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HARMONIC MAPPING RELATED WITH THE
MINIMAL SURFACE GENERATED BY ANALYTIC
FUNCTIONS

SooK HEuIl JuN

ABSTRACT. In this paper we consider the meromorphic function
G(z) with a pole of order 1 at —a and analytic function F(z) with
a zero —a of order 2 in D = {z : |2| < 1}, where —1 < a < 1.
From these functions we obtain the regular simply-connected mini-
mal surface S = {(u(z),v(z), H(z)) : 2 € D} in E? and the harmonic
function f = u—+iv defined on D, and then we investigate properties
of the minimal surface S and the harmonic function f.

1. Introduction

Let G(z) be an arbitrary meromorphic function in D = {z : |z| < 1}
and F'(z) be an analytic function in D having the property that at each
point where G(z) has a pole of order n, F'(z) has a zero of order at least
2n. Then the functions

¢ = %F(l —G?), ¢y = %F(l +G?), ¢3 = FG

are analytic in D and satisfy
O1° + o + ¢3> = 0.
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Every simply-connected minimal surface S in E® has the representa-
tion of the form

S ={(u(z),v(2),H(z)) : z € D}

u(z) = Re{ /0 ) gbl(z)dz}—i—cl,
v(z) = Re{/OZ ¢2(z)dz}—|—02,

H(z) = Re{ /0 ) ¢3(z)dz}+cg

are harmonic in D = {z : |z] < 1}.

The coordinates u(z) and v(z) are real harmonic in D, and therefore
f = w+iv is harmonic in D. The integral is taken along an arbitrary
path from the origin to the point z. The surface will be regular if F'
satisfies the further property that it vanishes only at the poles of G, and
the order of its zero at such a point is exactly twice the order of the pole
of G [7, Lemmas 8.1 and 8.2].

where

In this paper we consider the meromorphic function G(z) = %
with a pole of order 1 at —a and analytic function F(z) = Eﬁ‘gz with

a zero —a of order 2 in D, where —1 < a < 1. From these functions we
obtain the regular simply-connected minimal surface

S ={(u(z),v(2),H(z)) : z € D}

in E3 where

u(z) =Re {

(14a)?2* (1+a*+ 2az)z}
C1,

3(1— 2)3 2(1 — 2)2
i(a>—1)z
’U(Z) =Re {m} + Ca,

H(z) :Re{ 31—27 21—z

and the harmonic function f = u + ¢v defined on D, and then we inves-
tigate properties of the minimal surface S and the harmonic function

f(z) = Z apz® + Z by 2"
k=1 k=1
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where ay = & {(1 + a)?k* +3(1 — a®)k + 2(a® —a+ 1)} and b, =
LA+ a)*k? —3(1 — a®k +2(a® —a + 1)}.

2. The minimal surface and harmonic function

Let us consider the meromorphic function G(z) = & “ZH ) with a pole
of order 1 at —a and analytic function F'(z) = E ta ;4 w1th a zero —a of
order 2 in D, where —1 < a < 1. Then

(z+a)*+ (az + 1)

¢ = %F(l - G?) =

2(1—2)4 ’
i b i@ —1)(z+1)
02 = o F1+G7) = 21 —2)3
_ i(z+a)(az +1)

¢3 =FG

(1—-2)!

are analytic in D. The relevant integrals are

’ [ ta)PFlaz+1)? 0 (14a)*2® | (1L+a®+2a2)2
/0 ¢1(2)d2—/ 20 =2y dz = 301 = o) + A=z

: i@ =1)(z41) , i(a* = 1)z
/o ¢2(z)dz—/0 SIE dz = TR

’ ~ [FiEta)(ez+1) o i(14+a)?2  i[(1+a%)z+2d] 2
/¢3(2)d2—/ 1) dz = 302 T

Thus the minimal surface S obtained by F(z) and G(z) has the repre-
sentation of the form

S ={(u(z),v(2),H(z)) : z € D}

where

B (1+a)*2® (1+a®+2az2)z
u(z) —Re{ 30— o) + 21— 2) } c1,
i(a®> — 1)z
v(z) :Re{ 20— 2) } + ¢,
i(1+a)?2®  i[(1+a®)z+2d]2
3(1— 2)3 2(1 — 2)? } T

H(2) =Re {
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are harmonic in D and the surface S is regular. In addition, this is a con-
formal parametrization. The first fundamental form for the Euclidean
length on S is ds? = \2|dz|? where A2 = 1 370 ¢ |2

Let ¢; = ¢3 = ¢3 = 0. Then the harmonic function f(z) = u(z)+iv(2)
is

(1+a)?z® (14 a®+2az2)z , i(a* —1)z
=R Red ——— 7.

/) 6{3(1_2)3+ TS B T SE
So f can be written in the form f = h +7q , where
(1+a)?2®  (1+4a2)z

h(z) = 6(1— 20 21— 2)
_ f:li {1+ a)2k? +3(1 — a?)k + 2(a? — a + 1)}
and _
(1+a)?2® ala+2)z
9(z) = 6(1— 2) + 2(1 — 2)?
- i1_12 (14 a)*k* — 3(1 — a®)k + 2(a? —a—l—l)}zk
k=1

are analytic in . Since the Jacobian of f
2 2

1 2 2
(14 az) (a+2) -0,

J(2) = [W () =g (2)] = ‘2(1 — )t 2(1 — 2)*

the harmonic mapping f is locally 1-1 and orientation-preserving, that
is locally univalent in D [4,6]. We will give the proof that this f is
univalent in D in the following theorem.

A domain D is called convex in the direction of the real axis if it has
a connected intersection with every line parallel to the real axis.

THEOREM 1. [4, Theorem 5.3] A harmonic f = h+7 locally univalent
in D is a univalent mapping of D onto a domain convex in the direction
of the real axis if and only if h — g is a conformal univalent mapping of
D onto a domain convex in the direction of the real axis.

THEOREM 2. The locally univalent harmonic function f = h 4+ g is
a univalent mapping of D onto a domain convex in the direction of the
real axis.
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Proof. The Koebe function

k(z) = s =242 4325+

z
-
is conformal univalent in D and maps the unit disk onto the entire com-
plex plane minus the portion of the negative real axis from —oo to —i,
that is a domain convex in the direction of the real axis.

The analytic function

(1-a?)

he) — g() = = h(e)
is also a conformal univalent mapping of ID onto a domain convex in the
direction of the real axis. Thus the locally univalent harmonic f = h+g
is a univalent mapping of D onto a domain convex in the direction of

the real axis by Theorem 1. O

THEOREM 3. The regular minimal surfaces S obtained by F(z) and
G(z) lie over f(D) = C\ (—o0,—(a? —a+ 1)/6].

Proof. Let w = 12 = ¢+ di, then ¢ > 0. From this we get
f(z) =u(z) +iv(z)

(1+a)?*c® —3(1+a)’cd® +3(a — 1)*c — 4(a®> —a+ 1) N (1 —a?)ed
— i :

24 4

If v = 0, then d = 0 and u varies from —(a? — a + 1)/6 to +o0o. On the
horizontal line v # 0, the real part u of f varies from —oo to +0c0. [

Now we will express the basic geometric quantities associated with
the minimal surface S in terms of the univalent harmonic orientation-
preserving function f = h + g with 0> = f./f. = ¢'/F. In terms of
f = h+g, the conformal factor A becomes simply A = |h'|+|g’|. Therefore
the Gaussian curvature K of S is

PP _Alogh 4|1G'| ?
o P+ (G2
_4|b/|2 _4|b/|2

T RP@P+ 1 T (W [g Db + 17
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Let A be a domain whose closure is in D, then the total curvature T’
of the surface restricted to A is

216" 17
_ 2
—/ KN dxdy = // L n |G|2} dxdy

20| 17
dzd
// [HIbI?] g
where z = x + iy.

For more results concerning harmonic mappings related to minimal
surfaces, we refer the reader to [2, 3, 5].

THEOREM 4. Let S be the regular minimal surfaces induced by F(z)
and G(z). Then

16 1+r\*
K| < =r <L
K< o (10)  Fl=r

Proof. Since b(z) is analytic in D and satisfies the condition |b(2)| < 1,
the invariant form of Schwarz’s lemma implies

1 — |b)?
ST
From this inequality and the fact that 1 — |b]*> <1+ |b|?, we have
4

W N S ERE(Earii

The analytic function 2[h(z) — g(2)]/(1 — a?®) = k(z) is univalent and
satisfies £(0) = 0 and £'(0) = 1. Thus we have

(1—a?)(1-r) _ W] < (1—a)(1+7)

2(1+17)3 2(1—1r)3
by the distortion theorem. This leads to
1 4(1+47)8

< .
(1] +1g'))* = (1 = a?)*(1 —1)?
By applying this inequality to (1), we obtain

1 1 4
K| < 6 +r
(I—a?)?2\1-r
as desired. O
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THEOREM 5. The Gaussian curvature K at the point (0,0,0) in the
minimal surface S is given by
16(1 — a?)?

(1+a2)4

Proof. At the point (u(0),v(0), H(0)) = (0,0,0) on the minimal sur-

face S, the Gaussian curvature is
—4|v'(0)]2 _16(1 —a?)?

(1n'O)] + 1 (0))*([b(0)[* + 1) (1+a?)!

K=-—

K =

[]

In case of a = 0, the minimal surface S induced by G(z) = i¢/z and
F(z) = 22/(1 — 2)* has the Gaussian curvature K = —16 at the point
(0,0,0). Therefore the estimate in Theorem 4 is sharp in case of a = 0.

THEOREM 6. The total curvature of the minimal surface S induced

by the meromorphic function G(z) = i/z and analytic function F(z) =
22/(1 — 2)* is —2.

Proof. This is the case of a = 0. Let D, = {z : |z| < r},r < 1. Then
the total curvature of the minimal surface restricted to D, is

= - zdy = — T
L+ |b|2 - R(EEEE |2 /
2 — 472
= / / 7‘2 drd@ m

Thus T, — —2m asr — 1. Therefore the total curvature of the minimal
surface S is —27. ]
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