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A HYBRID METHOD FOR A SYSTEM INVOLVING

EQUILIBRIUM PROBLEMS, VARIATIONAL

INEQUALITIES AND NONEXPANSIVE SEMIGROUP

Le Quang Thuy and Le Dung Muu

Abstract. In this paper we propose an iteration hybrid method for
approximating a point in the intersection of the solution-sets of pseu-
domonotone equilibrium and variational inequality problems and
the fixed points of a semigroup-nonexpensive mappings in Hilbert
spaces. The method is a combination of projection, extragradient-
Armijo algorithms and Manns method. We obtain a strong conver-
gence for the sequences generated by the proposed method.

1. Introduction

Throughout the paper we suppose that H is a real Hilbert space with
inner product 〈·, ·〉 and the associated norm ‖·‖, that C is a closed convex
subset in H, and that f : C × C → R, A : C → H, T (h) : C → C,
h ≥ 0. Conditions for f , A and T (h) will be detailed later. In this
paper we consider a system that consists of an equilibrium problem, a
variational inequality and the fixed point problem for a semimgroup of
nonexpansive mappings {T (h) : h ≥ 0} from C into itself . Namely, we
are interested in a solution method for the system defined as

(1) Find x∗ ∈ C : f(x∗, y) ≥ 0 ∀ y ∈ C,
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(2) 〈Ax∗, x− x∗〉 ≥ 0 ∀x ∈ C,

(3) x∗ = T (h)(x∗) ∀h > 0.

The equilibrium problem (1), the variational inequality (2) and the fixed
point problem for a semigroup of nonexpansive mappings are impor-
tant topics of Applied Analysis, and they attracted much attention of
researchers and users (see e.g. [1], [3] [4] [5], [8], [10] [11],... and the
references cited therein).

In recent year, the problem of solving a system involving equilibrium
problems, variational inequalities and fixed point of a semigroup non-
expansive mappings in Hilbert spaces has attracted attention of some
authors (see e.g. [3], [4], [9], [14], [16], [17], [19], [20], [22],... and the
references therein). The common approach in these papers is to use
a proximal point algorithm for handling the equilibrium problem. For
monotone equilibrium problems the subproblems needed to solve in the
proximal point method are strongly monotone, and therefore they have
a unique solution that can be approximated by available methods. How-
ever, for pseudomonone problems the subproblems, in general, may have
nonconvex solution-set due to the fact that the regularized bifunctions
do not inherit any pseudomonotoniciy property from the original one.

In this article we propose a method for finding a common element
in the solution-sets of a pseudomonotone equilibrium problem, and a
monotone variational inequality and the set of fixed points for a non-
expansive semigroup in Hilbert spaces. The main point here is that we
use the hybrid idea from [12] combining with an extragradient-Armijo
procedure rather than a proximal point algorithm. This algorithm thus
can be used for pseudomonotone equilibrium problems.

The paper is organized as follows. in the next section we recall some
notions and results that will be used for convergence analysis. Then we
describe the method at the end of the section. The convergence analysis
for the proposed method is detailed in Section 3. Some applications are
given in the last section.

2. Preliminaries

In what follows by xn ⇀ x̄ we mean that the sequence {xn} converges
to x̄ in weak topology. We recall that mapping T : C → C is said to be
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nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖ for al x, y ∈ C.
Let F (T ) denote the set of fixed points of T . A family {T (s) : s ∈ R+}
of mappings from C into itself is called a nonexpansive semigroup on C
if it satisfies the following conditions:

(i) for each s ∈ R+, T (s) is a nonexpansive mapping on C;
(ii) T (0)x = x for all x ∈ C;
(iii) T (s1 + s2) = T (s1) ◦ T (s2) for all s1, s2 ∈ R+;
(iv) for each x ∈ C, the mapping T (·)x from R+ into C is continuous.

Let F =
⋂
s≥0

F (T (s)) be the set of all common fixed points of {T (s) :

s ∈ R+}. We know that F is nonempty if C is bounded (see [2]).
A mapping A : C → H is called monotone on C if

〈Ax− Ay, x− y〉 ≥ 0 for all x, y ∈ C;

strictly monotone if

〈Ax− Ay, x− y〉 ≥ 0 for all x 6= y;

β−inverse strongly monotone mapping if

〈Ax− Ay, x− y〉 ≥ β‖Ax− Ay‖2 for all x, y ∈ C;

and L−Lipschitz continuous if there exists a constant L > 0 such that

‖Ax− Ay‖ ≤ L‖x− y‖ for all x, y ∈ C.
It is clear that if A is β− inverse strongly monotone, then A is monotone
and Lipschitz continuous.

The bifunction f is called monotone on C if

f(x, y) + f(y, x) ≤ 0 for al x, y ∈ C;

pseudomonotone on C if

f(x, y) ≥ 0⇒ f(y, x) ≤ 0 for al x, y ∈ C.
We suppose the following assumptions:

(A0) A is monotone and Lipschitz on C with constant L > 0;
(A1) f(x, x) = 0 for all x ∈ C;
(A2) f is pseudomonotone on C;
(A3) f is continuous on C;
(A4) for each x ∈ C, f(x, ·) is convex and subdifferentiable on C;
(A5) lim

t→+0
f((1− t)u+ tz, v) ≤ f(u, v) for all (u, z, v) ∈ C × C × C.
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For each point x ∈ H, let PC(x) denote the projection of x onto C. The
following well known lemma will be used in the sequel.

Lemma 2.1. Let C be a nonempty closed convex subset of H. Given
x ∈ H and y ∈ C then

(i) ‖x+ y‖2 = ‖x‖2 + ‖y‖2 + 2〈x, y〉 for all x, y ∈ H;
(ii) ‖tx + (1 − t)y‖2 = t‖x‖2 + (1 − t)‖y‖2 − t(1 − t)‖x − y‖2, for all

t ∈ [0, 1] and for all x, y ∈ H;
(iii) y = PC(x) if and only if 〈x− y, y − z〉 ≥ 0 for all z ∈ C;
(iv) PC is a nonexpansive mapping on C;
(v) 〈x− y, PC(x)− PC(y) ≥ ‖PC(x)− PC(y)‖2 for all x, y ∈ H;

(vi) ‖x− y‖2 ≥ ‖x−PC(x)‖2 + ‖y−PC(x)‖2 for any x ∈ H and for all
y ∈ C.

Using Lemma 2.1, it is easy to prove the following lemma.

Lemma 2.2. A point u ∈ C is a solution of the variational inequality
(2) if and only if u = PC(u− λAu) for any λ > 0.

We recall that a set-valued mapping T : H → 2H is called monotone
if for all x, y ∈ H, u ∈ Tx, and v ∈ Ty imply 〈x − y, u − v〉 ≥ 0. A
monotone mapping T : H → 2H is maximal if the graph G(T ) of T is
not property contained in the graph of any other monotone mapping.
It is known that a monotone mapping T is maximal if and only if for
(x, u) ∈ H×H, 〈x−y, u−v〉 ≥ 0 for every (y, v) ∈ G(T ) implies u ∈ Tx.

LetA be a monotone mapping of C toH, letNC(v) be the normal cone
to C at v ∈ C, that is, NC(v) = {w ∈ H : 〈v−u,w〉 ≥ 0 for all u ∈ C},
and define

Tv =

{
Av +NC(v), if v ∈ C,
∅ if v /∈ C.

Then it is well-known [15] that T is maximal monotone and v ∈ T−10 if
and only if v ∈ Sol(A,C).

Now we collect some lemmas which will be used for proving the con-
vergence results for the method to be described below.

Lemma 2.3. ([6]). Let C be a nonempty closed convex subset of a
real Hilbert space H and h : C → R be a convex and subdifferentiable
function on C. Then x∗ is a solution to the following convex problem:

min{g(x) : x ∈ C}
if and only if 0 ∈ ∂g(x∗) + NC(x∗), where NC(x∗) is normal cone at x∗

on C and ∂g(·) denotes the subdifferential of g.
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Lemma 2.4. ([7]) Let C be a closed convex subset of a Hilbert space
H and let S : C → C be a nonexpansive mapping such that F (S) 6= ∅. If
a sequence {xn} ⊂ C such that xn ⇀ z and xn−Sxn → 0, then z = Sz.

Lemma 2.5. ( [18]) Let C be a nonempty bounded closed convex
subset of H and let {T (s) : s ∈ R+} be a nonexpansive semigroup on
C. Then, for any h ≥ 0

lim
s→∞

sup
y∈C

∥∥∥T (h)
(1

s

∫ s

0

T (t)ydt
)
− 1

s

∫ s

0

T (t)ydt
∥∥∥ = 0

It is well known that H satisfies the following Opial’s condition [13]:
If a sequence {xk} converges weakly to x, as k →∞, then

lim
n→∞

sup ‖xn − x‖ < lim
n→∞

sup ‖xn − y‖ for al y ∈ H, with x 6= y.

Now we are in a position to describe a hybrid iteration method for
finding a element in the set F∩Sol(C, f)∩Sol(C,A) under the Assump-
tion (A0)− (A5).

Algorithm 2.6. Choose positive sequences {µn} ⊂ [a, 1] for some
a ∈ (0, 1), {λn} ⊂ [b, c] for some b, c ∈ (0, 1/

√
2L) and positives number

β > 0, σ ∈ (0, β
2
), γ ∈ (0, 1).

Seek a starting point x0 ∈ C and set n := 0,

Step 1. Solve the strongly convex program

yn = argmin{f(xn, y) +
β

2
||y − xn||2 : y ∈ C}

and set d(xn) = xn − yn.
If ‖d(xn)‖ 6= 0 then go to Step 2.
Otherwise, set un = xn and go to Step 3.

Step 2. (linesearch) Find the smallest positive integer number mn such
that

(4) f
(
xn − γmnd(xn), yn

)
≤ −σ‖d(xn)‖2.

Compute

un = PC∩Vn(xn),

where z̄n = xn − γmnd(xn), wn ∈ ∂2f(z̄k, z̄k) and

Vn = {x ∈ H : 〈wn, x− z̄n〉 ≤ 0},

then go to Step 3.
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Step 3. Compute

vn = PC(un − λnAun)

zn = (1− µn)PC(xn) + µnTnPC(un − λnAvn)

xn+1 = PHn∩Wn(x0)

where

Hn = {z ∈ H : ‖zn − z‖ ≤ ‖xn − z‖},
Wn = {z ∈ H : 〈xn − z, x0 − xn〉 ≥ 0}.

and Tn is defined as

Tnx :=
1

sn

∫ sn

0

T (s)xds, ∀x ∈ C with lim
n→+∞

sn = +∞.

Increase n by 1 and go back to Step 1.

We now turn to the convergence of the proposed algorithm.

3. Convergence Results

In this section, we show that the sequences {xn}, {vn}, {zn} and
{un} defined by Algorithm 2.6 strongly convergent to a point in the set
Ω := F ∩ Sol(C,A) ∩ Sol(C, f)

Theorem 3.1. Let C be a nonempty closed convex subset in a real
Hilbert space H, {T (s) : s ∈ R+} be a nonexpansive semigroup on C, f
be a bifunction from C × C to R satisfying conditions (A1)− (A5), and
A : C → H be a monotone L−Lipschitz continuous mapping such that
Ω = F ∩ Sol(f, C) ∩ Sol(A,C) 6= ∅. Let {xn}, {zn}, {vn} and {un} be
sequences generated by the algorithm, where {µn} ⊂ [a, 1] for some a ∈
(0, 1), {λn} ⊂ [b, c] for some b, c ∈ (0, 1/

√
2L). Then, {xn}, {vn}, {zn}

and {un} converge strongly to an element p = PΩ(x0).

Proof. First, we consider the case when there exists n0 such that
d(xn) = 0, i.e. xn = yn for all n ≥ n0. Then from Step 1, we have
un = xn which implies that xn is a solution of the equilibrium problem
EP (C, f) for all n ≥ n0. Thus, the algorithm becomes the one in [3]
which has been shown there that the sequence {xn} strongly converges
to a point in F ∩ Sol(C,A).
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Now we may assume that d(xn) 6= 0 for all n. For this case we divide
the proof into several steps. Some ideas in this proof are taken from the
references [3], [12].
Step 1. We prove that the linesearch is finite for every n, that means
that there exists the smallest nonnegative integer mn satisfying

f(xn − γmnd(xn), yn) ≤ −σ‖d(xn)‖2 for al n.

Indeed, suppose for contradiction that for every nonnegative integer m,
one has

f
(
xn − γmd(xn), yn

)
+ σ‖d(xn)‖2 > 0.

Taking the limit above inequality as m → ∞, by continuity of f , we
obtain

(5) f
(
xn, yn

)
+ σ‖d(xn)‖2 ≥ 0.

On the other hand, since yn is the unique solution of the strongly convex
problem

min{f(xn, y) +
β

2
‖y − xn‖2 : y ∈ C},

we have

f(xn, y) +
β

2
‖y − xn‖2 ≥ f(xn, yn) +

β

2
‖yn − xn‖2 for al y ∈ C.

With y = xn, the last inequality becomes

(6) f(xn, yn) +
β

2
‖d(xn)||2 ≤ 0.

Combining (5) with (6) yields

σ‖d(xn)‖2 ≥ β

2
‖d(xn)‖2.

Hence it must be either ‖d(xn)‖ = 0 or σ ≥ β
2
. The first case contradicts

to ‖d(xn)‖ 6= 0, while the second one contradicts to the choice σ < β
2
.

Step 2. We show that xn /∈ Vn. In fact, from z̄n = xn − γmnd(xn), it
follows that

yn − z̄n =
1− γmn

γmn
(z̄n − xn).
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Then using (4) and the assumption f(x, x) = 0 for all x ∈ C, we have

0 > −σ‖d(xn)‖2

≥ f(z̄n, yn)

= f(z̄n, yn)− f(z̄n, z̄n)

≥ 〈wn, yn − z̄n〉

=
1− γmn

γmn
〈z̄n − xn, wn〉.

Hence
〈xn − z̄n, wn〉 > 0,

which implies xn /∈ Vn.

Step 3. We claim that un = PC∩Vn(ȳn), where ȳn = PVn(xn).
Indeed, let K := {x ∈ H : 〈t, x − x0〉 ≤ 0} with ‖t‖ 6= 0. It is easy

to check that

PK(y) = y − 〈t, y − x
0〉

‖t‖2
t,

Hence,

ȳn = PVn(xn)

= xn − 〈w
n, xn − z̄n〉
‖wn‖2

wn

= xn − γmn〈wn, d(xn)〉
‖wn‖2

wn.

Note that, for every y ∈ C ∩ Vn, there exists λ ∈ (0, 1) such that

x̂ = λxn + (1− λ)y ∈ C ∩ ∂Vn,
where

∂Vn = {x ∈ H : 〈wn, x− z̄n〉 = 0}.
Since xn ∈ C, x̂ ∈ ∂Vn and ȳn = PVn(xn), we have

‖y − ȳn‖2 ≥ (1− λ)2‖y − ȳn‖2

= ‖x̂− λxn − (1− λ)ȳn‖2

= ‖(x̂− ȳn)− λ(xn − ȳn)‖2

= ‖x̂− ȳn‖2 + λ2‖xn − ȳn‖2 − 2λ〈x̂− ȳn, xn − ȳn〉
= ‖x̂− ȳn‖2 + λ2‖xn − ȳn‖2

≥ ‖x̂− ȳn‖2.(7)
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At the same time

‖x̂− xn‖2 = ‖x̂− ȳn + ȳn − xn‖2

= ‖x̂− ȳn‖2 − 2〈x̂− ȳn, xn − ȳn〉+ ‖ȳn − xn‖2

= ‖x̂− ȳn‖2 + ‖ȳn − xn‖2.

Using un = PC∩Vn(xn) and the Pythagorean theorem, we can write

‖x̂− ȳn‖2 = ‖x̂− xn‖2 − ‖ȳn − xn‖2

≥ ‖un − xn‖2 − ‖ȳn − xn‖2

= ‖un − ȳn‖2.(8)

From (7) and (8), it follows that

‖un − ȳn‖ ≤ ‖y − ȳn‖ for al y ∈ C ∩ Vn.

Hence

un = PC∩Vn(ȳn).

Step 4. We show that if ‖d(xn)‖ 6= 0 then Ω ⊆ C ∩ Vn.
Indeed, let x∗ ∈ Ω. Since f(x∗, x) ≥ 0 for all x ∈ C, by pseudomono-

tonicity of f , we have

(9) f(z̄n, x∗) ≤ 0.

It follows from wn ∈ ∂2f(z̄n, z̄n) that

f(z̄n, x∗) =f(z̄n, x∗)− f(z̄n, z̄n)

≥〈wn, x∗ − z̄n〉.(10)

Combining (9) and (10), we get

〈wn, x∗ − z̄n〉 ≤ 0.

On the other hand, by definition of Vn, we have x∗ ∈ Vn. Thus Ω ⊆
C ∩ Vn.

Step 5. It holds that Ω ⊂ Hn ∩Wn for every n ≥ 0. In fact, for each
x∗ ∈ Ω, one has

(11) ‖un − x∗‖ = ‖PC∩Vn(xn)− PC∩Vn(x∗)‖ ≤ ‖xn − x∗‖.
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Let tn = PC(un − λnAv
n). Applying (vi) in Lemma 2.1, with x =

un − λnAvn and y = un, monotonicity of A, we obtain

‖tn − x∗‖2 ≤ ‖un − λnAvn − x∗‖2 − ‖un − λnAvn − tn‖2

= ‖un − x∗‖2 + λ2
n‖Avn‖2 − 2λn〈un − x∗, Avn〉

−
(
‖un − tn‖2 + λ2

n‖Avn‖2 − 2λn〈un − tn, Avn〉
)

= ‖un − x∗‖2 − ‖un − tn‖2

+2λn

(
〈Avn − Ax∗, x∗ − vn〉+ 〈Ax∗, x∗ − vn〉+ 〈Avn, vn − tn〉

)
≤ ‖un − x∗‖2 − ‖un − tn‖2 + 2λn〈Avn, vn − tn〉
= ‖un − x∗‖2 − ‖un − vn‖2 − ‖vn − tn‖2

−2〈un − vn, vn − tn〉+ 2λn〈Avn, vn − tn〉
≤ ‖un − x∗‖2 − ‖un − vn‖2 − ‖vn − tn‖2

+2〈λnAvn + vn − un, vn − tn〉.(12)

Since vn = PC(un−λnAun), and A is L−Lipschitz continuous, by Lemma
2.1 (iii), we have

2〈λnAvn + vn − un, vn − tn〉 = 2λn〈Avn − Aun, vn − tn〉
+2〈vn − (un − λnAun), vn − tn〉

≤ 2λn〈Avn − Aun, vn − tn〉
≤ 2λnL‖vn − un‖‖vn − tn‖.(13)

Using monotonicity of A, {λn} ⊂ (0, 1/
√

2L) and nonexpansiveness of
PC we obtain from (12) and (13) that

‖tn − x∗‖2 ≤ ‖un − x∗‖2 − ‖un − vn‖2 − ‖vn − tn‖2

+2λnL‖vn − un‖‖vn − tn‖
≤ ‖un − x∗‖2 − ‖un − vn‖2

+2λnL‖vn − un‖‖PC(un − λnAun)− PC(un − λnAvn)‖
≤ ‖un − x∗‖2 − ‖un − vn‖2 + 2λ2

nL
2‖un − vn‖2

= ‖un − x∗‖2 + (2λ2
nL

2 − 1)‖un − vn‖2

≤ ‖un − x∗‖2.(14)
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By convexity of ‖ · ‖2 and nonexpansiveness of PC , it follows from the
definition of Tn and (11), (14) that

‖zn − x∗‖2 = ‖(1− µn)[PC(xn)− PC(x∗)] + µn(Tnt
n − x∗)‖2

≤ (1− µn)‖PC(xn)− PC(x∗)‖2 + µn‖Tntn − Tnx∗‖2

≤ (1− µn)‖xn − x∗‖2 + µn‖tn − x∗‖2

≤ (1− µn)‖xn − x∗‖2 + µn‖un − x∗‖2

≤ (1− µn)‖xn − x∗‖2 + µn‖xn − x∗‖2

= ‖xn − x∗‖2 for al n ≥ 0.(15)

Then from (15) we have ‖zn− un‖ ≤ ‖xn− x∗‖, which implies x∗ ∈ Hn.
Hence Ω ⊂ Hn for all n ≥ 0.

Next we show Ω ⊂ Wn for all k ≥ 0. Indeed, when k = 0, we have
x0 ∈ C andW0 = H. Consequently, Ω ⊂ H0∩W0. By induction, suppose
Ω ⊂ Hi ∩Wi for some i ≥ 0. We have to prove that Ω ⊂ Hi+1 ∩Wi+1.
Since Ω is nonempty closed convex subset of H, there exists a unique
element xi+1 ∈ Ω such that xi+1 = PΩ(x0). By Lemma 2.1, for every
z ∈ Ω, it holds that

〈xi+1 − z, x0 − xi+1〉 ≥ 0,

which means that z ∈ Wi+1. Note that z ∈ Wi+1, we can conclude that
Ω ⊂ Hn ∩Wn for all n ≥ 0.

Step 6. We claim that sequence {xn} and {yn} are bounded.
Since Ω is a nonempty closed convex subset of C, there exists a unique

element z0 ∈ Ω such that z0 = PΩ(x0). Now, from xn+1 = PHn∩Wn(x0)
we obtain

(16) ‖xn+1 − x0‖ ≤ ‖z − x0‖ for all z ∈ Hn ∩ Wn.

As z0 ∈ Ω ⊂ Hn ∩Wn, we have

‖xn+1 − x0‖ ≤ ‖z0 − x0‖, for each n ≥ 0.

Hence, the sequence {xn} is bounded.
Since yn is the unique solution of the mathematical program

min{f(xn, y) +
β

2
‖y − xn‖2 : y ∈ C},

we have

f(xn, y) +
β

2
‖y − xn‖2 ≥ f(xn, yn) +

β

2
‖yn − xn‖2 for al y ∈ C.
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With y = xn ∈ C and f(xn, xn) = 0, we can write

(17) 0 ≥ f(xn, yn) +
β

2
‖yn − xn‖2.

Since f(xn, ·) is convex and subdifferentiable on C,

f(xn, y)− f(xn, xn) ≥ 〈wn, y − xn〉 for al y ∈ C,
for any wn ∈ ∂2f(xn, xn). For y = yn, we have

f(xn, yn) ≥ 〈wn, yn − xn〉.
Combining this inequality and (17), we obtain

〈wn, yn − xn〉+
β

2
‖xn − yn‖2 ≤ 0,

which implies

−‖wn‖‖yn − xn‖+
β

2
‖xn − yn‖2 ≤ 0.

Hence

(18) ‖xn − yn‖ ≤ 2

β
‖wn‖.

Since {xn} are bounded, by [21], {wn} are bounded, then {yn} is bounded
too.

Step 7. We claim that {xn}, {zn}, {vn} and {un} converge strongly
to an element p ∈ Ω.

In fact, from xn = PHn−1∩Wn−1(x
0) and xn+1 ∈ Wn, it follows that,

‖xn − x0‖ ≤ ‖xn+1 − x0‖ for all n ≥ 0.

Thus, there exists a number c <∞ such that lim
n→∞

‖xn − x0‖ = c. Since

xn = PHn−1∩Wn−1(x
0) and xn+1 ∈ Wn, by (ii) in Lemma 2.1, we have

‖xn − x0‖2 ≤
∥∥∥xn + xn+1

2
− x0

∥∥∥2

≤
∥∥∥xn − x0

2
+
xn+1 − x0

2

∥∥∥2

=
‖xn − x0‖2

2
+
‖xn+1 − x0‖2

2
− ‖x

n − xn+1‖2

4
.

So, we get

‖xn − xn+1‖2 ≤ 2(‖xn+1 − x0‖2 − ‖xn − x0‖2)
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Since lim
n→∞

‖xn − x0‖ = c, we have

(19) lim
n→∞

‖xn − xn+1‖ = 0.

Note that xn+1 ∈ Hn, we can write

(20) ‖zn − xn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − zn‖ ≤ 2‖xn − xn+1‖.
It follows from (19) and (20) that

(21) lim
n→∞

‖zn − xn‖ = 0.

Now from the second inequality in (15), we can write

(22) ‖zn − x∗‖2 − ‖xn − x∗‖2 ≤ µn

(
‖Tntn − x∗‖2 − ‖xn − x∗‖2

)
≤ 0

On the other hand, by Lemma 2.1, we have

(23) ‖zn − x∗‖2 − ‖xn − x∗‖2 = ‖zn − xn‖2 + 2〈zn − xn, xn − x∗〉.
It follows from (21)-(23) that

lim
n→∞

µn

(
‖Tntn − x∗‖2 − ‖xn − x∗‖2

)
= 0.

Since {µn} ⊂ [a, 1] for some a ∈ (0, 1), we have

(24) lim
n→∞

(
‖Tntn − x∗‖2 − ‖xn − x∗‖2

)
= 0.

Combining (11), (14), (24) and using the nonexpansive property of Tn,
we obtain

0 = lim
n→∞

(
‖Tntn−x∗‖2−‖xn−x∗‖2

)
≤ lim

n→∞

(
‖tn−x∗‖2−‖xn−x∗‖2

)
≤ 0.

Thus,

(25) lim
n→∞

(
‖tn − x∗‖2 − ‖xn − x∗‖2

)
= 0.

On the other hand, from un = PC∩Vn(xn), by Lemma 2.1 (vi), we have

‖un − xn‖2 ≤ ‖xn − x∗‖2 − ‖un − x∗‖2

≤ ‖xn − x∗‖2 − ‖tn − x∗‖2,

which implies that

(26) lim
n→∞

‖un − xn‖ = 0.

Since {xn} is bounded, there exists a subsequence {xnj} of {xn} con-
verging weakly to some element p. From (26), (18) and (21), we obtain
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also that {un}, {yn}, {zn} converges weakly to p. Since {unj} ⊂ C and
C is a closed convex subset in H, we have p ∈ C.

Now, we prove that p ∈ Ω. To this end, first we show that p ∈
Sol(C, f). Indeed, since yn is the unique solution of the convex mini-
mization problem

yn = argmin{f(xn, y) +
β

2
||y − xn||2 : y ∈ C},

by optimality condition, we have

0 ∈ ∂2

(
f(xn, yn) +

β

2
||yn − xn||2

)
(yn) +NC(yn).

Thus

0 = z + β(yn − xn) + zn,

for some z ∈ ∂2f(xn, yn) and zn ∈ NC(yn). By the definition of the
normal cone NC(yn), we get

(27) β〈yn − xn, y − yn〉 ≥ 〈z, yn − y〉 for all y ∈ C.
On the other hand, since z ∈ ∂2f(xn, yn), we have

(28) f(xn, y)− f(xn, yn) ≥ 〈z, y − yn〉 for all y ∈ C.
Combining (27) with (28), we have

f(xn, y)− f(xn, yn) ≥ β〈yn − xn, yn − y〉 for all y ∈ C.
Hence

(f(xnj , y)− f(xnj , ynj)) ≥ β〈ynj − xnj , ynj − y〉 for all y ∈ C.
Letting j → ∞ we obtain in the limit that f(p, y) ≥ 0 for all y ∈ C.
Hence p ∈ Sol(C, f).

Next we show that p ∈ Sol(C,A). Define

Bv :=

{
Av +NC(v), v ∈ C
∅ v /∈ C,

where NC(v) is normal cone to C at v. Then B is a maximal monotone
operator. Let (v, u) ∈ G(B). Since u− Av ∈ NC(v), one has

(29) 〈v − y, u− Av〉 ≥ 0 for all y ∈ C.
On the other hand, by Lemma 2.1 (iii), from tn = PC(un − λnAvn), we
have

〈tn − y, un − λnAvn − tn〉 ≥ 0 for all y ∈ C,
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y − tn, t

n − un

λn
+ Avn

〉
≥ 0 for all y ∈ C.

It follows from (29) with y = tnj and monotonicity of A that

〈v − tnj , u〉 ≥ 〈v − tnj , Av〉 −
〈
v − tnj ,

tnj − unj

λnj

+ Avnj

〉
≥ 〈v − tnj , Av − Atnj〉+ 〈v − tnj , Atnj − Avnj〉

−
〈
v − tnj ,

tnj − unj

λnj

〉
≥ 〈v − tnj , Atnj − Avnj〉 −

〈
v − tnj ,

tnj − unj

λnj

.
〉

Combining (11) and (14) we obtain

(30) (1− 2λ2
nL

2)‖un − vn‖2 ≤ ‖xn − x∗‖2 − ‖tn − x∗‖2

It follows from (25), (30) and the condition {λn} ⊂ (0, 1/
√

2L) that

(31) lim
n→∞

‖un − vn‖ = 0.

Since vn = PC(un − λnAun), tn = PC(un − λnAvn), from (31) and A is
monotone,

(32) lim
n→∞

‖vn − tn‖ = 0

and

lim
n→∞

‖Avn − Atn‖ = lim
n→∞

‖vn − tn‖ = 0,

which implies that 〈v − p, u〉 ≥ 0 for every v ∈ C. Since B is maximal
monotone, we have p ∈ B−10, and hence p ∈ Sol(C,A).

Now, we prove that p = T (h)p for all h > 0. First, we obtain from
Step 3 of the algorithm that
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a‖un − Tnun‖ ≤ µn‖un − Tnun‖

≤ µn

(
‖un − Tntn‖+ ‖Tntn − Tnun‖

)
= ‖µnun − µnTntn‖+ µn‖Tntn − Tnun‖
= ‖µnun + (1− µn)PC(xn)− zn‖+ µn‖Tntn − Tnun‖
= ‖(1− µn)PC(xn)− (1− µn)PC(un) + un − zn‖

+µn‖Tntn − Tnun‖
≤ (1− µn)‖xn − un‖+ ‖un − zn‖+ µn‖tn − un‖
≤ ‖xn − un‖+ ‖un − xn‖+ ‖xn − zn‖+ µn‖tn − un‖
≤ 2‖xn − un‖+ ‖xn − zn‖+ µn‖tn − un‖.

Thus, from (21), (26), (31) and (32) it follows that

(33) lim
n→∞

‖un − Tnun‖ = 0.

Note that

‖T (h)un − un‖ ≤
∥∥∥T (h)un − T (h)

( 1

sn

∫ sn

0

T (s)unds
)∥∥∥

+
∥∥∥T (h)

( 1

sn

∫ sn

0

T (s)unds
)
− 1

sn

∫ sn

0

T (s)unds
∥∥∥

+
∥∥∥ 1

sn

∫ sn

0

T (s)unds− un
∥∥∥

≤ 2
∥∥∥ 1

sn

∫ sn

0

T (s)unds− un
∥∥∥

+
∥∥∥T (h)

( 1

sn

∫ sn

0

T (s)unds
)
− 1

sn

∫ sn

0

T (s)unds
∥∥∥(34)

We apply Lemma 2.5 to get

(35) lim
n→∞

∥∥∥T (h)
( 1

sn

∫ sn

0

T (s)unds
)
− 1

sn

∫ sn

0

T (s)unds
∥∥∥ = 0,

for every h ∈ (0,∞) and therefore, by (33), (34) and (35), we obtain

lim
n→∞

‖T (h)un − un‖ = 0

for each h > 0, which, by Lemma 2.4, p ∈ F (T (h)) for all h > 0. Hence
p ∈ F .
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Finally, we show the strong convergence of the sequences of iterates.
Let z0 = PΩ(x0). Since the norm is weakly lower semicontinuity,

‖x0−z0‖ ≤ ‖x0−p‖ ≤ lim
n→∞

inf ‖x0−xnj‖ ≤ lim
n→∞

sup ‖x0−xnj‖ ≤ ‖x0−z0‖

where the last inequlity comes from (16). Hence, we obtain

lim
j→∞
‖xnj − x0‖ = ‖z0 − x0‖,

from which, by Opial’s property, it follows that p = z0. Since p is any
weak limit of sequence {xn}, the whole sequence must converge strongly
to p as n→∞. Then the strong convergence of the sequences {zn} and
{un} to z0 is followed from (21) and (26), respectively. Then, by (31),
the sequence {vn} strongly converges to z0 as well. The proof of the
convergence theorem is complete.

4. Special Cases and a Illustrative Example

If A ≡ 0, then Algorithm 2.6 reduces to the following one for finding
a common element in the solution-set of a pseudomonotone equilibrium
problem and the set of the fixed points of a nonexpansive semigroup in
Hilbert spaces.

Corollary 4.1. Let C be a nonempty closed convex subset in a real
Hilbert space H, {T (s) : s ∈ R+} be a nonexpansive semigroup on C
and f be a bifunction from C×C to R satisfying conditions (A1)− (A5)
such that Ω = F∩Sol(f, C) 6= ∅. Let {xn}, {zn} and {un} be sequences
generated by

x0 ∈ C chosen arbitrarily,

yn = argmin{f(xn, y) +
β

2
||y − xn||2 : y ∈ C}; d(xn) = xn − yn,

mn = argmin
k
{mk : f

(
xn − γmkd(xn)yn

)
≤ −σ‖d(xn)‖2},

z̄n = xn − γmnd(xn), wn ∈ ∂2f(z̄k, z̄k)

un = PC∩Vn(xn); Vn = {x ∈ H : 〈wn, x− z̄n〉 ≤ 0}
zn = (1− µn)xn + µnTnu

n,

Hn = {z ∈ H : ‖zn − z‖ ≤ ‖xn − z‖},
Wn = {z ∈ H : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PHn∩Wn(x0),
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where {µn} ⊂ [a, 1] for some a ∈ (0, 1). Then, {xn}, {zn} and {un}
converge strongly to an element p ∈ Ω. Further, p is the solution of the
equilibrium problem

p ∈ F : f(p, x) ≥ 0, ∀x ∈ F .

Proof. Taking A ≡ 0 in Theorem 3.1, we get the desired conclusion
easily.

If f(x, y) = 0 for all x, y ∈ C, Algorithm 2.6 reduces to the follow-
ing one for finding a common element in the solution-set of a monotone
variational inequality problem and the set of the fixed points of a non-
expansive semigroup in Hilbert spaces.

Corollary 4.2. Let C be a nonempty closed convex subset in a real
Hilbert space H, {T (s) : s ∈ R+} be a nonexpansive semigroup on C
and A : C → H be a monotone L−Lipschitz continuous mapping such
that Ω = F ∩ Sol(A,C) 6= ∅. Let {xn}, {zn}, and {vn} be sequences
generated by

x0 ∈ C chosen arbitrarily,

vn = PC(xn − λnAxn),

zn = (1− µn)xn + µnTnPC(xn − λnAvn),

Hn = {z ∈ H : ‖zn − z‖ ≤ ‖xn − z‖},
Wn = {z ∈ H : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PHn∩Wn(x0),

where {µn} ⊂ [a, 1] for some a ∈ (0, 1), {λn} ⊂ [b, c] for some b, c ∈
(0, 1/

√
2L). Then, {xn}, {zn} and {vn} converge strongly to an element

p ∈ Ω. Further, p is the solution of the variational inequality

p ∈ F : 〈Ap, x− p〉 ≥ 0, ∀x ∈ F .

Now putting f(x, y) = 0 for all x, y ∈ C and A ≡ 0, we obtain
the following result for finding a common fixed point of a nonexpansive
semigroup {T (s) : s ∈ R+} on C.

Corollary 4.3. Let C be a nonempty closed convex subset in a real
Hilbert space H, {T (s) : s ∈ R+} be a nonexpansive semigroup on C
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such that F 6= ∅. Let {xn} and {zn} be sequences generated by

x0 ∈ C chosen arbitrarily,

zn = (1− µn)xn + µnTnx
n

Hn = {z ∈ H : ‖zn − z‖ ≤ ‖xn − z‖},
Wn = {z ∈ H : 〈xn − z, x0 − xn〉 ≥ 0}
xn+1 = PHn∩Wn(x0),

where {µn} ⊂ [a, 1] for some a ∈ (0, 1). Then, {xn} and {zn} converge
strongly to an element p ∈ F .

To illustrate the problem we consider the following example.
Let H = Rn with the inner product 〈x, y〉 := x1y1 + · · · + xnyn for

all x = (x1, x2, · · · , xn), y = (y1, y2, · · · , yn) ∈ H. Let C := [0, 1]n be
a n-dimensional box in H. For all x ∈ C, we define the operator A by
taking

Ax :=



xm1 + xm−1
1 + · · ·+ x1

xm2 + xm−1
2 + · · ·+ x2

xm3 + xm−1
3 + · · ·+ x3

0
...
0

 ,m ∈ N,m ≥ 2,

and consider the variational inequality

Find x∗ ∈ C : 〈Ax∗, x− x∗〉 ≥ 0 ∀x ∈ C.
It is easy to see that the operator A is monotone and L−Lipschitz con-
tinuous on C.

Consider the bifunctions f defined as

f(x, y) := y2
1 + y2

2 + y2
3 + y2

4 − (x2
1 + x2

2 + x2
3 + x2

4).

An elementary computation shows that conditions A1−A5 are satisfied
for f .

To define a nonexpansive semigroup let us consider the matrix

T (s) =


e−s 0 0 · · · 0
0 e−s 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 , s ∈ R,
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and let

T (s)x =


e−s 0 0 · · · 0
0 e−s 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

x

=


e−s 0 0 · · · 0
0 e−s 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1




x1

x2
...
xn

 .

It is easy to verify that {T (s) : s ≥ 0} is a nonexpansive semigroup on
C and that the common solution-set is Ω = F ∩Sol(C,A)∩Sol(C, f) =
{(0, 0, 0, 0, x5, . . . , xn) : xi ∈ [0, 1], i = 5, 6, . . . , n}.

Conclusion We have proposed a hybrid method for solving a sys-
tem involving pseudomonotone equilibrium problem, variational inequal-
ity and fixed point of a semigroup nonexpansive mappings. For han-
dling pseudomonotone problem we have used the extragrandient with
an Armijo lineseach. The strong convergence of the proposed method
have established by using cutting planes.
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