an eigenvalue of $-\Delta$ and that $a : \overline{\Omega} \to \mathbb{R}$ is a continuous function which changes sign in Ω.

We assume that g satisfies the following conditions:

$(g1)$ $g \in C(\mathbb{R}, \mathbb{R})$,

$(g2)$ there are constants $a_1, a_2 \geq 0$ such that

$$|g(u)| \leq a_1 + a_2|u|^\mu - 1,$$

where $2 < \mu < \frac{2n}{n-2}$ if $n \geq 3$.

$(g3)$ there exists a constant $r_0 \geq 0$ such that

$$0 < \mu G(\xi) = \mu \int_0^\xi g(t)dt \leq \xi g(\xi) \quad \text{for } |\xi| \geq r_0.$$

$(g4)$ $g(u) = o(|u|)$ as $u \to 0$.

We note that $(g3)$ implies the existence of the positive constants a_3, a_4, a_5 such that

$$\frac{1}{\mu}(|g(\xi)| + a_3) \geq G(\xi) + a_4 \geq a_5|\xi|^\mu \quad \text{for } \xi \in \mathbb{R} \quad (1.4)$$

Khanfir and Lassoued [6] showed the existence of at least one solution for the nonlinear elliptic boundary problem when g is locally Hölder continuous on \mathbb{R}_+.

We are trying to find the weak solutions of (1.3), that is,
\[\int_{\Omega} ((\Delta^2 u + c \Delta u - a(x)g(u))vdx = 0 \text{ for } v \in H, \]
where the space \(H \) is introduced in section 2. Let us set
\[\Omega^+ = \{ x \in \Omega | a(x) > 0 \}, \quad \Omega^- = \{ x \in \Omega | a(x) < 0 \} \]
and let
\[a^+ = a \cdot \chi_{\Omega^+}, a^- = -a \cdot \chi_{\Omega^-}. \]
Since \(a(x) \) changes sign, the open subsets \(\Omega^+ \) and \(\Omega^- \) are nonempty.

Theorem A. Assume that \(\lambda_k < c < \lambda_{k+1} \), \(g \) satisfies \((g1)-(g4)\) and \(g(u)u - \mu G(u) \) is bounded. Then (1.3) has at least one bounded solution.

Theorem B. Assume that \(\lambda_k < c < \lambda_{k+1} \), \(g \) satisfies \((g1)-(g4)\), \(g(u)u - \mu G(u) \) is not bounded and there exists a small \(\epsilon > 0 \) such that \(\int_{\Omega^-} a^-(x) < \epsilon \). Then (1.3) has at least two solutions, (i) one of which is bounded and (ii) the other solution of which is large norm such that
\[\max_{x \in \Omega} |u(x)| > M \text{ for some } M > 0. \]

In Section 2, we prove that \(I(u) \) is continuous and Fréchet differentiable and satisfies the (P.S.) condition. In Section 3, we prove Theorem A. In Section 4, we prove Theorem B by variational method, generalized mountain pass geometry and critical point theory.

2. Eigenspaces and Palais-Smale condition

The eigenvalue problem with Dirichlet boundary condition
\[\Delta u + \lambda u = 0 \text{ in } \Omega, \]
\[u = 0 \text{ on } \partial \Omega \]
has infinitely many eigenvalues \(\lambda_k, k \geq 1 \) and corresponding eigenfunctions \(\phi_k, k \geq 1 \), the suitably normalized with respect to \(L^2(\Omega) \) inner product, where each eigenvalue \(\lambda_k \) is repeated as often as its multiplicity. The eigenvalue problem
\[\Delta^2 u + c \Delta u = \Lambda u \text{ in } \Omega, \]
\[u = 0, \quad \Delta u = 0 \text{ on } \partial \Omega \]
has also infinitely many eigenvalues $\lambda_k(\lambda_k - c)$, $k \geq 1$ and corresponding eigenfunctions ϕ_k, $k \geq 1$. We note that $\lambda_1(\lambda_1 - c) \leq \lambda_2(\lambda_2 - c) \leq \ldots \to +\infty$, and that $\phi_1(x) > 0$ for $x \in \Omega$.

Let $L^2(\Omega)$ be a square integrable function space defined on Ω. Any element u in $L^2(\Omega)$ can be written as

$$u = \sum h_k \phi_k \quad \text{with} \quad \sum h_k^2 < \infty.$$

We define a subspace H of $L^2(\Omega)$ as follows

$$H = \{ u \in L^2(\Omega) \mid \sum |\lambda_k(\lambda_k - c)| < \infty \}.$$

Then this is a complete normed space with a norm

$$\| u \| = \left[\sum |\lambda_k(\lambda_k - c)|h_k^2 \right]^{\frac{1}{2}}.$$

Since $\lambda_k \to +\infty$ and c is fixed, we have

(i) $\Delta^2 u + c\Delta u \in H$ implies $u \in H$.
(ii) $\| u \| \geq C\| u \|_{L^2(\Omega)}$, for some $C > 0$.
(iii) $\| u \|_{L^2(\Omega)} = 0$ if and only if $\| u \| = 0$, which is proved in [2].

Let

$$H_+ = \{ u \in H \mid h_k = 0 \text{ if } \lambda_k(\lambda_k - c) < 0 \},$$

$$H_- = \{ u \in H \mid h_k = 0 \text{ if } \lambda_k(\lambda_k - c) > 0 \}.$$

Then $H = H_- \oplus H_+$, for $u \in H$, $u = u^- + u^+ \in H_- \oplus H_+$. Let P_+ be the orthogonal projection on H_+ and P_- be the orthogonal projection on H_-. We can write $P_+ u = u^+$, $P_- u = u^-$, for $u \in H$.

We are looking for the weak solutions of (1.1). The weak solutions of (1.1) coincide with the critical points of the associated functional

$$I(u) \in C^1(H, R),$$

$$I(u) = \int_\Omega \left[\frac{1}{2} |\Delta u|^2 - \frac{c}{2} |\nabla u|^2 \right] dx - \int_\Omega a(x)G(u) dx \quad (2.1)$$

By (g1) and (g2), I is well defined. By the following Proposition 2.1, $I \in C^1(H, R)$ and I is Fréchet differentiable in H:
Proposition 2.1. Assume that $\lambda_k < c < \lambda_{k+1}$, $k \geq 1$, and g satisfies $(g1) - (g4)$. Then $I(u)$ is continuous and Fréchet differentiable in H with Fréchet derivative

$$\nabla I(u)h = \int_\Omega [\Delta u \cdot \Delta h - c \nabla u \cdot \nabla h - a(x)g(u)h]dx.$$ \hspace{1cm} (2.2)

If we set

$$K(u) = \int_\Omega a(x)G(u)dx,$$

then $K'(u)$ is continuous with respect to weak convergence, $K'(u)$ is compact, and

$$K'(u)h = \int_\Omega a(x)g(u)hdx \quad \text{for all } h \in H.$$

This implies that $I \in C^1(H,R)$ and $K(u)$ is weakly continuous.

The proof of Proposition 2.1 has the same process as that of the proof in Appendix B in [9].

Proposition 2.2. (Palais-Smale condition)
Assume that $\lambda_k < c < \lambda_{k+1}$, $k \geq 1$, g satisfies $(g1) - (g4)$ and $f \in L^2(\Omega)$. We also assume that $g(u)u - \mu G(u)$ is bounded or there exists an $\epsilon > 0$ such that $\int_\Omega a^-(x)dx < \epsilon$. Then $I(u)$ satisfies the Palais-Smale condition.

Proof. We assume that $g(u)u - \mu G(u)$ is bounded or there exists an $\epsilon > 0$ such that $\int_\Omega a^-(x)dx < \epsilon$. Suppose that (u_m) is a sequence with $I(u_m) \leq M$ and $I'(u_m) \to 0$ as $m \to \infty$. Then by $(g2)$, $(g3)$, and Hölder inequality and Sobolev Embedding Theorem, for large m and $\mu > 2$ with
\(u = u_m \), we have
\[
M + \frac{1}{2} \| u \| \geq I(u) - \frac{1}{2} I'(u) u = \int_{\Omega} \frac{1}{2} a(x) g(u) u - a(x) G(u) \, dx
\]
\[
= \int_{\Omega} a^+(x) \frac{1}{2} g(u) u - G(u) \, dx - \int_{\Omega} a^-(x) \frac{1}{2} g(u) u - G(u) \, dx
\]
\[
\geq \left(\frac{1}{2} - \frac{1}{\mu} \right) \mu \int_{\Omega} a^+(x) \cdot G(u) \, dx
\]
\[
- \max_{\Omega} \left| \frac{1}{2} g(u) u - G(u) \right| \int_{\Omega^-} a^-(x) \, dx
\]
\[
\geq \left(\frac{1}{2} - \frac{1}{\mu} \right) \mu \int_{\Omega} a^+(x) \cdot (a_3 |u|^{\mu} - a_4) \, dx
\]
\[
- \max_{\Omega} \left| \frac{1}{2} g(u) u - G(u) \right| \int_{\Omega^-} a^-(x) \, dx.
\]
Thus if \(\frac{1}{2} g(u) u - G(u) \) is bounded or there exists an \(\epsilon > 0 \) such that \(\int_{\Omega^-} a^-(x) < \epsilon \), then we have
\[
1 + \| u \| \geq M_1 \int_{\Omega} |u|^{\mu} \geq M_2 \left(\int_{\Omega} |u|^2 \, dx \right)^{\frac{1}{2} \mu}. \quad (2.3)
\]
Moreover since
\[
|I'(u_m) \varphi| \leq \| \varphi \| \quad (2.4)
\]
for large \(m \) and all \(\varphi \in H \), choosing \(\varphi = u_m^+ \in H_+ \) gives
\[
\| u_m^+ \|^2 = \int_{\Omega} (\Delta^2 u_m + c\Delta u_m) \cdot u_m^+
\]
\[
= \int_{\Omega} a(x) g(u_m) u_m^+
\]
\[
\leq \int_{\Omega} |a(x)||g(u_m)||u_m|
\]
\[
\leq \|a\|_\infty \int_{\Omega} (a_1 |u_m|^{\mu} + a_2 |u_m|)
\]
\[
\leq C_1 \int_{\Omega} |u_m|^{\mu} + C_2 \| u_m \|_{L^2(\Omega)}
\]
\[
\leq C_1 \int_{\Omega} |u_m|^{\mu} + C_2 \| u_m \|. \]
Taking $\varphi = -u_m^-$ in (2.4) yields

$$
\|u_m^+\|^2 = \int_\Omega (\Delta^2 u_m + c\Delta u_m) \cdot (-u_m^-)
= \int_\Omega a(x)g(u_m) \cdot (-u_m^-)
\leq \int_\Omega |a(x)||g(u_m)||u_m|
\leq \|a\|_\infty \int_\Omega (a_1|u_m|^{\mu} + a_2|u_m|)
\leq C_3 \int_\Omega |u_m|^{\mu} + C_4\|u_m\|_{L^2(\Omega)}
\leq C_3 \int_\Omega |u_m|^{\mu} + C_4'\|u_m\|.
$$

Thus, by (2.3), we have

$$
\|u_m\|^2 = \|u_m^+\|^2 + \|u_m^-\|^2 \leq M_3 \int_\Omega |u_m|^{\mu} + M_4\|u_m\|
\leq M_5 (1 + \|u_m\|) + M_4\|u_m\| \leq M_6 (1 + \|u_m\|),
$$

from which the boundedness of (u_m) follows. Thus (u_m) converges weakly in H. Since $P_\pm I'(u_m) = \pm P_\pm u_m + P_\pm \mathcal{P}(u_m)$ with \mathcal{P} compact and the weak convergence of $P_\pm u_m$ imply the strong convergence of $P_\pm u_m$ and hence (PS) condition holds.

\[\square\]

3. At least one bounded solution

We shall show that $I(u)$ satisfies generalized mountain pass geometrical assumptions.

We recall generalized mountain pass geometry:

Let $H = V \oplus X$, where H is a real Banach space and $V \neq \{0\}$ and is finite dimensional. Suppose that $I \in C^1(H,R)$, satisfies $(P.S.)$ condition, and

(i) there are constants ρ, $\alpha > 0$ and a bounded neighborhood B_ρ of 0 such that $I|_{\partial B_\rho \cap X} \geq \alpha$,

(ii) there is an $e \in \partial B_1 \cap X$ and $R > \rho$ such that if $Q = (\bar{B}_R \cap V) \oplus \{re| 0 < r < R\}$, then $I|_{\partial Q} \leq 0$.

Then \(I \) possesses a critical value \(b \geq \alpha \). Moreover \(b \) can be characterized as

\[
b = \inf_{\gamma \in \Gamma} \max_{u \in Q} I(\gamma(u)),
\]

where

\[
\Gamma = \{ \gamma \in C(\bar{Q}, H) \mid \gamma = id \text{ on } \partial Q \}.
\]

Let \(H_k = \text{span}\{\phi_1, \ldots, \phi_k\} \). Then \(H_k \) is a subspace of \(H \) such that

\[
H = \oplus_{k \in \mathbb{N}} H_k \quad \text{and} \quad H = H_k \oplus H_k^\perp.
\]

Let

\[
B_r = \{ u \in H \mid \|u\| \leq r \},
\]

\[
Q = (\bar{B}_R \cap H_k) \oplus \{ re \mid 0 < r < R \}.
\]

We have the following generalized mountain pass geometrical assumptions:

Lemma 3.1. Assume that \(\lambda_k < c < \lambda_{k+1} \) and \(g \) satisfies \((g1)-(g4)\). Then

(i) there are constants \(\rho > 0, \alpha > 0 \) and a bounded neighborhood \(B_\rho \) of \(0 \) such that \(I|_{\partial B_\rho \cap H_k^\perp} \geq \alpha \), and

(ii) there is an \(e \in \partial B_1 \cap H_k^\perp \) and \(R > \rho \) such that if \(Q = (\bar{B}_R \cap H_k) \oplus \{ re \mid 0 < r < R \} \), then \(I|_{\partial Q} \leq 0 \), and

(iii) there exists \(u_0 \in H \) such that \(\|u_0\| > \rho \) and \(I(u_0) \leq 0 \).

Proof. (i) Let \(u \in H_k^\perp \). We note that

\[
\text{if } u \in H_k^\perp, \int_\Omega (\Delta^2 u + c \Delta u) u dx \geq \lambda_{k+1} (\lambda_{k+1} - c) \|u\|_{L^2(\Omega)}^2 > 0.
\]

Thus by \((g3)\), (1.2) and the Hölder inequality, we have

\[
I(u) = \frac{1}{2} \|P_+ u\|^2 - \frac{1}{2} \|P_- u\|^2 - \int_\Omega a(x) G(u)
\]

\[
\geq \frac{1}{2} \|P_+ u\|^2 - \|a\|_{\infty} \int_\Omega C_1 |u|^\mu
\]

\[
\geq \frac{1}{2} \|P_+ u\|^2 - \|a\|_{\infty} C_1' \|u\|^\mu
\]

for \(C_1, C_1' > 0 \). Since \(\mu > 2 \), there exist \(\rho > 0 \) and \(\alpha > 0 \) such that if \(u \in \partial B_\rho \), then \(I(u) \geq \alpha \).
(ii) Let \(u \in (\bar{B}_r \cap H_k) \oplus \{re| 0 < r \} \). Then \(u = v + w, \ v \in B_r \cap H_k, \ w = re \). We note that
\[
\text{if } \ v \in H_k, \int_\Omega (\Delta^2 v + c\Delta v)vdx \leq \lambda_k(\lambda_k - c)\|v\|_{L^2(\Omega)}^2 < 0.
\]

Thus we have
\[
I(u) = \frac{1}{2} r^2 - \frac{1}{2} \|P_v\|^2 - \int_\Omega a(x)G(v + re) \\
\leq \frac{1}{2} r^2 + \frac{1}{2}(\lambda_k(\lambda_k - c))\|v\|_{L^2(\Omega)}^2 - \int_{\Omega^+} a(x)(a_3|v + re|^\mu - a_4)
\]

Since \(\mu > 2 \), there exists \(R > 0 \) such that if \(u \in Q = (\bar{B}_R \cap H_k) \oplus \{re| 0 < r < R \} \), then \(I(u) < 0 \).

(iii) If we choose \(\psi \in H \) such that \(\|\psi\| = 1, \ \psi \geq 0 \) in \(\Omega \) and \(\text{supp}(\psi) \subset \Omega^+ \), then we have
\[
I(t\psi) \leq \frac{1}{2} \|P_+(t\psi)\|^2 - \frac{1}{2} \|P_-(t\psi)\|^2 - \int_{\Omega^+} a(x)(a_3t^\mu\psi^\mu - a_4)
\leq \frac{1}{2} \|t\psi\|^2 - \int_{\Omega^+} a(x)(a_3t^\mu\psi^\mu - a_4)
= \frac{1}{2} t^2 - \int_{\Omega^+} a(x)(a_3t^\mu\psi^\mu - a_4)
\]
for all \(t > 0 \). Since \(\mu > 2 \), for \(t_0 \) great enough, \(u_0 = t_0\psi \) is such that \(\|u_0\| > \rho \) and \(I(u_0) \leq 0 \).

Theorem A. Assume that \(\lambda_k < c < \lambda_{k+1} \), \(g \) satisfies \((g1)-(g4)\) and \(g(u)u - \mu G(u) \) is bounded. Then (1.3) has at least one bounded solution.

Proof. By Proposition 2.1 and Proposition 2.2, \(I(u) \in C^1(H,R) \) and satisfies the Palais-Smale condition. By Lemma 3.1, there are constants \(\rho > 0, \ \alpha > 0 \) and a bounded neighborhood \(B_\rho \) of 0 such that \(I|_{\partial B_\rho \cap H_k^+} \geq \alpha \), and there is an \(e \in \partial B_1 \cap H_k^+ \) and \(R > \rho \) such that if \(Q = (\bar{B}_R \cap H_k) \oplus \{re| 0 < r < R \} \), then \(I|_{\partial Q} \leq 0 \), and there exists \(u_0 \in H \) such that \(\|u_0\| > \rho \) and \(I(u_0) \leq 0 \). By the generalized mountain pass theorem, \(I(u) \) has a critical value \(b \geq \alpha \). Moreover \(b \) can be characterized as
\[
b = \inf_{\gamma \in \Gamma} \max_{w \in Q} I(\gamma(w)),
\]
where \(\Gamma = \{\gamma \in C(\bar{Q},H) | \gamma = id \text{ on } \partial Q\} \).
We denote by \tilde{u} a critical point of I such that $I(\tilde{u}) = b$. We claim that there exists a constant $C > 0$ such that

$$\|a^+(x)^{\frac{1}{2}} \tilde{u}\|_{L^2(\Omega)} \leq C \left(1 + L \int_{\Omega^-} a^-(x) dx \right)^{\frac{1}{2}},$$

where $L = \max_{\Omega} \frac{1}{2} g(\tilde{u}) \tilde{u} - G(\tilde{u})$.

In fact, we have

$$b \leq \max_{\Omega} I(tu_0), \quad 0 \leq t \leq 1,$$

and

$$I(tu_0) = t^2 \left(\frac{1}{2} \|P_+ u_0\|^2 - \frac{1}{2} \|P_- u_0\|^2 \right) - \int_{\Omega} a(x) G(tu_0) dx$$

$$\leq t^2 \|u_0\|^2 - \int_{\Omega} a^+(x) G(tu_0) dx + \int_{\Omega} a^-(x) G(tu_0) dx$$

$$\leq t^2 \|u_0\|^2 - a_3 t^\mu \int_{\Omega} a^+(x) u_0^\mu + a_4 \int_{\Omega} a^+(x) + a_5 t^\mu \int_{\Omega} a^-(x) u_0^\mu$$

$$= Ct^2 - Ct^\mu + C + C't^\mu.$$

Since $0 \leq t \leq 1$, b is bounded: $b < \tilde{C}$.

We can write

$$b = I(\tilde{u}) - \frac{1}{2} I'(\tilde{u}) \tilde{u}$$

$$= \int_{\Omega} a(x) \left(\frac{1}{2} g(\tilde{u}) \tilde{u} - G(\tilde{u}) \right) dx$$

$$= \int_{\Omega} a^+(x) \left(\frac{1}{2} g(\tilde{u}) \tilde{u} - G(\tilde{u}) \right) dx - \int_{\Omega} a^-(x) \left(\frac{1}{2} g(\tilde{u}) \tilde{u} - G(\tilde{u}) \right) dx$$

$$\geq \left(\frac{1}{2} - \frac{1}{\mu} \right) \int_{\Omega} a^+(x) g(\tilde{u}) \tilde{u} - \max_{\Omega} \frac{1}{2} g(\tilde{u}) \tilde{u} - G(\tilde{u}) \right) \int_{\Omega^-} a^-(x) dx$$

$$\geq \left(\frac{1}{2} - \frac{1}{\mu} \right) \mu \int_{\Omega} a^+(x) (a_3 |\tilde{u}|^\mu - a_4) - L \int_{\Omega^-} a^-(x) dx,$$

where $L = \max_{\Omega} \frac{1}{2} g(\tilde{u}) \tilde{u} - G(\tilde{u})$. Thus we have

$$C \left(1 + L \int_{\Omega^-} a^-(x) dx \right) \geq \int_{\Omega} a^+(x) |\tilde{u}|^\mu$$

$$\geq \left[\int_{\Omega} \left(a^+(x)^{\frac{1}{2}} |\tilde{u}| \right)^2 \right]^{\frac{2}{\mu}}, \quad (3.1)$$
Nonlinear biharmonic equation with polynomial growth nonlinear term

from which we can conclude that \(\tilde{u} \) is bounded. In fact, suppose that \(\tilde{u} \) is not bounded. Then for any \(R > 0, |\tilde{u}| \geq R \). Thus we have

\[
\int_{\Omega} a^+(x)|\tilde{u}|^\mu \geq R^\mu \int_{\Omega} a^+(x)dx
\]

for any \(R \), which contradicts to the fact (3.1) and the proof of theorem is complete.

\[\square\]

4. At least two solutions

Theorem B. Assume that \(\lambda_k < c < \lambda_{k+1} \), \(g \) satisfies (g1)-(g4), \(g(u)u - \mu G(u) \) is not bounded and there exists a small \(\epsilon > 0 \) such that \(\int_{\Omega^-} a^-(x) < \epsilon \). Then (1.3) has at least two solutions, (i) one of which is bounded and (ii) the other solution of which is large norm such that

\[
\max_{x \in \Omega} |u(x)| > M \quad \text{for some} \quad M > 0.
\]

Proof. Assume that \(\frac{1}{2}g(u)u - G(u) \) is not bounded and there exists an \(\epsilon > 0 \) such that \(\int_{\Omega^-} a^-(x,t) < \epsilon \). By Proposition 2.1 and Proposition 2.2, \(I \in C^1(H,R) \) and satisfies the Palais-Smale condition. By Lemma 3.1 and generalized mountain pass theorem, \(I(u) \) has a critical value \(b \) with critical point \(\tilde{u} \) such that \(I(\tilde{u}) = b \). If \(\int_{\Omega^-} a^-(x)dx \) is sufficiently small, by (3.1), we have

\[
\int_{\Omega} a^+(x)|\tilde{u}|^\mu \leq C
\]

for \(C > 0 \), from which we can conclude that \(\tilde{u} \) is bounded and the proof of (i) is complete.

Next we shall prove (ii). We may assume that \(R_n < R_{n+1} \) for all \(n \in N \). Let us set \(D_n = B_{R_n} \cap H_n, \partial D_n = \partial B_{R_n} \cap H_n \).

Lemma 4.1. Assume that \(g \) satisfies (g1)-(g4). Then there exists an \(R_n > 0 \) such that

\[
I(u) \leq 0 \quad \text{for} \quad u \in H_n \setminus B_{R_n},
\]

(4.1)

where \(B_{R_n} = \{u \in H|\|u\| \leq R_n\} \).
Proof. Let us choose $\psi \in H$ such that $\|\psi\| = 1$, $\psi \geq 0$ in Ω and $\text{supp}(\psi) \subset \Omega^+$. Then, by $(g3)$, (1.2) and the Hölder inequality, we have

$$I(t\psi) = \frac{1}{2}\|P_+t\psi\|^2 - \frac{1}{2}\|P_-t\psi\|^2 - \int_{\Omega} a(x)G(t\psi)$$

$$\leq \frac{1}{2}t^2 - \|a\|_{\infty}\int_{\Omega} C_1 t^\mu \psi^\mu + \|a\|_{\infty}a_1 t$$

for $C_1, C'_1 > 0$. Since $\mu > 2$, there exist t_n great enough for each n and an $R_n > 0$ such that $u_n = t_n \psi$ and $I(u_n) < 0$ if $u_n \in H_n \setminus B_{R_n}$ and $\|u_n\| > R_n$, so the lemma is proved.

Let us set

$$\Gamma_n = \{ \gamma \in C([0, 1], H) | \gamma(0) = 0 \text{ and } \gamma(1) = u_n \}$$

and

$$b_n = \inf_{\gamma \in \Gamma_n} \max_{[0, 1]} I(\gamma(u)) \quad n \in N.$$

Proof of Theorem B (ii).

We assume that $g(u)u - \mu G(u)$ is not bounded and there exists an $\epsilon > 0$ such that $\int_{\Omega} a^-(x)dx < \epsilon$. By Proposition 2.1 and Proposition 2.2, $I \in C^1(H, R)$ and satisfies the Palais-Smale condition. By Lemma 4.1, there exists an $R_n > 0$ such that $I(u_m) \leq 0$ for $u_m \in H_n \setminus B_{R_n}$. We note that $I(0) = 0$. By Lemma 4.1 and the generalized mountain pass theorem, for n large enough $b_n > 0$ is a critical value of I and $\lim_{n \to \infty} b_n = +\infty$. Let \tilde{u}_n be a critical point of I such that $I(\tilde{u}_n) = b_n$. Then for each real number M, $\max_{\Omega}|\tilde{u}_n(x)| \geq M$. In fact, by contradiction, $\Delta^2 u + c\Delta u = a(x)g(u)$ and $\max_{\Omega}|\tilde{u}_n(x)| \leq K$ imply that

$$I(\tilde{u}_n) \leq \max_{|\tilde{u}_n| \leq K} \left(\frac{1}{2} g(\tilde{u}_n)\tilde{u}_n - G(\tilde{u}_n) \right) \int_{\Omega} |a(x)|,$$

which means that b_n is bounded. This is absurd to the fact that $\lim_{n \to \infty} b_n = +\infty$. Thus we complete the proof.
Nonlinear biharmonic equation with polynomial growth nonlinear term

References

Tacksun Jung
Department of Mathematics
Kunsan National University
Kunsan 573-701, Korea
E-mail: tsjung@kunsan.ac.kr

Q-Heung Choi
Department of Mathematics Education
Inha University
Incheon 402-751, Korea
E-mail: qheung@inha.ac.kr