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HARMONIC MAPPING RELATED WITH THE

MINIMAL SURFACE GENERATED BY ANALYTIC

FUNCTIONS

Sook Heui Jun

Abstract. In this paper we consider the meromorphic function
G(z) with a pole of order 1 at −a and analytic function F (z) with
a zero −a of order 2 in D = {z : |z| < 1}, where −1 < a < 1.
From these functions we obtain the regular simply-connected mini-
mal surface S = {(u(z), v(z), H(z)) : z ∈ D} in E3 and the harmonic
function f = u+ iv defined on D, and then we investigate properties
of the minimal surface S and the harmonic function f .

1. Introduction

Let G(z) be an arbitrary meromorphic function in D = {z : |z| < 1}
and F (z) be an analytic function in D having the property that at each
point where G(z) has a pole of order n, F (z) has a zero of order at least
2n. Then the functions

φ1 =
1

2
F (1−G2), φ2 =

i

2
F (1 +G2), φ3 = FG

are analytic in D and satisfy

φ1
2 + φ2

2 + φ3
2 = 0.
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Every simply-connected minimal surface S in E3 has the representa-
tion of the form

S = {(u(z), v(z), H(z)) : z ∈ D}
where

u(z) = Re

{∫ z

0

φ1(z)dz

}
+c1,

v(z) = Re

{∫ z

0

φ2(z)dz

}
+c2,

H(z) = Re

{∫ z

0

φ3(z)dz

}
+c3

are harmonic in D = {z : |z| < 1}.
The coordinates u(z) and v(z) are real harmonic in D, and therefore

f = u + iv is harmonic in D. The integral is taken along an arbitrary
path from the origin to the point z. The surface will be regular if F
satisfies the further property that it vanishes only at the poles of G, and
the order of its zero at such a point is exactly twice the order of the pole
of G [7, Lemmas 8.1 and 8.2].

In this paper we consider the meromorphic function G(z) = i(az+1)
z+a

with a pole of order 1 at −a and analytic function F (z) = (z+a)2

(1−z)4 with

a zero −a of order 2 in D, where −1 < a < 1. From these functions we
obtain the regular simply-connected minimal surface

S = {(u(z), v(z), H(z)) : z ∈ D}
in E3 where

u(z) =Re

{
(1 + a)2z3

3(1− z)3
+

(1 + a2 + 2az)z

2(1− z)2

}
+ c1,

v(z) =Re

{
i(a2 − 1)z

2(1− z)2

}
+ c2,

H(z) =Re

{
i(1 + a)2z3

3(1− z)3
+
i [(1 + a2)z + 2a] z

2(1− z)2

}
+ c3,

and the harmonic function f = u+ iv defined on D, and then we inves-
tigate properties of the minimal surface S and the harmonic function

f(z) =
∞∑
k=1

akz
k +

∞∑
k=1

bkzk
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where ak = 1
12
{(1 + a)2k2 + 3(1− a2)k + 2(a2 − a+ 1)} and bk =

1
12
{(1 + a)2k2 − 3(1− a2)k + 2(a2 − a+ 1)} .

2. The minimal surface and harmonic function

Let us consider the meromorphic function G(z) = i(az+1)
z+a

with a pole

of order 1 at −a and analytic function F (z) = (z+a)2

(1−z)4 with a zero −a of

order 2 in D, where −1 < a < 1. Then

φ1 =
1

2
F (1−G2) =

(z + a)2 + (az + 1)2

2(1− z)4
,

φ2 =
i

2
F (1 +G2) =

i(a2 − 1)(z + 1)

2(1− z)3
,

φ3 = FG =
i(z + a)(az + 1)

(1− z)4

are analytic in D. The relevant integrals are∫ z

0

φ1(z)dz =

∫ z

0

(z + a)2 + (az + 1)2

2(1− z)4
dz =

(1 + a)2z3

3(1− z)3
+

(1 + a2 + 2az)z

2(1− z)2
,∫ z

0

φ2(z)dz =

∫ z

0

i(a2 − 1)(z + 1)

2(1− z)3
dz =

i(a2 − 1)z

2(1− z)2
,∫ z

0

φ3(z)dz =

∫ z

0

i(z + a)(az + 1)

(1− z)4
dz =

i(1 + a)2z3

3(1− z)3
+
i [(1 + a2)z + 2a] z

2(1− z)2
.

Thus the minimal surface S obtained by F (z) and G(z) has the repre-
sentation of the form

S = {(u(z), v(z), H(z)) : z ∈ D}

where

u(z) =Re

{
(1 + a)2z3

3(1− z)3
+

(1 + a2 + 2az)z

2(1− z)2

}
+ c1,

v(z) =Re

{
i(a2 − 1)z

2(1− z)2

}
+ c2,

H(z) =Re

{
i(1 + a)2z3

3(1− z)3
+
i [(1 + a2)z + 2a] z

2(1− z)2

}
+ c3
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are harmonic in D and the surface S is regular. In addition, this is a con-
formal parametrization. The first fundamental form for the Euclidean
length on S is ds2 = λ2|dz|2 where λ2 = 1

2

∑3
k=1 |φk|2.

Let c1 = c2 = c3 = 0. Then the harmonic function f(z) = u(z)+ iv(z)
is

f(z) = Re

{
(1 + a)2z3

3(1− z)3
+

(1 + a2 + 2az)z

2(1− z)2

}
+ iRe

{
i(a2 − 1)z

2(1− z)2

}
.

So f can be written in the form f = h+ g , where

h(z) =
(1 + a)2z3

6(1− z)3
+

(1 + az)z

2(1− z)2

=
∞∑
k=1

1

12

{
(1 + a)2k2 + 3(1− a2)k + 2(a2 − a+ 1)

}
zk

and

g(z) =
(1 + a)2z3

6(1− z)3
+
a(a+ z)z

2(1− z)2

=
∞∑
k=1

1

12

{
(1 + a)2k2 − 3(1− a2)k + 2(a2 − a+ 1)

}
zk

are analytic in D. Since the Jacobian of f

J(z) = |h′(z)|2 − |g′(z)|2 =

∣∣∣∣(1 + az)2

2(1− z)4

∣∣∣∣2 − ∣∣∣∣ (a+ z)2

2(1− z)4

∣∣∣∣2 > 0,

the harmonic mapping f is locally 1-1 and orientation-preserving, that
is locally univalent in D [4, 6]. We will give the proof that this f is
univalent in D in the following theorem.

A domain D is called convex in the direction of the real axis if it has
a connected intersection with every line parallel to the real axis.

Theorem 1. [4, Theorem 5.3] A harmonic f = h+g locally univalent
in D is a univalent mapping of D onto a domain convex in the direction
of the real axis if and only if h− g is a conformal univalent mapping of
D onto a domain convex in the direction of the real axis.

Theorem 2. The locally univalent harmonic function f = h + g is
a univalent mapping of D onto a domain convex in the direction of the
real axis.
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Proof. The Koebe function

k(z) =
z

(1− z)2
= z + 2z2 + 3z3 + . . .

is conformal univalent in D and maps the unit disk onto the entire com-
plex plane minus the portion of the negative real axis from −∞ to −1

4
,

that is a domain convex in the direction of the real axis.

The analytic function

h(z)− g(z) =
(1− a2)

2
k(z)

is also a conformal univalent mapping of D onto a domain convex in the
direction of the real axis. Thus the locally univalent harmonic f = h+g
is a univalent mapping of D onto a domain convex in the direction of
the real axis by Theorem 1.

Theorem 3. The regular minimal surfaces S obtained by F (z) and
G(z) lie over f(D) = C \ (−∞,−(a2 − a+ 1)/6].

Proof. Let w = 1+z
1−z = c+ di, then c > 0. From this we get

f(z) = u(z) + iv(z)

=
(1 + a)2c3 − 3(1 + a)2cd2 + 3(a− 1)2c− 4(a2 − a+ 1)

24
+ i

(1− a2)cd

4
.

If v = 0, then d = 0 and u varies from −(a2 − a + 1)/6 to +∞. On the
horizontal line v 6= 0, the real part u of f varies from −∞ to +∞.

Now we will express the basic geometric quantities associated with
the minimal surface S in terms of the univalent harmonic orientation-
preserving function f = h + g with b2 = f z̄/fz = g′/h′. In terms of
f = h+ḡ, the conformal factor λ becomes simply λ = |h′|+|g′|. Therefore
the Gaussian curvature K of S is

K = −∆logλ

λ2
= −

[
4|G′|

|F |(1 + |G|2)2

]2

=
−4|b′|2

|h′|2(|b|2 + 1)4
=

−4|b′|2

(|h′|+ |g′|)2(|b|2 + 1)2
.
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Let ∆ be a domain whose closure is in D, then the total curvature T
of the surface restricted to ∆ is

T =

∫∫
∆

Kλ2dxdy = −
∫∫

∆

[
2|G′|

1 + |G|2

]2

dxdy

= −
∫∫

∆

[
2|b′|

1 + |b|2

]2

dxdy,

where z = x+ iy.
For more results concerning harmonic mappings related to minimal

surfaces, we refer the reader to [2, 3, 5].

Theorem 4. Let S be the regular minimal surfaces induced by F (z)
and G(z). Then

|K| ≤ 16

(1− a2)2

(
1 + r

1− r

)4

, |z| = r < 1.

Proof. Since b(z) is analytic in D and satisfies the condition |b(z)| < 1,
the invariant form of Schwarz’s lemma implies

|b′| ≤ 1− |b|2

1− |z|2
.

From this inequality and the fact that 1− |b|2 ≤ 1 + |b|2, we have

(1) |K| ≤ 4

(1− |z|2)2(|h′|+ |g′|)2
.

The analytic function 2[h(z)− g(z)]/(1− a2) = k(z) is univalent and
satisfies k(0) = 0 and k′(0) = 1. Thus we have

(1− a2)(1− r)
2(1 + r)3

≤ |h′ − g′| ≤ (1− a2)(1 + r)

2(1− r)3

by the distortion theorem. This leads to

1

(|h′|+ |g′|)2
≤ 4(1 + r)6

(1− a2)2(1− r)2
.

By applying this inequality to (1), we obtain

|K| ≤ 16

(1− a2)2

(
1 + r

1− r

)4

as desired.
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Theorem 5. The Gaussian curvature K at the point (0, 0, 0) in the
minimal surface S is given by

K = −16(1− a2)2

(1 + a2)4
.

Proof. At the point (u(0), v(0), H(0)) = (0, 0, 0) on the minimal sur-
face S, the Gaussian curvature is

K =
−4|b′(0)|2

(|h′(0)|+ |g′(0)|)2(|b(0)|2 + 1)2
= −16(1− a2)2

(1 + a2)4
.

In case of a = 0, the minimal surface S induced by G(z) = i/z and
F (z) = z2/(1− z)4 has the Gaussian curvature K = −16 at the point
(0, 0, 0). Therefore the estimate in Theorem 4 is sharp in case of a = 0.

Theorem 6. The total curvature of the minimal surface S induced
by the meromorphic function G(z) = i/z and analytic function F (z) =
z2/(1− z)4 is −2π.

Proof. This is the case of a = 0. Let Dr = {z : |z| < r}, r < 1. Then
the total curvature of the minimal surface restricted to Dr is

Tr = −
∫∫

Dr

[
2|b′|

1 + |b|2

]2

dxdy = −4

∫∫
Dr

1

(|z|2 + 1)2
dxdy

= −4

∫ 2π

0

∫ r

0

r

(r2 + 1)2
drdθ =

−4πr2

r2 + 1
.

Thus Tr → −2π as r → 1. Therefore the total curvature of the minimal
surface S is −2π.
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