HARMONIC MAPPING RELATED WITH THE MINIMAL SURFACE GENERATED BY ANALYTIC FUNCTIONS

Sook Heui Jun

Abstract

In this paper we consider the meromorphic function $G(z)$ with a pole of order 1 at $-a$ and analytic function $F(z)$ with a zero $-a$ of order 2 in $\mathbb{D}=\{z:|z|<1\}$, where $-1<a<1$. From these functions we obtain the regular simply-connected minimal surface $S=\{(u(z), v(z), H(z)): z \in \mathbb{D}\}$ in E^{3} and the harmonic function $f=u+i v$ defined on \mathbb{D}, and then we investigate properties of the minimal surface S and the harmonic function f.

1. Introduction

Let $G(z)$ be an arbitrary meromorphic function in $\mathbb{D}=\{z:|z|<1\}$ and $F(z)$ be an analytic function in \mathbb{D} having the property that at each point where $G(z)$ has a pole of order $n, F(z)$ has a zero of order at least $2 n$. Then the functions

$$
\phi_{1}=\frac{1}{2} F\left(1-G^{2}\right), \phi_{2}=\frac{i}{2} F\left(1+G^{2}\right), \phi_{3}=F G
$$

are analytic in \mathbb{D} and satisfy

$$
\phi_{1}^{2}+\phi_{2}^{2}+\phi_{3}^{2}=0 .
$$

[^0]Every simply-connected minimal surface S in E^{3} has the representation of the form

$$
S=\{(u(z), v(z), H(z)): z \in \mathbb{D}\}
$$

where

$$
\begin{aligned}
& u(z)=\operatorname{Re}\left\{\int_{0}^{z} \phi_{1}(z) d z\right\}+c_{1}, \\
& v(z)=\operatorname{Re}\left\{\int_{0}^{z} \phi_{2}(z) d z\right\}+c_{2}, \\
& H(z)=\operatorname{Re}\left\{\int_{0}^{z} \phi_{3}(z) d z\right\}+c_{3}
\end{aligned}
$$

are harmonic in $\mathbb{D}=\{z:|z|<1\}$.
The coordinates $u(z)$ and $v(z)$ are real harmonic in \mathbb{D}, and therefore $f=u+i v$ is harmonic in \mathbb{D}. The integral is taken along an arbitrary path from the origin to the point z. The surface will be regular if F satisfies the further property that it vanishes only at the poles of G, and the order of its zero at such a point is exactly twice the order of the pole of G [7, Lemmas 8.1 and 8.2].

In this paper we consider the meromorphic function $G(z)=\frac{i(a z+1)}{z+a}$ with a pole of order 1 at $-a$ and analytic function $F(z)=\frac{(z+a)^{2}}{(1-z)^{4}}$ with a zero $-a$ of order 2 in \mathbb{D}, where $-1<a<1$. From these functions we obtain the regular simply-connected minimal surface

$$
S=\{(u(z), v(z), H(z)): z \in \mathbb{D}\}
$$

in E^{3} where

$$
\begin{aligned}
& u(z)=\operatorname{Re}\left\{\frac{(1+a)^{2} z^{3}}{3(1-z)^{3}}+\frac{\left(1+a^{2}+2 a z\right) z}{2(1-z)^{2}}\right\}+c_{1}, \\
& v(z)=\operatorname{Re}\left\{\frac{i\left(a^{2}-1\right) z}{2(1-z)^{2}}\right\}+c_{2}, \\
& H(z)=\operatorname{Re}\left\{\frac{i(1+a)^{2} z^{3}}{3(1-z)^{3}}+\frac{i\left[\left(1+a^{2}\right) z+2 a\right] z}{2(1-z)^{2}}\right\}+c_{3},
\end{aligned}
$$

and the harmonic function $f=u+i v$ defined on \mathbb{D}, and then we investigate properties of the minimal surface S and the harmonic function

$$
f(z)=\sum_{k=1}^{\infty} a_{k} z^{k}+\overline{\sum_{k=1}^{\infty} b_{k} z^{k}}
$$

where $a_{k}=\frac{1}{12}\left\{(1+a)^{2} k^{2}+3\left(1-a^{2}\right) k+2\left(a^{2}-a+1\right)\right\}$ and $b_{k}=$ $\frac{1}{12}\left\{(1+a)^{2} k^{2}-3\left(1-a^{2}\right) k+2\left(a^{2}-a+1\right)\right\}$.

2. The minimal surface and harmonic function

Let us consider the meromorphic function $G(z)=\frac{i(a z+1)}{z+a}$ with a pole of order 1 at $-a$ and analytic function $F(z)=\frac{(z+a)^{2}}{(1-z)^{4}}$ with a zero $-a$ of order 2 in \mathbb{D}, where $-1<a<1$. Then

$$
\begin{aligned}
\phi_{1} & =\frac{1}{2} F\left(1-G^{2}\right)=\frac{(z+a)^{2}+(a z+1)^{2}}{2(1-z)^{4}}, \\
\phi_{2} & =\frac{i}{2} F\left(1+G^{2}\right)=\frac{i\left(a^{2}-1\right)(z+1)}{2(1-z)^{3}}, \\
\phi_{3} & =F G=\frac{i(z+a)(a z+1)}{(1-z)^{4}}
\end{aligned}
$$

are analytic in \mathbb{D}. The relevant integrals are

$$
\begin{aligned}
& \int_{0}^{z} \phi_{1}(z) d z=\int_{0}^{z} \frac{(z+a)^{2}+(a z+1)^{2}}{2(1-z)^{4}} d z=\frac{(1+a)^{2} z^{3}}{3(1-z)^{3}}+\frac{\left(1+a^{2}+2 a z\right) z}{2(1-z)^{2}}, \\
& \int_{0}^{z} \phi_{2}(z) d z=\int_{0}^{z} \frac{i\left(a^{2}-1\right)(z+1)}{2(1-z)^{3}} d z=\frac{i\left(a^{2}-1\right) z}{2(1-z)^{2}} \\
& \int_{0}^{z} \phi_{3}(z) d z=\int_{0}^{z} \frac{i(z+a)(a z+1)}{(1-z)^{4}} d z=\frac{i(1+a)^{2} z^{3}}{3(1-z)^{3}}+\frac{i\left[\left(1+a^{2}\right) z+2 a\right] z}{2(1-z)^{2}} .
\end{aligned}
$$

Thus the minimal surface S obtained by $F(z)$ and $G(z)$ has the representation of the form

$$
S=\{(u(z), v(z), H(z)): z \in \mathbb{D}\}
$$

where

$$
\begin{aligned}
& u(z)=\operatorname{Re}\left\{\frac{(1+a)^{2} z^{3}}{3(1-z)^{3}}+\frac{\left(1+a^{2}+2 a z\right) z}{2(1-z)^{2}}\right\}+c_{1}, \\
& v(z)=\operatorname{Re}\left\{\frac{i\left(a^{2}-1\right) z}{2(1-z)^{2}}\right\}+c_{2}, \\
& H(z)=\operatorname{Re}\left\{\frac{i(1+a)^{2} z^{3}}{3(1-z)^{3}}+\frac{i\left[\left(1+a^{2}\right) z+2 a\right] z}{2(1-z)^{2}}\right\}+c_{3}
\end{aligned}
$$

are harmonic in \mathbb{D} and the surface S is regular. In addition, this is a conformal parametrization. The first fundamental form for the Euclidean length on S is $d s^{2}=\lambda^{2}|d z|^{2}$ where $\lambda^{2}=\frac{1}{2} \sum_{k=1}^{3}\left|\phi_{k}\right|^{2}$.

Let $c_{1}=c_{2}=c_{3}=0$. Then the harmonic function $f(z)=u(z)+i v(z)$ is

$$
f(z)=\operatorname{Re}\left\{\frac{(1+a)^{2} z^{3}}{3(1-z)^{3}}+\frac{\left(1+a^{2}+2 a z\right) z}{2(1-z)^{2}}\right\}+i \operatorname{Re}\left\{\frac{i\left(a^{2}-1\right) z}{2(1-z)^{2}}\right\}
$$

So f can be written in the form $f=h+\bar{g}$, where

$$
\begin{aligned}
h(z) & =\frac{(1+a)^{2} z^{3}}{6(1-z)^{3}}+\frac{(1+a z) z}{2(1-z)^{2}} \\
& =\sum_{k=1}^{\infty} \frac{1}{12}\left\{(1+a)^{2} k^{2}+3\left(1-a^{2}\right) k+2\left(a^{2}-a+1\right)\right\} z^{k}
\end{aligned}
$$

and

$$
\begin{aligned}
g(z) & =\frac{(1+a)^{2} z^{3}}{6(1-z)^{3}}+\frac{a(a+z) z}{2(1-z)^{2}} \\
& =\sum_{k=1}^{\infty} \frac{1}{12}\left\{(1+a)^{2} k^{2}-3\left(1-a^{2}\right) k+2\left(a^{2}-a+1\right)\right\} z^{k}
\end{aligned}
$$

are analytic in \mathbb{D}. Since the Jacobian of f

$$
J(z)=\left|h^{\prime}(z)\right|^{2}-\left|g^{\prime}(z)\right|^{2}=\left|\frac{(1+a z)^{2}}{2(1-z)^{4}}\right|^{2}-\left|\frac{(a+z)^{2}}{2(1-z)^{4}}\right|^{2}>0,
$$

the harmonic mapping f is locally $1-1$ and orientation-preserving, that is locally univalent in $\mathbb{D}[4,6]$. We will give the proof that this f is univalent in \mathbb{D} in the following theorem.

A domain D is called convex in the direction of the real axis if it has a connected intersection with every line parallel to the real axis.

Theorem 1. [4, Theorem 5.3] A harmonic $f=h+\bar{g}$ locally univalent in \mathbb{D} is a univalent mapping of \mathbb{D} onto a domain convex in the direction of the real axis if and only if $h-g$ is a conformal univalent mapping of \mathbb{D} onto a domain convex in the direction of the real axis.

Theorem 2. The locally univalent harmonic function $f=h+\bar{g}$ is a univalent mapping of \mathbb{D} onto a domain convex in the direction of the real axis.

Proof. The Koebe function

$$
k(z)=\frac{z}{(1-z)^{2}}=z+2 z^{2}+3 z^{3}+\ldots
$$

is conformal univalent in \mathbb{D} and maps the unit disk onto the entire complex plane minus the portion of the negative real axis from $-\infty$ to $-\frac{1}{4}$, that is a domain convex in the direction of the real axis.

The analytic function

$$
h(z)-g(z)=\frac{\left(1-a^{2}\right)}{2} k(z)
$$

is also a conformal univalent mapping of \mathbb{D} onto a domain convex in the direction of the real axis. Thus the locally univalent harmonic $f=h+\bar{g}$ is a univalent mapping of \mathbb{D} onto a domain convex in the direction of the real axis by Theorem 1.

Theorem 3. The regular minimal surfaces S obtained by $F(z)$ and $G(z)$ lie over $f(\mathbb{D})=\mathbb{C} \backslash\left(-\infty,-\left(a^{2}-a+1\right) / 6\right]$.

Proof. Let $w=\frac{1+z}{1-z}=c+d i$, then $c>0$. From this we get

$$
\begin{aligned}
& f(z)=u(z)+i v(z) \\
& =\frac{(1+a)^{2} c^{3}-3(1+a)^{2} c d^{2}+3(a-1)^{2} c-4\left(a^{2}-a+1\right)}{24}+i \frac{\left(1-a^{2}\right) c d}{4} .
\end{aligned}
$$

If $v=0$, then $d=0$ and u varies from $-\left(a^{2}-a+1\right) / 6$ to $+\infty$. On the horizontal line $v \neq 0$, the real part u of f varies from $-\infty$ to $+\infty$.

Now we will express the basic geometric quantities associated with the minimal surface S in terms of the univalent harmonic orientationpreserving function $f=h+\bar{g}$ with $b^{2}=\bar{f}_{\bar{z}} / f_{z}=g^{\prime} / h^{\prime}$. In terms of $f=h+\bar{g}$, the conformal factor λ becomes simply $\lambda=\left|h^{\prime}\right|+\left|g^{\prime}\right|$. Therefore the Gaussian curvature K of S is

$$
\begin{aligned}
K & =-\frac{\Delta \log \lambda}{\lambda^{2}}=-\left[\frac{4\left|G^{\prime}\right|}{|F|\left(1+|G|^{2}\right)^{2}}\right]^{2} \\
& =\frac{-4\left|b^{\prime}\right|^{2}}{\left|h^{\prime}\right|^{2}\left(|b|^{2}+1\right)^{4}}=\frac{-4\left|b^{\prime}\right|^{2}}{\left(\left|h^{\prime}\right|+\left|g^{\prime}\right|\right)^{2}\left(|b|^{2}+1\right)^{2}} .
\end{aligned}
$$

Let Δ be a domain whose closure is in \mathbb{D}, then the total curvature T of the surface restricted to Δ is

$$
\begin{aligned}
T & =\iint_{\Delta} K \lambda^{2} d x d y=-\iint_{\Delta}\left[\frac{2\left|G^{\prime}\right|}{1+|G|^{2}}\right]^{2} d x d y \\
& =-\iint_{\Delta}\left[\frac{2\left|b^{\prime}\right|}{1+|b|^{2}}\right]^{2} d x d y,
\end{aligned}
$$

where $z=x+i y$.
For more results concerning harmonic mappings related to minimal surfaces, we refer the reader to $[2,3,5]$.

Theorem 4. Let S be the regular minimal surfaces induced by $F(z)$ and $G(z)$. Then

$$
|K| \leq \frac{16}{\left(1-a^{2}\right)^{2}}\left(\frac{1+r}{1-r}\right)^{4}, \quad|z|=r<1 .
$$

Proof. Since $b(z)$ is analytic in \mathbb{D} and satisfies the condition $|b(z)|<1$, the invariant form of Schwarz's lemma implies

$$
\left|b^{\prime}\right| \leq \frac{1-|b|^{2}}{1-|z|^{2}}
$$

From this inequality and the fact that $1-|b|^{2} \leq 1+|b|^{2}$, we have

$$
\begin{equation*}
|K| \leq \frac{4}{\left(1-|z|^{2}\right)^{2}\left(\left|h^{\prime}\right|+\left|g^{\prime}\right|\right)^{2}} \tag{1}
\end{equation*}
$$

The analytic function $2[h(z)-g(z)] /\left(1-a^{2}\right)=k(z)$ is univalent and satisfies $k(0)=0$ and $k^{\prime}(0)=1$. Thus we have

$$
\frac{\left(1-a^{2}\right)(1-r)}{2(1+r)^{3}} \leq\left|h^{\prime}-g^{\prime}\right| \leq \frac{\left(1-a^{2}\right)(1+r)}{2(1-r)^{3}}
$$

by the distortion theorem. This leads to

$$
\frac{1}{\left(\left|h^{\prime}\right|+\left|g^{\prime}\right|\right)^{2}} \leq \frac{4(1+r)^{6}}{\left(1-a^{2}\right)^{2}(1-r)^{2}} .
$$

By applying this inequality to (1), we obtain

$$
|K| \leq \frac{16}{\left(1-a^{2}\right)^{2}}\left(\frac{1+r}{1-r}\right)^{4}
$$

as desired.

Theorem 5. The Gaussian curvature K at the point $(0,0,0)$ in the minimal surface S is given by

$$
K=-\frac{16\left(1-a^{2}\right)^{2}}{\left(1+a^{2}\right)^{4}} .
$$

Proof. At the point $(u(0), v(0), H(0))=(0,0,0)$ on the minimal surface S, the Gaussian curvature is

$$
K=\frac{-4\left|b^{\prime}(0)\right|^{2}}{\left(\left|h^{\prime}(0)\right|+\left|g^{\prime}(0)\right|\right)^{2}\left(|b(0)|^{2}+1\right)^{2}}=-\frac{16\left(1-a^{2}\right)^{2}}{\left(1+a^{2}\right)^{4}} .
$$

In case of $a=0$, the minimal surface S induced by $G(z)=i / z$ and $F(z)=z^{2} /(1-z)^{4}$ has the Gaussian curvature $K=-16$ at the point $(0,0,0)$. Therefore the estimate in Theorem 4 is sharp in case of $a=0$.

ThEOREM 6. The total curvature of the minimal surface S induced by the meromorphic function $G(z)=i / z$ and analytic function $F(z)=$ $z^{2} /(1-z)^{4}$ is -2π.

Proof. This is the case of $a=0$. Let $D_{r}=\{z:|z|<r\}, r<1$. Then the total curvature of the minimal surface restricted to D_{r} is

$$
\begin{aligned}
T_{r} & =-\iint_{D_{r}}\left[\frac{2\left|b^{\prime}\right|}{1+|b|^{2}}\right]^{2} d x d y=-4 \iint_{D_{r}} \frac{1}{\left(|z|^{2}+1\right)^{2}} d x d y \\
& =-4 \int_{0}^{2 \pi} \int_{0}^{r} \frac{r}{\left(r^{2}+1\right)^{2}} d r d \theta=\frac{-4 \pi r^{2}}{r^{2}+1} .
\end{aligned}
$$

Thus $T_{r} \rightarrow-2 \pi$ as $r \rightarrow 1$. Therefore the total curvature of the minimal surface S is -2π.

References

[1] L. V. Ahlfors, Complex Analysis, McGraw-Hill, New York, 1966.
[2] M. Chuaqui, P. Duren and B. Osgood, Curvature properties of planar harmonic mappings, Comput. Methods Funct. Theory 4 (2004), 127-142.
[3] M. Chuaqui, P. Duren and B. Osgood, Univalence criteria for lifts of harmonic mappings to minimal surfaces, J. Geom. Analysis 17 (2007), 49-74.
[4] J. G. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A. I. 9 (1984), 3-25.
[5] P. Duren and W. R. Thygerson, Harmonic mappings related to Scherk's saddletower minimal surfaces, Rocky Mountain J. Math. 30 (2000), 555-564.
[6] H. Lewy, On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc. 42 (1936), 689-692.
[7] R. Osserman, A Survey of Minimal Surfaces, Dover, New York, 1986.

Sook Heui Jun
Department of Mathematics
Seoul Women's University
Seoul 01797, Korea
E-mail: shjun@swu.ac.kr

[^0]: Received July 12, 2015. Revised September 9, 2015. Accepted September 10, 2015.

 2010 Mathematics Subject Classification: 30C45, 30C99.
 Key words and phrases: harmonic mapping, minimal surface.
 This work was supported by a research grant from Seoul Women's University(2014).
 © The Kangwon-Kyungki Mathematical Society, 2015.
 This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

