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FUZZY LATTICES AS FUZZY RELATIONS

Inheung Chon

Abstract. We define a fuzzy lattice as a fuzzy relation, develop
some basic properties of the fuzzy lattice, show that the operations
of join and meet in fuzzy lattices are isotone and associative, char-
acterize a fuzzy lattice by its level set, and show that the direct
product of two fuzzy lattices is a fuzzy lattice.

1. Introduction

The concept of a fuzzy set was first introduced by Zadeh ([5]) and
this concept was applied by Goguen ([3]) and Sanchez ([4]) to define and
study fuzzy relations. Ajmal and Thomas ([1]) defined a fuzzy lattice
as a fuzzy algebra and characterized fuzzy lattices. Chon ([2]) defined a
fuzzy lattice as a fuzzy relation, which is a fuzzification of a crisp lattice,
and developed some properties of the fuzzy lattice. However the fuzzy
lattice defined by Chon ([2]) turns out to be somewhat inadequate. We
redefine a fuzzy lattice as a fuzzy relation and study fuzzy lattices in
this note.

In Section 2, we give some definitions and develop some basic prop-
erties of fuzzy lattices which will be used in Section 3. In Section 3, we
show that the operations of join and meet in fuzzy lattices are isotone
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and associative, characterize a fuzzy lattice by its level set, and show
that the direct product of two fuzzy lattices is a fuzzy lattice.

2. Preliminaries

In this section, we give some definitions and develop some basic prop-
erties of fuzzy lattices which will be used in the next section.

Definition 2.1. Let X be a set. A function A : X × X → [0, 1]
is called a fuzzy relation in X. The fuzzy relation A in X is reflex-
ive if A(x, x) = 1 for all x ∈ X and A is transitive if A(x, z) ≥→

y∈X
sup min(A(x, y), A(y, z)).

The following definition of an anti-symmetric fuzzy relation is due to
Zadeh ([6]).

Definition 2.2. Let X be a set. A fuzzy relation A in X is antisym-
metric if A(x, y) > 0 and A(y, x) > 0 implies x = y. A fuzzy relation
A in X is a fuzzy partial order relation if A is reflexive, antisymmetric,
and transitive. If A is a fuzzy partial order relation in X, then (X,A)
is called a fuzzy partially ordered set.

Chon defined a fuzzy lattice as a fuzzy partial order relation (see
Definition 3.2 in [2]). However the definition turns out to be somewhat
inadequate. We redefine a fuzzy lattice in Proposition 2.4.

Definition 2.3. Let (X,A) be a fuzzy partially ordered set and let
S ⊆ X. An element u ∈ X is said to be an upper bound for a set S if
A(u, b) ≤ A(b, u) and A(b, u) > 0 for all b ∈ S. An upper bound u0 for
S is the least upper bound of S if A(u, u0) ≤ A(u0, u) and A(u0, u) > 0
for every upper bound u for S. An element v ∈ X is said to be a lower
bound for S if A(b, v) ≤ A(v, b) and A(v, b) > 0 for all b ∈ S. A lower
bound v0 for S is the greatest lower bound of S iff A(v0, v) ≤ A(v, v0)
and A(v, v0) > 0 for every lower bound v for S.

We denote the least upper bound of the set {x, y} by x∨y and denote
the greatest lower bound of the set {x, y} by x ∧ y. ∨ is called the join
and ∧ is called the meet.

Definition 2.4. Let (X,A) be a fuzzy partially ordered set. Then
(X,A) is a fuzzy lattice if x ∨ y and x ∧ y exist for all x, y ∈ X.
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Example of a fuzzy lattice. Let X = {x, y, z} and let A : X×X →
[0, 1] be a fuzzy relation such that A(x, x) = A(y, y) = A(z, z) = 1,
A(x, y) = 0.2, A(x, z) = 0.1, A(y, z) = 0.1, A(y, x) = 0.5, A(z, x) = 0.3,
and A(z, y) = 0.2. Then it is easily checked that A is a fuzzy partial
order relation. Also x∨y = y∨x = x, x∨z = z∨x = x, y∨z = z∨y = y,
x∧ y = y∧x = y, x∧ z = z ∧x = z, and y∧ z = z ∧ y = z. Thus (X,A)
is a fuzzy lattice.

Proposition 2.5. Let (X,A) be a fuzzy lattice and let x, y, z ∈ X.
Then

(1) A(x, x ∨ y) > 0 and A(x ∨ y, x) ≤ A(x, x ∨ y).
(2) A(y, x ∨ y) > 0 and A(x ∨ y, y) ≤ A(y, x ∨ y).
(3) A(x ∧ y, x) > 0 and A(x, x ∧ y) ≤ A(x ∧ y, x).
(4) A(x ∧ y, y) > 0 and A(y, x ∧ y) ≤ A(x ∧ y, y).
(5) If A(x, z) > 0, A(z, x) ≤ A(x, z), A(y, z) > 0, and A(z, y) ≤

A(y, z), then A(x ∨ y, z) > 0 and A(z, x ∨ y) ≤ A(x ∨ y, z).
(6) If A(z, x) > 0, A(x, z) ≤ A(z, x), A(z, y) > 0, and A(y, z) ≤

A(z, y), then A(z, x ∧ y) > 0 and A(x ∧ y, z) ≤ A(z, x ∧ y).
(7) A(x, y) > 0 and A(y, x) ≤ A(x, y) if and only if x ∨ y = y.
(8) A(x, y) > 0 and A(y, x) ≤ A(x, y) if and only if x ∧ y = x.

Proof. (1), (2), (3), and (4) are straightforward.

(5) Since A(x, z) > 0, A(z, x) ≤ A(x, z), A(y, z) > 0, and A(z, y) ≤
A(y, z), z is an upper bound of {x, y}. Since x ∨ y is the least upper
bound of {x, y}, A(x ∨ y, z) > 0 and A(z, x ∨ y) ≤ A(x ∨ y, z).

(6) Since A(z, x) > 0, A(x, z) ≤ A(z, x), A(z, y) > 0, and A(y, z) ≤
A(z, y), z is a lower bound of {x, y}. Since x ∧ y is the greatest lower
bound of {x, y}, A(z, x ∧ y) > 0 and A(x ∧ y, z) ≤ A(z, x ∧ y).

(7) Suppose A(y, x) ≤ A(x, y) and A(x, y) > 0. Since A(y, y) = 1 > 0
and A(y, y) ≤ A(y, y), A(x ∨ y, y) > 0 and A(y, x ∨ y) ≤ A(x ∨ y, y) by
(5). Since A(x∨ y, y) ≤ A(y, x∨ y) by (2), A(y, x∨ y) = A(x∨ y, y) > 0.
Since A is antisymmetric, x∨y = y. Conversely, suppose x∨y = y. Then
A(y, x) = A(x ∨ y, x) ≤ A(x, x ∨ y) = A(x, y) by (1). Also A(x, y) =
A(x, x ∨ y) > 0 by (1).

(8) Suppose A(y, x) ≤ A(x, y) and A(x, y) > 0. Since A(x, x) = 1 > 0
and A(x, x) ≤ A(x, x), A(x, x ∧ y) > 0 and A(x ∧ y, x) ≤ A(x, x ∧ y) by
(6). Since A(x, x∧y) ≤ A(x∧y, x) by (3), A(x∧y, x) = A(x, x∧y) > 0.
Since A is antisymmetric, x ∧ y = x. Conversely, suppose x ∧ y = x.
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Then A(y, x) = A(y, x∧y) ≤ A(x∧y, y) = A(x, y) by (4). Also A(x, y) =
A(x ∧ y, y) > 0 by (4).

Proposition 2.6. Let (X,A) be a fuzzy lattice and let x, y ∈ X.
Then

(1) x ∨ x = x, x ∧ x = x.
(2) x ∨ y = y ∨ x, x ∧ y = y ∧ x.
(3) (x ∨ y) ∧ x = x, (x ∧ y) ∨ x = x.

Proof. (1) and (2) are straightforward.

(3) Let B = {x ∨ y, x}. By Proposition 2.5 (1), A(x, x ∨ y) > 0 and
A(x∨y, x) ≤ A(x, x∨y). Since A(x, x) = 1 > 0, x is a lower bound of B.
If z is a lower bound of B, then A(z, x) > 0 and A(x, z) ≤ A(z, x). Thus
x is the greatest lower bound of B. Hence (x∨ y)∧ x = x. Similarly we
may show (x ∧ y) ∨ x = x.

3. Some properties of fuzzy lattices

In this section, we show that the operations of join and meet in fuzzy
lattices are isotone and associative, characterize the fuzzy lattice by its
level set, and show that the direct product of two fuzzy lattices is a fuzzy
lattice.

Theorem 3.1. Let (X,A) be a fuzzy lattice and x ∈ X. Suppose
that A(z, y) ≤ A(y, z) and A(y, z) > 0. Then

(1) A(x ∧ y, x ∧ z) > 0 and A(x ∧ z, x ∧ y) ≤ A(x ∧ y, x ∧ z).
(2) A(x ∨ y, x ∨ z) > 0 and A(x ∨ z, x ∨ y) ≤ A(x ∨ y, x ∨ z).

Proof. (1) (i) We consider the case of A(z, y) < A(y, z) and A(z, y) <
A(x∧ y, y). Since A(x∧ y, z) ≥ min [A(x∧ y, y), A(y, z)], A(x∧ y, z) ≥
min [A(x ∧ y, y), A(z, y)]. Since A(z, y) < A(x ∧ y, y), A(x ∧ y, z) ≥
A(z, y). Also A(z, y) ≥ min [A(z, x ∧ y), A(x ∧ y, y)]. Since A(z, y) <
A(x ∧ y, y), A(z, y) ≥ A(z, x ∧ y). Thus A(x ∧ y, z) ≥ A(z, x ∧ y).

(ii) We consider the case of A(z, y) < A(y, z) and A(x ∧ y, y) ≤
A(z, y). Since A(y, z) > A(x ∧ y, y), A(x ∧ y, z) ≥ A(x ∧ y, y). Since
A(x ∧ y, y) ≥ A(y, x ∧ y) by Proposition 2.5 (4), A(x ∧ y, y) ≥ A(y, x ∧
y) ≥ min [A(y, z), A(z, x ∧ y)]. Since A(y, z) > A(z, y) ≥ A(x ∧ y, y),
A(x ∧ y, y) ≥ A(z, x ∧ y). Thus A(x ∧ y, z) ≥ A(x ∧ y, y) ≥ A(z, x ∧ y).
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(iii) We consider the case of A(z, y) = A(y, z) > 0. Since A is anti-
symmetric, z = y. Thus A(x ∧ y, z) = A(x ∧ z, z) ≥ A(z, x ∧ z) =
A(z, x ∧ y).

From (i), (ii), and (iii), A(x∧ y, z) ≥ A(z, x∧ y). Also A(x∧ y, z) ≥
min [A(x∧ y, y), A(y, z)] > 0. Since A(x∧ y, x) > 0 and A(x∧ y, x) ≥
A(x, x∧y) by Proposition 2.5 (3), x∧y is a lower bound of {x, z}. Since
x ∧ z is the greatest lower bound of {x, z}, A(x ∧ y, x ∧ z) > 0 and
A(x ∧ z, x ∧ y) ≤ A(x ∧ y, x ∧ z).

(2) (i) We consider the case of A(z, y) < A(y, z) and A(z, y) <
A(z, x∨ z). Since A(y, x∨ z) ≥ min [A(y, z), A(z, x∨ z)], A(y, x∨ z) ≥
min [A(z, y), A(z, x ∨ z)] = A(z, y). Also A(z, y) ≥ min [A(z, x ∨
z), A(x ∨ z, y)]. Since A(z, y) < A(z, x ∨ z), A(z, y) ≥ A(x ∨ z, y).
Thus A(y, x ∨ z) ≥ A(x ∨ z, y).

(ii) We consider the case of A(z, y) < A(y, z) and A(z, x∨z) ≤ A(z, y).
Since A(y, z) > A(z, x∨z), A(y, x∨z) ≥ A(z, x∨z). Since A(z, x∨z) ≥
A(x∨z, z) ≥ min [A(x∨z, y), A(y, z)] and A(y, z) > A(z, y) ≥ A(z, x∨z),
A(z, x ∨ z) ≥ A(x ∨ z, y). Thus A(y, x ∨ z) ≥ A(z, x ∨ z) ≥ A(x ∨ z, y).

(iii) We consider the case of A(z, y) = A(y, z) > 0. Since A is anti-
symmetric, z = y. Thus A(y, x ∨ z) = A(z, x ∨ z) ≥ A(x ∨ z, z) =
A(x ∨ z, y).

From (i), (ii), and (iii), A(y, x∨ z) ≥ A(x∨ z, y). Also A(y, x∨ z) ≥
min [A(y, z), A(z, x∨ z)] > 0. Since A(x, x∨ z) > 0 and A(x∨ z, x) ≤
A(x, x ∨ z) by Proposition 2.5 (1), x ∨ z is an upper bound of {x, y}.
Since x ∨ y is the least upper bound of {x, y}, A(x ∨ y, x ∨ z) > 0 and
A(x ∨ z, x ∨ y) ≤ A(x ∨ y, x ∨ z).

Theorem 3.2. Let (X,A) be a fuzzy lattice and let x, y, z ∈ X. Then

(x ∨ y) ∨ z = x ∨ (y ∨ z).

Proof. Since A(y, y ∨ z) ≥ A(y ∨ z, y),

A(y, x ∨ (y ∨ z)) ≥ min [A(y, y ∨ z), A(y ∨ z, x ∨ (y ∨ z))]

≥ min [A(y ∨ z, y), A(y ∨ z, x ∨ (y ∨ z))].

(i) We consider the case of A(y ∨ z, y) ≥ A(y ∨ z, x ∨ (y ∨ z)).
Clearly

A(y, x ∨ (y ∨ z)) ≥ A(y ∨ z, x ∨ (y ∨ z)) ≥ A(x ∨ (y ∨ z), y ∨ z).
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Since A(y ∨ z, y) ≥ A(y ∨ z, x ∨ (y ∨ z)),

A(x ∨ (y ∨ z), y ∨ z) ≥ min [A(x ∨ (y ∨ z), y), A(y, y ∨ z)]

≥ min [A(x ∨ (y ∨ z), y), A(y ∨ z, y)]

≥ min [A(x ∨ (y ∨ z), y), A(y ∨ z, x ∨ (y ∨ z))].

If A(y∨ z, x∨ (y∨ z)) > A(x∨ (y∨ z), y∨ z), then A(x∨ (y∨ z), y∨ z) ≥
A(x ∨ (y ∨ z), y), and hence A(y, x ∨ (y ∨ z)) ≥ A(x ∨ (y ∨ z), y). If
A(y ∨ z, x∨ (y ∨ z)) = A(x∨ (y ∨ z), y ∨ z) > 0, then x∨ (y ∨ z) = y ∨ z,
and hence A(y, x∨(y∨z)) = A(y, y∨z) ≥ A(y∨z, y) = A(x∨(y∨z), y).
That is, A(y, x ∨ (y ∨ z)) ≥ A(x ∨ (y ∨ z), y).
(ii) We consider the case of A(y ∨ z, x ∨ (y ∨ z)) > A(y ∨ z, y).
Then A(y, x ∨ (y ∨ z)) ≥ A(y ∨ z, y). Clearly

A(y ∨ z, y) ≥ min [A(y ∨ z, x ∨ (y ∨ z)), A(x ∨ (y ∨ z), y)].

Since A(y ∨ z, x ∨ (y ∨ z)) > A(y ∨ z, y), A(y ∨ z, y) ≥ A(x ∨ (y ∨ z), y).
Thus A(y, x ∨ (y ∨ z)) ≥ A(x ∨ (y ∨ z), y).

From (i) and (ii), A(y, x∨(y∨z)) ≥ A(x∨(y∨z), y). Also A(y, x∨(y∨
z)) ≥ min [A(y, y∨z), A(y∨z, x∨(y∨z))] > 0. Clearly A(x, x∨(y∨z)) ≥
A(x ∨ (y ∨ z), x) and A(x, x ∨ (y ∨ z)) > 0. By Proposition 2.5 (5),

A(x∨ y, x∨ (y ∨ z)) ≥ A(x∨ (y ∨ z), x∨ y) and A(x∨ y, x∨ (y ∨ z)) > 0.

Clearly

A(z, x ∨ (y ∨ z)) ≥ min [A(z, y ∨ z), A(y ∨ z, x ∨ (y ∨ z))]

≥ min [A(y ∨ z, z), A(y ∨ z, x ∨ (y ∨ z))].

(i)′ We consider the case of A(y ∨ z, z) ≥ A(y ∨ z, x ∨ (y ∨ z)).
Then

A(z, x ∨ (y ∨ z)) ≥ A(y ∨ z, x ∨ (y ∨ z))

≥ A(x ∨ (y ∨ z), y ∨ z).

Since A(y ∨ z, z) ≥ A(y ∨ z, x ∨ (y ∨ z)),

A(x ∨ (y ∨ z), y ∨ z) ≥ min [A(x ∨ (y ∨ z), z), A(z, y ∨ z)]

≥ min [A(x ∨ (y ∨ z), z), A(y ∨ z, z)]

≥ min [A(x ∨ (y ∨ z), z), A(y ∨ z, x ∨ (y ∨ z))].

If A(y ∨ z, x ∨ (y ∨ z)) > A(x ∨ (y ∨ z), y ∨ z), A(x ∨ (y ∨ z), y ∨ z) ≥
A(x ∨ (y ∨ z), z), and hence A(z, x ∨ (y ∨ z)) ≥ A(x ∨ (y ∨ z), z). If
A(y ∨ z, x∨ (y ∨ z)) = A(x∨ (y ∨ z), y ∨ z) > 0, then y ∨ z = x∨ (y ∨ z),
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and hence A(z, x∨ (y∨z)) = A(z, y∨z) ≥ A(y∨z, z) = A(x∨ (y∨z), z).
Thus A(z, x ∨ (y ∨ z)) ≥ A(x ∨ (y ∨ z), z).
(ii)′ We consider the case of A(y ∨ z, x ∨ (y ∨ z)) > A(y ∨ z, z).
Then A(z, x∨ (y∨ z)) ≥ A(y∨ z, z). Also A(y∨ z, z) ≥ min [A(y∨ z, x∨
(y ∨ z)), A(x ∨ (y ∨ z), z)]. Since A(y ∨ z, x ∨ (y ∨ z)) > A(y ∨ z, z),
A(y∨ z, z) ≥ A(x∨ (y∨ z), z). Thus A(z, x∨ (y∨ z)) ≥ A(x∨ (y∨ z), z).

From (i)′ and (ii)′, A(z, x∨ (y∨z)) ≥ A(x∨ (y∨z), z). Since A(z, x∨
(y ∨ z)) ≥ min [A(z, y ∨ z), A(y ∨ z, x ∨ (y ∨ z))], A(z, x ∨ (y ∨ z)) > 0.
From the above,

A(x∨ y, x∨ (y ∨ z)) ≥ A(x∨ (y ∨ z), x∨ y) and A(x∨ y, x∨ (y ∨ z)) > 0.

By Proposition 2.5 (5),

A((x∨y)∨z, x∨(y∨z)) ≥ A(x∨(y∨z), (x∨y)∨z) and A((x∨y)∨z, x∨(y∨z)) > 0.

By the same way as shown in the above, we may show that

A((x∨y)∨z, x∨(y∨z)) ≤ A(x∨(y∨z), (x∨y)∨z) and A(x∨(y∨z), (x∨y)∨z) > 0.

Thus

A((x ∨ y) ∨ z, x ∨ (y ∨ z)) = A(x ∨ (y ∨ z), (x ∨ y) ∨ z) > 0.

Since A is antisymmetric,

(x ∨ y) ∨ z = x ∨ (y ∨ z).

Theorem 3.3. Let (X,A) be a fuzzy lattice and let x, y, z ∈ X. Then

(x ∧ y) ∧ z = x ∧ (y ∧ z).

Proof. Clearly

A((x ∧ y) ∧ z, x) ≥ min [A((x ∧ y) ∧ z, x ∧ y), A(x ∧ y, x)]

≥ min [A((x ∧ y) ∧ z, x ∧ y), A(x, x ∧ y)].

(i) We consider the case of A(x, x ∧ y) ≥ A((x ∧ y) ∧ z, x ∧ y).
Then A((x ∧ y) ∧ z, x) ≥ A((x ∧ y) ∧ z, x ∧ y) ≥ A(x ∧ y, (x ∧ y) ∧ z).
Also

A(x ∧ y, (x ∧ y) ∧ z) ≥ min [A(x ∧ y, x), A(x, (x ∧ y) ∧ z)]

≥ min [A(x, x ∧ y), A(x, (x ∧ y) ∧ z)]

≥ min [A((x ∧ y) ∧ z, x ∧ y), A(x, (x ∧ y) ∧ z)].
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If A((x∧y)∧ z, x∧y) > A(x∧y, (x∧y)∧ z), then A(x∧y, (x∧y)∧ z) ≥
A(x, (x ∧ y) ∧ z), and hence A((x ∧ y) ∧ z, x) ≥ A(x, (x ∧ y) ∧ z). If
A((x∧ y)∧ z, x∧ y) = A(x∧ y, (x∧ y)∧ z), then (x∧ y)∧ z = x∧ y, and
hence A((x ∧ y) ∧ z, x) = A(x ∧ y, x) ≥ A(x, x ∧ y) = A(x, (x ∧ y) ∧ z).
(ii) We consider the case of A((x ∧ y) ∧ z, x ∧ y) > A(x, x ∧ y).
Then A((x ∧ y) ∧ z, x) ≥ A(x, x ∧ y). Also A(x, x ∧ y) ≥ min [A(x, (x ∧
y) ∧ z), A((x ∧ y) ∧ z, x ∧ y)]. Since A((x ∧ y) ∧ z, x ∧ y) > A(x, x ∧ y),
A(x, x∧y) ≥ A(x, (x∧y)∧z). Thus A((x∧y)∧z, x) ≥ A(x, (x∧y)∧z).

From (i) and (ii), A((x ∧ y) ∧ z, x) ≥ A(x, (x ∧ y) ∧ z). Also A((x ∧
y) ∧ z, x) ≥ min [A((x ∧ y) ∧ z, x ∧ y), A(x ∧ y, x)] > 0.
Clearly

A((x ∧ y) ∧ z, y) ≥ min [A((x ∧ y) ∧ z, x ∧ y), A(x ∧ y, y)]

≥ min [A((x ∧ y) ∧ z, x ∧ y), A(y, x ∧ y)].

(i)′ We consider the case of A(y, x ∧ y) ≥ A((x ∧ y) ∧ z, x ∧ y).
Then A((x ∧ y) ∧ z, y) ≥ A((x ∧ y) ∧ z, x ∧ y) ≥ A(x ∧ y, (x ∧ y) ∧ z).
Also

A(x ∧ y, (x ∧ y) ∧ z) ≥ min [A(x ∧ y, y), A(y, (x ∧ y) ∧ z)]

≥ min [A(y, x ∧ y), A(y, (x ∧ y) ∧ z)]

≥ min [A((x ∧ y) ∧ z, x ∧ y), A(y, (x ∧ y) ∧ z)].

If A((x∧y)∧ z, x∧y) > A(x∧y, (x∧y)∧ z), then A(x∧y, (x∧y)∧ z) ≥
A(y, (x ∧ y) ∧ z), and hence A((x ∧ y) ∧ z, y) ≥ A(y, (x ∧ y) ∧ z). If
A((x∧ y)∧ z, x∧ y) = A(x∧ y, (x∧ y)∧ z) > 0, then (x∧ y)∧ z = x∧ y,
and hence A((x∧y)∧z, y) = A(x∧y, y) ≥ A(y, x∧y) = A(y, (x∧y)∧z).
(ii)′ We consider the case of A((x ∧ y) ∧ z, x ∧ y) > A(y, x ∧ y).
Then A((x ∧ y) ∧ z, y) ≥ A(y, x ∧ y). A(y, x ∧ y) ≥ min [A(y, (x ∧ y) ∧
z), A((x ∧ y) ∧ z, x ∧ y)]. Since A((x ∧ y) ∧ z, x ∧ y) > A(y, x ∧ y),
A(y, x∧y) ≥ A(y, (x∧y)∧ z). Thus A((x∧y)∧ z, y) ≥ A(y, (x∧y)∧ z).

From (i)′ and (ii)′, A((x∧ y)∧ z, y) ≥ A(y, (x∧ y)∧ z). Since A((x∧
y)∧ z, y) ≥ min [A((x∧ y)∧ z, x∧ y), A(x∧ y, y)], A((x∧ y)∧ z, y) > 0.
Clearly

A((x ∧ y) ∧ z, z) ≥ A(z, (x ∧ y) ∧ z) and A((x ∧ y) ∧ z, z) > 0.

By Proposition 2.5 (6),

A((x∧ y)∧ z, y ∧ z) ≥ A(y ∧ z, (x∧ y)∧ z) and A((x∧ y)∧ z, y ∧ z) > 0.
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From the above,

A((x ∧ y) ∧ z, x) ≥ A(x, (x ∧ y) ∧ z) and A((x ∧ y) ∧ z, x) > 0.

By Proposition 2.5 (6),

A((x∧y)∧z, x∧(y∧z)) ≥ A(x∧(y∧z), (x∧y)∧z) and A((x∧y)∧z, x∧(y∧z)) > 0.

As shown in the above, we may show that A(x ∧ (y ∧ z), (x ∧ y) ∧ z) ≥
A((x ∧ y) ∧ z, x ∧ (y ∧ z)) and A(x ∧ (y ∧ z), (x ∧ y) ∧ z) > 0. Thus

A((x ∧ y) ∧ z, x ∧ (y ∧ z)) = A(x ∧ (y ∧ z), (x ∧ y) ∧ z) > 0.

Since A is antisymmetric, (x ∧ y) ∧ z = x ∧ (y ∧ z).

We define the level set Bp = {(x, y) ∈ X × X : B(x, y) ≥ p} of a
fuzzy relation B in a set X and characterize the relationships between
a fuzzy lattice and its level set.

Proposition 3.4. Let B be a fuzzy relation in a set X and let Bp =
{(x, y) ∈ X ×X : B(x, y) ≥ p}. Then B is a fuzzy partial order relation
if and only if the level set Bp is a partial order relation in X ×X for all
p such that 0 < p ≤ 1.

Proof. See Proposition 2.4 of ([2]).

Proposition 3.5. Let B be a fuzzy relation in a set X. Suppose
that (X,Bp) is a lattice for all p such that 0 < p ≤ 1 and that if
B(p, q) > 0,then B(p, q) = B(q, p) or B(q, p) = 0. Then (X,B) is a
fuzzy lattice.

Proof. Let (X,Bp) be a lattice for all p such that 0 < p ≤ 1. Then
(X,B) is a fuzzy partial order relation by Proposition 3.4. Let x, y ∈
X. Then there exists r ∈ X such that (x, r) ∈ Bp, (y, r) ∈ Bp, and
(r, u) ∈ Bp for every upper bound u of {x, y}. Thus there exists r ∈ X
such that B(x, r) ≥ p > 0, B(y, r) ≥ p > 0, and B(r, u) ≥ p > 0 for
every upper bound u of {x, y}. By our hypothesis, B(x, r) ≥ B(r, x),
B(y, r) ≥ B(r, y), and B(r, u) ≥ B(u, r). Thus there exists a least
upper bound r ∈ X of {x, y}. Similarly we may show that there exists a
greatest lower bound c ∈ X of {x, y}. Hence (X,B) is a fuzzy lattice.

Proposition 3.6. Let B be a fuzzy relation in a set X. If (X,B) is
a fuzzy lattice, then (X,Bp) is a lattice for some p > 0.

Proof. The proof is similar to that of Proposition 3.6 in ([2]).

We now turn to the direct product of fuzzy lattices.
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Definition 3.7. Let (P,A) and (Q,B) be fuzzy partially ordered
sets. The direct product PQ of P and Q is defined by (PQ,A×B), where
A×B : PQ→ [0, 1] is a fuzzy relation defined by (A×B)((p1, q1), (p2, q2)) =
min [A(p1, p2), B(q1, q2)].

Theorem 3.8. Let (P,A) and (Q,B) be fuzzy lattices. Then the
direct product (PQ,A×B) of (P,A) and (Q,B) is a fuzzy lattice.

Proof. Let (p1, q1), (p2, q2) ∈ PQ. Clearly

(A×B)((p1, q1), (p1, q1)) = min [A(p1, p1), B(q1, q1)] = 1.

Suppose that (A × B)((p1, q1), (p2, q2)) = (A × B)((p2, q2), (p1, q1)) >
0. Then min [A(p1, p2), B(q1, q2)] > 0 and min [A(p2, p1), B(q2, q1)] >
0. Thus A(p1, p2) > 0, A(p2, p1) > 0, B(q1, q2) > 0, and B(q2, q1) >
0. Thus p1 = p2 and q1 = q2, and hence (p1, q1) = (p2, q2). (A ×
B)((p1, q1), (p2, q2)) = min [A(p1, p2), B(q1, q2)]
≥ min [→

p∈P
sup min (A(p1, p), A(p, p2)), →

q∈Q
sup min (B(q1, q), B(q, q2))].

Since

min [→
p∈P

sup min (A(p1, p), A(p, p2)), →
q∈Q

sup min (B(q1, q), B(q, q2))]

= →
(p,q)∈PQ

sup min [min(A(p1, p), A(p, p2)), min (B(q1, q), B(q, q2))]

= →
(p,q)∈PQ

sup min[A(p1, p), B(q1, q), A(p, p2), B(q, q2)]

= →
(p,q)∈PQ

sup min [min (A(p1, p), B(q1, q)), min (A(p, p2), B(q, q2))]

= →
(p,q)∈PQ

supmin [(A×B)((p1, q1), (p, q)), (A×B)((p, q), (p2, q2))],

(A×B)((p1, q1), (p2, q2)) ≥ →
(p,q)∈PQ

sup min [(A×B)((p1, q1), (p, q)), (A×

B)((p, q), (p2, q2))]. Thus (PQ,A×B) is a fuzzy partially ordered set.
Let (p1, q1), (p2, q2) ∈ PQ. Then

(A×B)((p1, q1), (p1∨p2, q1∨q2)) = min[A(p1, p1∨p2), B(q1, q1∨q2)] > 0

and

(A×B)((p1, q1), (p1 ∨ p2, q1 ∨ q2)) ≥ min [A(p1 ∨ p2, p1), B(q1 ∨ q2, q1)]

= (A×B)((p1 ∨ p2, q1 ∨ q2), (p1, q1)).

Similarly we may show that (A×B)((p2, q2), (p1 ∨ p2, q1 ∨ q2)) > 0 and

(A×B)((p2, q2), (p1 ∨ p2, q1 ∨ q2)) ≥ (A×B)((p1 ∨ p2, q1 ∨ q2), (p2, q2)).
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Thus (p1∨p2, q1∨q2) is an upper bound of {(p1, q1), (p2, q2)}. Let (s, t) be
an upper bound of {(p1, q1), (p2, q2)}. Then (A× B)((p1, q1), (s, t)) > 0,
(A×B)((p1, q1), (s, t)) ≥ (A×B)((s, t), (p1, q1)), (A×B)((p2, q2), (s, t)) >
0, and (A×B)((p2, q2), (s, t)) ≥ (A×B)((s, t), (p2, q2)).
Thus min [A(p1, s), B(q1, t)] > 0 and min [A(p2, s), B(q2, t)] > 0. Since
A(p1, s) > 0 and A(p2, s) > 0, A(p1 ∨ p2, s) > 0 by Proposition 2.5 (5).
Since B(q1, t) > 0 and B(q2, t) > 0, B(q1 ∨ q2, t) > 0 by Proposition 2.5
(5). Thus

(A×B)((p1 ∨ p2, q1 ∨ q2), (s, t)) = min [A(p1 ∨ p2, s), B(q1 ∨ q2, t)] > 0.

(i) Suppose s = p1 ∨ p2 and t = q1 ∨ q2. Then

(A×B)((p1 ∨ p2, q1 ∨ q2), (s, t)) = (A×B)((s, t), (p1 ∨ p2, q1 ∨ q2)) = 1.

(ii) Suppose s 6= p1 ∨ p2. Then A(s, p1 ∨ p2) = 0 or A(p1 ∨ p2, s) = 0.
Since A(p1 ∨ p2, s) > 0, A(s, p1 ∨ p2) = 0, and hence (A×B)((s, t), (p1 ∨
p2, q1 ∨ q2)) = 0. Thus

(A×B)((p1 ∨ p2, q1 ∨ q2), (s, t)) ≥ (A×B)((s, t), (p1 ∨ p2, q1 ∨ q2)).

(iii) Suppose t 6= q1 ∨ q2. Then B(t, q1 ∨ q2) = 0 or B(q1 ∨ q2, t) = 0.
Since B(q1 ∨ q2, t) > 0, B(t, q1 ∨ q2) = 0, and hence (A×B)((s, t), (p1 ∨
p2, q1 ∨ q2)) = 0. Thus

(A×B)((p1 ∨ p2, q1 ∨ q2), (s, t)) ≥ (A×B)((s, t), (p1 ∨ p2, q1 ∨ q2)).

From (i), (ii), and (iii),

(A×B)((p1 ∨ p2, q1 ∨ q2), (s, t)) ≥ (A×B)((s, t), (p1 ∨ p2, q1 ∨ q2)).

Thus (p1∨p2, q1∨q2) is the least upper bound of {(p1, q1), (p2, q2)}. That
is, for every (p1, q1), (p2, q2) ∈ PQ, there exists the least upper bound
(p1 ∨ p2, q1 ∨ q2) of {(p1, q1), (p2, q2)}.

Let (p1, q1), (p2, q2) ∈ PQ. Then

(A×B)((p1∧p2, q1∧q2), (p1, q1)) = min[A(p1∧p2, p1), B(q1∧q2, q1)] > 0

and

(A×B)((p1 ∧ p2, q1 ∧ q2), (p1, q1)) ≥ min [A(p1, p1 ∧ p2), B(q1, q1 ∧ q2)]

= (A×B)((p1, q1), (p1 ∧ p2, q1 ∧ q2)).

Similarly we may show that (A×B)((p1 ∧ p2, q1 ∧ q2), (p2, q2)) > 0 and

(A×B)((p1 ∧ p2, q1 ∧ q2), (p2, q2)) ≥ (A×B)((p2, q2), (p1 ∧ p2, q1 ∧ q2)).
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Thus (p1 ∧ p2, q1 ∧ q2) is a lower bound of {(p1, q1), (p2, q2)}. Let (v, w)
be a lower bound of {(p1, q1), (p2, q2)}. Then (A×B)((v, w), (p1, q1)) > 0,
(A×B)((v, w), (p1, q1)) ≥ (A×B)((p1, q1), (v, w)), (A×B)((v, w), (p2, q2)) >
0, and (A×B)((v, w), (p2, q2)) ≥ (A×B)((p2, q2), (v, w)).
Thus min [A(v, p1), B(w, q1)] > 0 and min[A(v, p2), B(w, q2)] > 0. Since
A(v, p1) > 0 and A(v, p2) > 0, A(v, p1 ∧ p2) > 0 by Proposition 2.5 (6).
Since B(w, q1) > 0 and B(w, q2) > 0, B(w, q1 ∧ q2) > 0 by Proposition
2.5 (6). Thus

(A×B)((v, w), (p1∧p2, q1∧ q2)) = min [A(v, p1∧p2), B(w, q1∧ q2)] > 0.

(i)′ Suppose v = p1 ∧ p2 and w = q1 ∧ q2. Then

(A×B)((v, w), (p1∧ p2, q1∧ q2)) = (A×B)((p1∧ p2, q1∧ q2), (v, w)) = 1.

(ii)′ Suppose v 6= p1 ∧ p2. Then A(p1 ∧ p2, v) = 0 or A(v, p1 ∧ p2) = 0.
Since A(v, p1∧p2) > 0, A(p1∧p2, v) = 0, and hence (A×B)((p1∧p2, q1∧
q2), (v, w)) = 0. Thus

(A×B)((v, w), (p1 ∧ p2, q1 ∧ q2)) ≥ (A×B)((p1 ∧ p2, q1 ∧ q2), (v, w)).

(iii)′ Suppose w 6= q1∧q2. Then B(q1∧q2, w) = 0 or B(w, q1∧q2) = 0.
Since B(w, q1∧q2) > 0, B(q1∧q2, w) = 0, and hence (A×B)((p1∧p2, q1∧
q2), (v, w)) = 0. Thus

(A×B)((v, w), (p1 ∧ p2, q1 ∧ q2)) ≥ (A×B)((p1 ∧ p2, q1 ∧ q2), (v, w)).

From (i)′, (ii)′, and (iii)′,

(A×B)((v, w), (p1 ∧ p2, q1 ∧ q2)) ≥ (A×B)((p1 ∧ p2, q1 ∧ q2), (v, w)).

Thus (p1 ∧ p2, q1 ∧ q2) is the greatest lower bound of {(p1, q1), (p2, q2)}.
That is, for every (p1, q1), (p2, q2) ∈ PQ, there exists the greatest lower
bound (p1 ∧ p2, q1 ∧ q2) of {(p1, q1), (p2, q2)}. Hence (PQ,A × B) is a
fuzzy lattice.
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