FUZZY LATTICES AS FUZZY RELATIONS

Inheung Chon

Abstract

We define a fuzzy lattice as a fuzzy relation, develop some basic properties of the fuzzy lattice, show that the operations of join and meet in fuzzy lattices are isotone and associative, characterize a fuzzy lattice by its level set, and show that the direct product of two fuzzy lattices is a fuzzy lattice.

1. Introduction

The concept of a fuzzy set was first introduced by Zadeh ([5]) and this concept was applied by Goguen ([3]) and Sanchez ([4]) to define and study fuzzy relations. Ajmal and Thomas ([1]) defined a fuzzy lattice as a fuzzy algebra and characterized fuzzy lattices. Chon ([2]) defined a fuzzy lattice as a fuzzy relation, which is a fuzzification of a crisp lattice, and developed some properties of the fuzzy lattice. However the fuzzy lattice defined by Chon ([2]) turns out to be somewhat inadequate. We redefine a fuzzy lattice as a fuzzy relation and study fuzzy lattices in this note.

In Section 2, we give some definitions and develop some basic properties of fuzzy lattices which will be used in Section 3. In Section 3, we show that the operations of join and meet in fuzzy lattices are isotone

[^0]and associative, characterize a fuzzy lattice by its level set, and show that the direct product of two fuzzy lattices is a fuzzy lattice.

2. Preliminaries

In this section, we give some definitions and develop some basic properties of fuzzy lattices which will be used in the next section.

Definition 2.1. Let X be a set. A function $A: X \times X \rightarrow[0,1]$ is called a fuzzy relation in X. The fuzzy relation A in X is reflexive if $A(x, x)=1$ for all $x \in X$ and A is transitive if $A(x, z) \geq \underset{y \in X}{\rightarrow}$ $\sup \min (A(x, y), A(y, z))$.

The following definition of an anti-symmetric fuzzy relation is due to Zadeh ([6]).

Definition 2.2. Let X be a set. A fuzzy relation A in X is antisymmetric if $A(x, y)>0$ and $A(y, x)>0$ implies $x=y$. A fuzzy relation A in X is a fuzzy partial order relation if A is reflexive, antisymmetric, and transitive. If A is a fuzzy partial order relation in X, then (X, A) is called a fuzzy partially ordered set.

Chon defined a fuzzy lattice as a fuzzy partial order relation (see Definition 3.2 in [2]). However the definition turns out to be somewhat inadequate. We redefine a fuzzy lattice in Proposition 2.4.

Definition 2.3. Let (X, A) be a fuzzy partially ordered set and let $S \subseteq X$. An element $u \in X$ is said to be an upper bound for a set S if $A(u, b) \leq A(b, u)$ and $A(b, u)>0$ for all $b \in S$. An upper bound u_{0} for S is the least upper bound of S if $A\left(u, u_{0}\right) \leq A\left(u_{0}, u\right)$ and $A\left(u_{0}, u\right)>0$ for every upper bound u for S. An element $v \in X$ is said to be a lower bound for S if $A(b, v) \leq A(v, b)$ and $A(v, b)>0$ for all $b \in S$. A lower bound v_{0} for S is the greatest lower bound of S iff $A\left(v_{0}, v\right) \leq A\left(v, v_{0}\right)$ and $A\left(v, v_{0}\right)>0$ for every lower bound v for S.

We denote the least upper bound of the set $\{x, y\}$ by $x \vee y$ and denote the greatest lower bound of the set $\{x, y\}$ by $x \wedge y . \vee$ is called the join and \wedge is called the meet.

Definition 2.4. Let (X, A) be a fuzzy partially ordered set. Then (X, A) is a fuzzy lattice if $x \vee y$ and $x \wedge y$ exist for all $x, y \in X$.

Example of a fuzzy lattice. Let $X=\{x, y, z\}$ and let $A: X \times X \rightarrow$ $[0,1]$ be a fuzzy relation such that $A(x, x)=A(y, y)=A(z, z)=1$, $A(x, y)=0.2, A(x, z)=0.1, A(y, z)=0.1, A(y, x)=0.5, A(z, x)=0.3$, and $A(z, y)=0.2$. Then it is easily checked that A is a fuzzy partial order relation. Also $x \vee y=y \vee x=x, x \vee z=z \vee x=x, y \vee z=z \vee y=y$, $x \wedge y=y \wedge x=y, x \wedge z=z \wedge x=z$, and $y \wedge z=z \wedge y=z$. Thus (X, A) is a fuzzy lattice.

Proposition 2.5. Let (X, A) be a fuzzy lattice and let $x, y, z \in X$. Then
(1) $A(x, x \vee y)>0$ and $A(x \vee y, x) \leq A(x, x \vee y)$.
(2) $A(y, x \vee y)>0$ and $A(x \vee y, y) \leq A(y, x \vee y)$.
(3) $A(x \wedge y, x)>0$ and $A(x, x \wedge y) \leq A(x \wedge y, x)$.
(4) $A(x \wedge y, y)>0$ and $A(y, x \wedge y) \leq A(x \wedge y, y)$.
(5) If $A(x, z)>0, A(z, x) \leq A(x, z), A(y, z)>0$, and $A(z, y) \leq$ $A(y, z)$, then $A(x \vee y, z)>0$ and $A(z, x \vee y) \leq A(x \vee y, z)$.
(6) If $A(z, x)>0, A(x, z) \leq A(z, x), A(z, y)>0$, and $A(y, z) \leq$ $A(z, y)$, then $A(z, x \wedge y)>0$ and $A(x \wedge y, z) \leq A(z, x \wedge y)$.
(7) $A(x, y)>0$ and $A(y, x) \leq A(x, y)$ if and only if $x \vee y=y$.
(8) $A(x, y)>0$ and $A(y, x) \leq A(x, y)$ if and only if $x \wedge y=x$.

Proof. (1), (2), (3), and (4) are straightforward.
(5) Since $A(x, z)>0, A(z, x) \leq A(x, z), A(y, z)>0$, and $A(z, y) \leq$ $A(y, z), z$ is an upper bound of $\{x, y\}$. Since $x \vee y$ is the least upper bound of $\{x, y\}, A(x \vee y, z)>0$ and $A(z, x \vee y) \leq A(x \vee y, z)$.
(6) Since $A(z, x)>0, A(x, z) \leq A(z, x), A(z, y)>0$, and $A(y, z) \leq$ $A(z, y), z$ is a lower bound of $\{x, y\}$. Since $x \wedge y$ is the greatest lower bound of $\{x, y\}, A(z, x \wedge y)>0$ and $A(x \wedge y, z) \leq A(z, x \wedge y)$.
(7) Suppose $A(y, x) \leq A(x, y)$ and $A(x, y)>0$. Since $A(y, y)=1>0$ and $A(y, y) \leq A(y, y), A(x \vee y, y)>0$ and $A(y, x \vee y) \leq A(x \vee y, y)$ by (5). Since $A(x \vee y, y) \leq A(y, x \vee y)$ by $(2), A(y, x \vee y)=A(x \vee y, y)>0$. Since A is antisymmetric, $x \vee y=y$. Conversely, suppose $x \vee y=y$. Then $A(y, x)=A(x \vee y, x) \leq A(x, x \vee y)=A(x, y)$ by (1). Also $A(x, y)=$ $A(x, x \vee y)>0$ by (1).
(8) Suppose $A(y, x) \leq A(x, y)$ and $A(x, y)>0$. Since $A(x, x)=1>0$ and $A(x, x) \leq A(x, x), A(x, x \wedge y)>0$ and $A(x \wedge y, x) \leq A(x, x \wedge y)$ by (6). Since $A(x, x \wedge y) \leq A(x \wedge y, x)$ by (3), $A(x \wedge y, x)=A(x, x \wedge y)>0$. Since A is antisymmetric, $x \wedge y=x$. Conversely, suppose $x \wedge y=x$.

Then $A(y, x)=A(y, x \wedge y) \leq A(x \wedge y, y)=A(x, y)$ by (4). Also $A(x, y)=$ $A(x \wedge y, y)>0$ by (4).

Proposition 2.6. Let (X, A) be a fuzzy lattice and let $x, y \in X$. Then
(1) $x \vee x=x, x \wedge x=x$.
(2) $x \vee y=y \vee x, x \wedge y=y \wedge x$.
(3) $(x \vee y) \wedge x=x,(x \wedge y) \vee x=x$.

Proof. (1) and (2) are straightforward.
(3) Let $B=\{x \vee y, x\}$. By Proposition 2.5 (1), $A(x, x \vee y)>0$ and $A(x \vee y, x) \leq A(x, x \vee y)$. Since $A(x, x)=1>0, x$ is a lower bound of B. If z is a lower bound of B, then $A(z, x)>0$ and $A(x, z) \leq A(z, x)$. Thus x is the greatest lower bound of B. Hence $(x \vee y) \wedge x=x$. Similarly we may show $(x \wedge y) \vee x=x$.

3. Some properties of fuzzy lattices

In this section, we show that the operations of join and meet in fuzzy lattices are isotone and associative, characterize the fuzzy lattice by its level set, and show that the direct product of two fuzzy lattices is a fuzzy lattice.

Theorem 3.1. Let (X, A) be a fuzzy lattice and $x \in X$. Suppose that $A(z, y) \leq A(y, z)$ and $A(y, z)>0$. Then
(1) $A(x \wedge y, x \wedge z)>0$ and $A(x \wedge z, x \wedge y) \leq A(x \wedge y, x \wedge z)$.
(2) $A(x \vee y, x \vee z)>0$ and $A(x \vee z, x \vee y) \leq A(x \vee y, x \vee z)$.

Proof. (1) (i) We consider the case of $A(z, y)<A(y, z)$ and $A(z, y)<$ $A(x \wedge y, y)$. Since $A(x \wedge y, z) \geq \min [A(x \wedge y, y), A(y, z)], A(x \wedge y, z) \geq$ $\min [A(x \wedge y, y), A(z, y)]$. Since $A(z, y)<A(x \wedge y, y), A(x \wedge y, z) \geq$ $A(z, y)$. Also $A(z, y) \geq \min [A(z, x \wedge y), A(x \wedge y, y)]$. Since $A(z, y)<$ $A(x \wedge y, y), A(z, y) \geq A(z, x \wedge y)$. Thus $A(x \wedge y, z) \geq A(z, x \wedge y)$.
(ii) We consider the case of $A(z, y)<A(y, z)$ and $A(x \wedge y, y) \leq$ $A(z, y)$. Since $A(y, z)>A(x \wedge y, y), A(x \wedge y, z) \geq A(x \wedge y, y)$. Since $A(x \wedge y, y) \geq A(y, x \wedge y)$ by Proposition 2.5 (4), $A(x \wedge y, y) \geq A(y, x \wedge$ $y) \geq \min [A(y, z), A(z, x \wedge y)]$. Since $A(y, z)>A(z, y) \geq A(x \wedge y, y)$, $A(x \wedge y, y) \geq A(z, x \wedge y)$. Thus $A(x \wedge y, z) \geq A(x \wedge y, y) \geq A(z, x \wedge y)$.
(iii) We consider the case of $A(z, y)=A(y, z)>0$. Since A is antisymmetric, $z=y$. Thus $A(x \wedge y, z)=A(x \wedge z, z) \geq A(z, x \wedge z)=$ $A(z, x \wedge y)$.

From (i), (ii), and (iii), $A(x \wedge y, z) \geq A(z, x \wedge y)$. Also $A(x \wedge y, z) \geq$ $\min [A(x \wedge y, y), A(y, z)]>0$. Since $A(x \wedge y, x)>0$ and $A(x \wedge y, x) \geq$ $A(x, x \wedge y)$ by Proposition 2.5 (3), $x \wedge y$ is a lower bound of $\{x, z\}$. Since $x \wedge z$ is the greatest lower bound of $\{x, z\}, A(x \wedge y, x \wedge z)>0$ and $A(x \wedge z, x \wedge y) \leq A(x \wedge y, x \wedge z)$.
(2) (i) We consider the case of $A(z, y)<A(y, z)$ and $A(z, y)<$ $A(z, x \vee z)$. Since $A(y, x \vee z) \geq \min [A(y, z), A(z, x \vee z)], A(y, x \vee z) \geq$ $\min [A(z, y), A(z, x \vee z)]=A(z, y)$. Also $A(z, y) \geq \min [A(z, x \vee$ $z), A(x \vee z, y)]$. Since $A(z, y)<A(z, x \vee z), A(z, y) \geq A(x \vee z, y)$. Thus $A(y, x \vee z) \geq A(x \vee z, y)$.
(ii) We consider the case of $A(z, y)<A(y, z)$ and $A(z, x \vee z) \leq A(z, y)$. Since $A(y, z)>A(z, x \vee z), A(y, x \vee z) \geq A(z, x \vee z)$. Since $A(z, x \vee z) \geq$ $A(x \vee z, z) \geq \min [A(x \vee z, y), A(y, z)]$ and $A(y, z)>A(z, y) \geq A(z, x \vee z)$, $A(z, x \vee z) \geq A(x \vee z, y)$. Thus $A(y, x \vee z) \geq A(z, x \vee z) \geq A(x \vee z, y)$.
(iii) We consider the case of $A(z, y)=A(y, z)>0$. Since A is antisymmetric, $z=y$. Thus $A(y, x \vee z)=A(z, x \vee z) \geq A(x \vee z, z)=$ $A(x \vee z, y)$.

From (i), (ii), and (iii), $A(y, x \vee z) \geq A(x \vee z, y)$. Also $A(y, x \vee z) \geq$ $\min [A(y, z), A(z, x \vee z)]>0$. Since $A(x, x \vee z)>0$ and $A(x \vee z, x) \leq$ $A(x, x \vee z)$ by Proposition 2.5 (1), $x \vee z$ is an upper bound of $\{x, y\}$. Since $x \vee y$ is the least upper bound of $\{x, y\}, A(x \vee y, x \vee z)>0$ and $A(x \vee z, x \vee y) \leq A(x \vee y, x \vee z)$.

Theorem 3.2. Let (X, A) be a fuzzy lattice and let $x, y, z \in X$. Then

$$
(x \vee y) \vee z=x \vee(y \vee z) .
$$

Proof. Since $A(y, y \vee z) \geq A(y \vee z, y)$,

$$
\begin{aligned}
A(y, x \vee(y \vee z)) & \geq \min [A(y, y \vee z), A(y \vee z, x \vee(y \vee z))] \\
& \geq \min [A(y \vee z, y), A(y \vee z, x \vee(y \vee z))] .
\end{aligned}
$$

(i) We consider the case of $A(y \vee z, y) \geq A(y \vee z, x \vee(y \vee z))$.

Clearly

$$
A(y, x \vee(y \vee z)) \geq A(y \vee z, x \vee(y \vee z)) \geq A(x \vee(y \vee z), y \vee z) .
$$

Since $A(y \vee z, y) \geq A(y \vee z, x \vee(y \vee z))$,

$$
\begin{aligned}
A(x \vee(y \vee z), y \vee z) & \geq \min [A(x \vee(y \vee z), y), A(y, y \vee z)] \\
& \geq \min [A(x \vee(y \vee z), y), A(y \vee z, y)] \\
& \geq \min [A(x \vee(y \vee z), y), A(y \vee z, x \vee(y \vee z))] .
\end{aligned}
$$

If $A(y \vee z, x \vee(y \vee z))>A(x \vee(y \vee z), y \vee z)$, then $A(x \vee(y \vee z), y \vee z) \geq$ $A(x \vee(y \vee z), y)$, and hence $A(y, x \vee(y \vee z)) \geq A(x \vee(y \vee z), y)$. If $A(y \vee z, x \vee(y \vee z))=A(x \vee(y \vee z), y \vee z)>0$, then $x \vee(y \vee z)=y \vee z$, and hence $A(y, x \vee(y \vee z))=A(y, y \vee z) \geq A(y \vee z, y)=A(x \vee(y \vee z), y)$. That is, $A(y, x \vee(y \vee z)) \geq A(x \vee(y \vee z), y)$.
(ii) We consider the case of $A(y \vee z, x \vee(y \vee z))>A(y \vee z, y)$.

Then $A(y, x \vee(y \vee z)) \geq A(y \vee z, y)$. Clearly

$$
A(y \vee z, y) \geq \min [A(y \vee z, x \vee(y \vee z)), A(x \vee(y \vee z), y)] .
$$

Since $A(y \vee z, x \vee(y \vee z))>A(y \vee z, y), A(y \vee z, y) \geq A(x \vee(y \vee z), y)$. Thus $A(y, x \vee(y \vee z)) \geq A(x \vee(y \vee z), y)$.

From (i) and (ii), $A(y, x \vee(y \vee z)) \geq A(x \vee(y \vee z), y)$. Also $A(y, x \vee(y \vee$ $z)) \geq \min [A(y, y \vee z), A(y \vee z, x \vee(y \vee z))]>0$. Clearly $A(x, x \vee(y \vee z)) \geq$ $A(x \vee(y \vee z), x)$ and $A(x, x \vee(y \vee z))>0$. By Proposition 2.5 (5), $A(x \vee y, x \vee(y \vee z)) \geq A(x \vee(y \vee z), x \vee y)$ and $A(x \vee y, x \vee(y \vee z))>0$.
Clearly

$$
\begin{aligned}
A(z, x \vee(y \vee z)) & \geq \min [A(z, y \vee z), A(y \vee z, x \vee(y \vee z))] \\
& \geq \min [A(y \vee z, z), A(y \vee z, x \vee(y \vee z))] .
\end{aligned}
$$

$(i)^{\prime}$ We consider the case of $A(y \vee z, z) \geq A(y \vee z, x \vee(y \vee z))$.
Then

$$
\begin{aligned}
A(z, x \vee(y \vee z)) & \geq A(y \vee z, x \vee(y \vee z)) \\
& \geq A(x \vee(y \vee z), y \vee z) .
\end{aligned}
$$

Since $A(y \vee z, z) \geq A(y \vee z, x \vee(y \vee z))$,

$$
\begin{aligned}
A(x \vee(y \vee z), y \vee z) & \geq \min [A(x \vee(y \vee z), z), A(z, y \vee z)] \\
& \geq \min [A(x \vee(y \vee z), z), A(y \vee z, z)] \\
& \geq \min [A(x \vee(y \vee z), z), A(y \vee z, x \vee(y \vee z))] .
\end{aligned}
$$

If $A(y \vee z, x \vee(y \vee z))>A(x \vee(y \vee z), y \vee z), A(x \vee(y \vee z), y \vee z) \geq$ $A(x \vee(y \vee z), z)$, and hence $A(z, x \vee(y \vee z)) \geq A(x \vee(y \vee z), z)$. If $A(y \vee z, x \vee(y \vee z))=A(x \vee(y \vee z), y \vee z)>0$, then $y \vee z=x \vee(y \vee z)$,
and hence $A(z, x \vee(y \vee z))=A(z, y \vee z) \geq A(y \vee z, z)=A(x \vee(y \vee z), z)$. Thus $A(z, x \vee(y \vee z)) \geq A(x \vee(y \vee z), z)$.
(ii)' We consider the case of $A(y \vee z, x \vee(y \vee z))>A(y \vee z, z)$.

Then $A(z, x \vee(y \vee z)) \geq A(y \vee z, z)$. Also $A(y \vee z, z) \geq \min [A(y \vee z, x \vee$ $(y \vee z)), A(x \vee(y \vee z), z)]$. Since $A(y \vee z, x \vee(y \vee z))>A(y \vee z, z)$, $A(y \vee z, z) \geq A(x \vee(y \vee z), z)$. Thus $A(z, x \vee(y \vee z)) \geq A(x \vee(y \vee z), z)$.

From (i) and $(i i)^{\prime}, A(z, x \vee(y \vee z)) \geq A(x \vee(y \vee z), z)$. Since $A(z, x \vee$ $(y \vee z)) \geq \min [A(z, y \vee z), A(y \vee z, x \vee(y \vee z))], A(z, x \vee(y \vee z))>0$.
From the above,
$A(x \vee y, x \vee(y \vee z)) \geq A(x \vee(y \vee z), x \vee y)$ and $A(x \vee y, x \vee(y \vee z))>0$.
By Proposition 2.5 (5),

$$
A((x \vee y) \vee z, x \vee(y \vee z)) \geq A(x \vee(y \vee z),(x \vee y) \vee z) \text { and } A((x \vee y) \vee z, x \vee(y \vee z))>0 .
$$

By the same way as shown in the above, we may show that
$A((x \vee y) \vee z, x \vee(y \vee z)) \leq A(x \vee(y \vee z),(x \vee y) \vee z)$ and $A(x \vee(y \vee z),(x \vee y) \vee z)>0$.
Thus

$$
A((x \vee y) \vee z, x \vee(y \vee z))=A(x \vee(y \vee z),(x \vee y) \vee z)>0 .
$$

Since A is antisymmetric,

$$
(x \vee y) \vee z=x \vee(y \vee z)
$$

Theorem 3.3. Let (X, A) be a fuzzy lattice and let $x, y, z \in X$. Then

$$
(x \wedge y) \wedge z=x \wedge(y \wedge z)
$$

Proof. Clearly

$$
\begin{aligned}
A((x \wedge y) \wedge z, x) & \geq \min [A((x \wedge y) \wedge z, x \wedge y), A(x \wedge y, x)] \\
& \geq \min [A((x \wedge y) \wedge z, x \wedge y), \quad A(x, x \wedge y)]
\end{aligned}
$$

(i) We consider the case of $A(x, x \wedge y) \geq A((x \wedge y) \wedge z, x \wedge y)$.

Then $A((x \wedge y) \wedge z, x) \geq A((x \wedge y) \wedge z, x \wedge y) \geq A(x \wedge y,(x \wedge y) \wedge z)$.
Also

$$
\begin{aligned}
A(x \wedge y,(x \wedge y) \wedge z) & \geq \min [A(x \wedge y, x), A(x,(x \wedge y) \wedge z)] \\
& \geq \min [A(x, x \wedge y), A(x,(x \wedge y) \wedge z)] \\
& \geq \min [A((x \wedge y) \wedge z, x \wedge y), A(x,(x \wedge y) \wedge z)]
\end{aligned}
$$

If $A((x \wedge y) \wedge z, x \wedge y)>A(x \wedge y,(x \wedge y) \wedge z)$, then $A(x \wedge y,(x \wedge y) \wedge z) \geq$ $A(x,(x \wedge y) \wedge z)$, and hence $A((x \wedge y) \wedge z, x) \geq A(x,(x \wedge y) \wedge z)$. If $A((x \wedge y) \wedge z, x \wedge y)=A(x \wedge y,(x \wedge y) \wedge z)$, then $(x \wedge y) \wedge z=x \wedge y$, and hence $A((x \wedge y) \wedge z, x)=A(x \wedge y, x) \geq A(x, x \wedge y)=A(x,(x \wedge y) \wedge z)$.
(ii) We consider the case of $A((x \wedge y) \wedge z, x \wedge y)>A(x, x \wedge y)$.

Then $A((x \wedge y) \wedge z, x) \geq A(x, x \wedge y)$. Also $A(x, x \wedge y) \geq \min [A(x,(x \wedge$ $y) \wedge z), A((x \wedge y) \wedge z, x \wedge y)]$. Since $A((x \wedge y) \wedge z, x \wedge y)>A(x, x \wedge y)$, $A(x, x \wedge y) \geq A(x,(x \wedge y) \wedge z)$. Thus $A((x \wedge y) \wedge z, x) \geq A(x,(x \wedge y) \wedge z)$.

From (i) and (ii), $A((x \wedge y) \wedge z, x) \geq A(x,(x \wedge y) \wedge z)$. Also $A((x \wedge$ $y) \wedge z, x) \geq \min [A((x \wedge y) \wedge z, x \wedge y), A(x \wedge y, x)]>0$.
Clearly

$$
\begin{aligned}
A((x \wedge y) \wedge z, y) & \geq \min [A((x \wedge y) \wedge z, x \wedge y), A(x \wedge y, y)] \\
& \geq \min [A((x \wedge y) \wedge z, x \wedge y), A(y, x \wedge y)]
\end{aligned}
$$

$(i)^{\prime}$ We consider the case of $A(y, x \wedge y) \geq A((x \wedge y) \wedge z, x \wedge y)$.
Then $A((x \wedge y) \wedge z, y) \geq A((x \wedge y) \wedge z, x \wedge y) \geq A(x \wedge y,(x \wedge y) \wedge z)$. Also

$$
\begin{aligned}
A(x \wedge y,(x \wedge y) \wedge z) & \geq \min [A(x \wedge y, y), A(y,(x \wedge y) \wedge z)] \\
& \geq \min [A(y, x \wedge y), A(y,(x \wedge y) \wedge z)] \\
& \geq \min [A((x \wedge y) \wedge z, x \wedge y), A(y,(x \wedge y) \wedge z)]
\end{aligned}
$$

If $A((x \wedge y) \wedge z, x \wedge y)>A(x \wedge y,(x \wedge y) \wedge z)$, then $A(x \wedge y,(x \wedge y) \wedge z) \geq$ $A(y,(x \wedge y) \wedge z)$, and hence $A((x \wedge y) \wedge z, y) \geq A(y,(x \wedge y) \wedge z)$. If $A((x \wedge y) \wedge z, x \wedge y)=A(x \wedge y,(x \wedge y) \wedge z)>0$, then $(x \wedge y) \wedge z=x \wedge y$, and hence $A((x \wedge y) \wedge z, y)=A(x \wedge y, y) \geq A(y, x \wedge y)=A(y,(x \wedge y) \wedge z)$. (ii) ${ }^{\prime}$ We consider the case of $A((x \wedge y) \wedge z, x \wedge y)>A(y, x \wedge y)$.

Then $A((x \wedge y) \wedge z, y) \geq A(y, x \wedge y) . A(y, x \wedge y) \geq \min [A(y,(x \wedge y) \wedge$ $z), A((x \wedge y) \wedge z, x \wedge y)]$. Since $A((x \wedge y) \wedge z, x \wedge y)>A(y, x \wedge y)$, $A(y, x \wedge y) \geq A(y,(x \wedge y) \wedge z)$. Thus $A((x \wedge y) \wedge z, y) \geq A(y,(x \wedge y) \wedge z)$.

From $(i)^{\prime}$ and $(i i)^{\prime}, A((x \wedge y) \wedge z, y) \geq A(y,(x \wedge y) \wedge z)$. Since $A((x \wedge$ $y) \wedge z, y) \geq \min [A((x \wedge y) \wedge z, x \wedge y), A(x \wedge y, y)], A((x \wedge y) \wedge z, y)>0$. Clearly

$$
A((x \wedge y) \wedge z, z) \geq A(z,(x \wedge y) \wedge z) \text { and } A((x \wedge y) \wedge z, z)>0
$$

By Proposition 2.5 (6),

$$
A((x \wedge y) \wedge z, y \wedge z) \geq A(y \wedge z,(x \wedge y) \wedge z) \text { and } A((x \wedge y) \wedge z, y \wedge z)>0
$$

From the above,

$$
A((x \wedge y) \wedge z, x) \geq A(x,(x \wedge y) \wedge z) \text { and } A((x \wedge y) \wedge z, x)>0
$$

By Proposition 2.5 (6),
$A((x \wedge y) \wedge z, x \wedge(y \wedge z)) \geq A(x \wedge(y \wedge z),(x \wedge y) \wedge z)$ and $A((x \wedge y) \wedge z, x \wedge(y \wedge z))>0$.
As shown in the above, we may show that $A(x \wedge(y \wedge z),(x \wedge y) \wedge z) \geq$ $A((x \wedge y) \wedge z, x \wedge(y \wedge z))$ and $A(x \wedge(y \wedge z),(x \wedge y) \wedge z)>0$. Thus

$$
A((x \wedge y) \wedge z, x \wedge(y \wedge z))=A(x \wedge(y \wedge z),(x \wedge y) \wedge z)>0
$$

Since A is antisymmetric, $(x \wedge y) \wedge z=x \wedge(y \wedge z)$.
We define the level set $B_{p}=\{(x, y) \in X \times X: B(x, y) \geq p\}$ of a fuzzy relation B in a set X and characterize the relationships between a fuzzy lattice and its level set.

Proposition 3.4. Let B be a fuzzy relation in a set X and let $B_{p}=$ $\{(x, y) \in X \times X: B(x, y) \geq p\}$. Then B is a fuzzy partial order relation if and only if the level set B_{p} is a partial order relation in $X \times X$ for all p such that $0<p \leq 1$.

Proof. See Proposition 2.4 of ([2]).
Proposition 3.5. Let B be a fuzzy relation in a set X. Suppose that $\left(X, B_{p}\right)$ is a lattice for all p such that $0<p \leq 1$ and that if $B(p, q)>0$, then $B(p, q)=B(q, p)$ or $B(q, p)=0$. Then (X, B) is a fuzzy lattice.

Proof. Let $\left(X, B_{p}\right)$ be a lattice for all p such that $0<p \leq 1$. Then (X, B) is a fuzzy partial order relation by Proposition 3.4. Let $x, y \in$ X. Then there exists $r \in X$ such that $(x, r) \in B_{p},(y, r) \in B_{p}$, and $(r, u) \in B_{p}$ for every upper bound u of $\{x, y\}$. Thus there exists $r \in X$ such that $B(x, r) \geq p>0, B(y, r) \geq p>0$, and $B(r, u) \geq p>0$ for every upper bound u of $\{x, y\}$. By our hypothesis, $B(x, r) \geq B(r, x)$, $B(y, r) \geq B(r, y)$, and $B(r, u) \geq B(u, r)$. Thus there exists a least upper bound $r \in X$ of $\{x, y\}$. Similarly we may show that there exists a greatest lower bound $c \in X$ of $\{x, y\}$. Hence (X, B) is a fuzzy lattice.

Proposition 3.6. Let B be a fuzzy relation in a set X. If (X, B) is a fuzzy lattice, then $\left(X, B_{p}\right)$ is a lattice for some $p>0$.

Proof. The proof is similar to that of Proposition 3.6 in ([2]).
We now turn to the direct product of fuzzy lattices.

Definition 3.7. Let (P, A) and (Q, B) be fuzzy partially ordered sets. The direct product $P Q$ of P and Q is defined by $(P Q, A \times B)$, where $A \times B: P Q \rightarrow[0,1]$ is a fuzzy relation defined by $(A \times B)\left(\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right)\right)=$ $\min \left[A\left(p_{1}, p_{2}\right), B\left(q_{1}, q_{2}\right)\right]$.

Theorem 3.8. Let (P, A) and (Q, B) be fuzzy lattices. Then the direct product $(P Q, A \times B)$ of (P, A) and (Q, B) is a fuzzy lattice.

Proof. Let $\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right) \in P Q$. Clearly

$$
(A \times B)\left(\left(p_{1}, q_{1}\right),\left(p_{1}, q_{1}\right)\right)=\min \left[A\left(p_{1}, p_{1}\right), B\left(q_{1}, q_{1}\right)\right]=1
$$

Suppose that $(A \times B)\left(\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right)\right)=(A \times B)\left(\left(p_{2}, q_{2}\right),\left(p_{1}, q_{1}\right)\right)>$ 0 . Then min $\left[A\left(p_{1}, p_{2}\right), B\left(q_{1}, q_{2}\right)\right]>0$ and $\min \left[A\left(p_{2}, p_{1}\right), B\left(q_{2}, q_{1}\right)\right]>$ 0. Thus $A\left(p_{1}, p_{2}\right)>0, A\left(p_{2}, p_{1}\right)>0, B\left(q_{1}, q_{2}\right)>0$, and $B\left(q_{2}, q_{1}\right)>$ 0 . Thus $p_{1}=p_{2}$ and $q_{1}=q_{2}$, and hence $\left(p_{1}, q_{1}\right)=\left(p_{2}, q_{2}\right)$. $(A \times$ $B)\left(\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right)\right)=\min \left[A\left(p_{1}, p_{2}\right), B\left(q_{1}, q_{2}\right)\right]$
$\geq \min \left[\underset{p \in P}{\rightarrow} \sup \min \left(A\left(p_{1}, p\right), A\left(p, p_{2}\right)\right), \underset{q \in Q}{\rightarrow} \sup \min \left(B\left(q_{1}, q\right), B\left(q, q_{2}\right)\right)\right]$. Since

$$
\begin{aligned}
& \min \left[\underset{p \in P}{\rightarrow} \sup \min \left(A\left(p_{1}, p\right), A\left(p, p_{2}\right)\right), \underset{q \in Q}{\rightarrow} \sup \min \left(B\left(q_{1}, q\right), B\left(q, q_{2}\right)\right)\right] \\
& =\underset{(p, q) \in P Q}{\rightarrow} \sup \min \left[\min \left(A\left(p_{1}, p\right), A\left(p, p_{2}\right)\right), \min \left(B\left(q_{1}, q\right), B\left(q, q_{2}\right)\right)\right] \\
& =\underset{(p, q) \in P Q}{\rightarrow} \sup \min \left[A\left(p_{1}, p\right), B\left(q_{1}, q\right), A\left(p, p_{2}\right), B\left(q, q_{2}\right)\right] \\
& =\underset{(p, q) \in P Q}{\rightarrow} \sup \min \left[\min \left(A\left(p_{1}, p\right), B\left(q_{1}, q\right)\right), \min \left(A\left(p, p_{2}\right), B\left(q, q_{2}\right)\right)\right] \\
& =\underset{(p, q) \in P Q}{\rightarrow} \operatorname{supmin}\left[(A \times B)\left(\left(p_{1}, q_{1}\right),(p, q)\right),(A \times B)\left((p, q),\left(p_{2}, q_{2}\right)\right)\right] \text {, } \\
& (A \times B)\left(\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right)\right) \geq \underset{(p, q) \in P Q}{\rightarrow} \sup \min \left[(A \times B)\left(\left(p_{1}, q_{1}\right),(p, q)\right),(A \times\right. \\
& \left.B)\left((p, q),\left(p_{2}, q_{2}\right)\right)\right] \text {. Thus }(P Q, A \times B) \text { is a fuzzy partially ordered set. } \\
& \text { Let }\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right) \in P Q \text {. Then } \\
& (A \times B)\left(\left(p_{1}, q_{1}\right),\left(p_{1} \vee p_{2}, q_{1} \vee q_{2}\right)\right)=\min \left[A\left(p_{1}, p_{1} \vee p_{2}\right), B\left(q_{1}, q_{1} \vee q_{2}\right)\right]>0 \\
& \text { and } \\
& (A \times B)\left(\left(p_{1}, q_{1}\right),\left(p_{1} \vee p_{2}, q_{1} \vee q_{2}\right)\right) \geq \min \left[A\left(p_{1} \vee p_{2}, p_{1}\right), B\left(q_{1} \vee q_{2}, q_{1}\right)\right] \\
& =(A \times B)\left(\left(p_{1} \vee p_{2}, q_{1} \vee q_{2}\right),\left(p_{1}, q_{1}\right)\right) .
\end{aligned}
$$

Similarly we may show that $(A \times B)\left(\left(p_{2}, q_{2}\right),\left(p_{1} \vee p_{2}, q_{1} \vee q_{2}\right)\right)>0$ and $(A \times B)\left(\left(p_{2}, q_{2}\right),\left(p_{1} \vee p_{2}, q_{1} \vee q_{2}\right)\right) \geq(A \times B)\left(\left(p_{1} \vee p_{2}, q_{1} \vee q_{2}\right),\left(p_{2}, q_{2}\right)\right)$.

Thus $\left(p_{1} \vee p_{2}, q_{1} \vee q_{2}\right)$ is an upper bound of $\left\{\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right)\right\}$. Let (s, t) be an upper bound of $\left\{\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right)\right\}$. Then $(A \times B)\left(\left(p_{1}, q_{1}\right),(s, t)\right)>0$, $(A \times B)\left(\left(p_{1}, q_{1}\right),(s, t)\right) \geq(A \times B)\left((s, t),\left(p_{1}, q_{1}\right)\right),(A \times B)\left(\left(p_{2}, q_{2}\right),(s, t)\right)>$ 0 , and $(A \times B)\left(\left(p_{2}, q_{2}\right),(s, t)\right) \geq(A \times B)\left((s, t),\left(p_{2}, q_{2}\right)\right)$.
Thus min $\left[A\left(p_{1}, s\right), B\left(q_{1}, t\right)\right]>0$ and $\min \left[A\left(p_{2}, s\right), B\left(q_{2}, t\right)\right]>0$. Since $A\left(p_{1}, s\right)>0$ and $A\left(p_{2}, s\right)>0, A\left(p_{1} \vee p_{2}, s\right)>0$ by Proposition 2.5 (5). Since $B\left(q_{1}, t\right)>0$ and $B\left(q_{2}, t\right)>0, B\left(q_{1} \vee q_{2}, t\right)>0$ by Proposition 2.5 (5). Thus
$(A \times B)\left(\left(p_{1} \vee p_{2}, q_{1} \vee q_{2}\right),(s, t)\right)=\min \left[A\left(p_{1} \vee p_{2}, s\right), B\left(q_{1} \vee q_{2}, t\right)\right]>0$.
(i) Suppose $s=p_{1} \vee p_{2}$ and $t=q_{1} \vee q_{2}$. Then
$(A \times B)\left(\left(p_{1} \vee p_{2}, q_{1} \vee q_{2}\right),(s, t)\right)=(A \times B)\left((s, t),\left(p_{1} \vee p_{2}, q_{1} \vee q_{2}\right)\right)=1$.
(ii) Suppose $s \neq p_{1} \vee p_{2}$. Then $A\left(s, p_{1} \vee p_{2}\right)=0$ or $A\left(p_{1} \vee p_{2}, s\right)=0$. Since $A\left(p_{1} \vee p_{2}, s\right)>0, A\left(s, p_{1} \vee p_{2}\right)=0$, and hence $(A \times B)\left((s, t),\left(p_{1} \vee\right.\right.$ $\left.\left.p_{2}, q_{1} \vee q_{2}\right)\right)=0$. Thus
$(A \times B)\left(\left(p_{1} \vee p_{2}, q_{1} \vee q_{2}\right),(s, t)\right) \geq(A \times B)\left((s, t),\left(p_{1} \vee p_{2}, q_{1} \vee q_{2}\right)\right)$.
(iii) Suppose $t \neq q_{1} \vee q_{2}$. Then $B\left(t, q_{1} \vee q_{2}\right)=0$ or $B\left(q_{1} \vee q_{2}, t\right)=0$. Since $B\left(q_{1} \vee q_{2}, t\right)>0, B\left(t, q_{1} \vee q_{2}\right)=0$, and hence $(A \times B)\left((s, t),\left(p_{1} \vee\right.\right.$ $\left.\left.p_{2}, q_{1} \vee q_{2}\right)\right)=0$. Thus

$$
(A \times B)\left(\left(p_{1} \vee p_{2}, q_{1} \vee q_{2}\right),(s, t)\right) \geq(A \times B)\left((s, t),\left(p_{1} \vee p_{2}, q_{1} \vee q_{2}\right)\right) .
$$

From (i), (ii), and (iii),

$$
(A \times B)\left(\left(p_{1} \vee p_{2}, q_{1} \vee q_{2}\right),(s, t)\right) \geq(A \times B)\left((s, t),\left(p_{1} \vee p_{2}, q_{1} \vee q_{2}\right)\right) .
$$

Thus $\left(p_{1} \vee p_{2}, q_{1} \vee q_{2}\right)$ is the least upper bound of $\left\{\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right)\right\}$. That is, for every $\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right) \in P Q$, there exists the least upper bound $\left(p_{1} \vee p_{2}, q_{1} \vee q_{2}\right)$ of $\left\{\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right)\right\}$.

Let $\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right) \in P Q$. Then
$(A \times B)\left(\left(p_{1} \wedge p_{2}, q_{1} \wedge q_{2}\right),\left(p_{1}, q_{1}\right)\right)=\min \left[A\left(p_{1} \wedge p_{2}, p_{1}\right), B\left(q_{1} \wedge q_{2}, q_{1}\right)\right]>0$
and
$(A \times B)\left(\left(p_{1} \wedge p_{2}, q_{1} \wedge q_{2}\right),\left(p_{1}, q_{1}\right)\right) \geq \min \left[A\left(p_{1}, p_{1} \wedge p_{2}\right), B\left(q_{1}, q_{1} \wedge q_{2}\right)\right]$

$$
=(A \times B)\left(\left(p_{1}, q_{1}\right),\left(p_{1} \wedge p_{2}, q_{1} \wedge q_{2}\right)\right) .
$$

Similarly we may show that $(A \times B)\left(\left(p_{1} \wedge p_{2}, q_{1} \wedge q_{2}\right),\left(p_{2}, q_{2}\right)\right)>0$ and $(A \times B)\left(\left(p_{1} \wedge p_{2}, q_{1} \wedge q_{2}\right),\left(p_{2}, q_{2}\right)\right) \geq(A \times B)\left(\left(p_{2}, q_{2}\right),\left(p_{1} \wedge p_{2}, q_{1} \wedge q_{2}\right)\right)$.

Thus $\left(p_{1} \wedge p_{2}, q_{1} \wedge q_{2}\right)$ is a lower bound of $\left\{\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right)\right\}$. Let (v, w) be a lower bound of $\left\{\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right)\right\}$. Then $(A \times B)\left((v, w),\left(p_{1}, q_{1}\right)\right)>0$, $(A \times B)\left((v, w),\left(p_{1}, q_{1}\right)\right) \geq(A \times B)\left(\left(p_{1}, q_{1}\right),(v, w)\right),(A \times B)\left((v, w),\left(p_{2}, q_{2}\right)\right)>$ 0 , and $(A \times B)\left((v, w),\left(p_{2}, q_{2}\right)\right) \geq(A \times B)\left(\left(p_{2}, q_{2}\right),(v, w)\right)$.
Thus min $\left[A\left(v, p_{1}\right), B\left(w, q_{1}\right)\right]>0$ and $\min \left[A\left(v, p_{2}\right), B\left(w, q_{2}\right)\right]>0$. Since $A\left(v, p_{1}\right)>0$ and $A\left(v, p_{2}\right)>0, A\left(v, p_{1} \wedge p_{2}\right)>0$ by Proposition 2.5 (6). Since $B\left(w, q_{1}\right)>0$ and $B\left(w, q_{2}\right)>0, B\left(w, q_{1} \wedge q_{2}\right)>0$ by Proposition 2.5 (6). Thus
$(A \times B)\left((v, w),\left(p_{1} \wedge p_{2}, q_{1} \wedge q_{2}\right)\right)=\min \left[A\left(v, p_{1} \wedge p_{2}\right), B\left(w, q_{1} \wedge q_{2}\right)\right]>0$.
(i)' Suppose $v=p_{1} \wedge p_{2}$ and $w=q_{1} \wedge q_{2}$. Then
$(A \times B)\left((v, w),\left(p_{1} \wedge p_{2}, q_{1} \wedge q_{2}\right)\right)=(A \times B)\left(\left(p_{1} \wedge p_{2}, q_{1} \wedge q_{2}\right),(v, w)\right)=1$.
(ii)' Suppose $v \neq p_{1} \wedge p_{2}$. Then $A\left(p_{1} \wedge p_{2}, v\right)=0$ or $A\left(v, p_{1} \wedge p_{2}\right)=0$. Since $A\left(v, p_{1} \wedge p_{2}\right)>0, A\left(p_{1} \wedge p_{2}, v\right)=0$, and hence $(A \times B)\left(\left(p_{1} \wedge p_{2}, q_{1} \wedge\right.\right.$ $\left.\left.q_{2}\right),(v, w)\right)=0$. Thus

$$
(A \times B)\left((v, w),\left(p_{1} \wedge p_{2}, q_{1} \wedge q_{2}\right)\right) \geq(A \times B)\left(\left(p_{1} \wedge p_{2}, q_{1} \wedge q_{2}\right),(v, w)\right) .
$$

(iii)' Suppose $w \neq q_{1} \wedge q_{2}$. Then $B\left(q_{1} \wedge q_{2}, w\right)=0$ or $B\left(w, q_{1} \wedge q_{2}\right)=0$. Since $B\left(w, q_{1} \wedge q_{2}\right)>0, B\left(q_{1} \wedge q_{2}, w\right)=0$, and hence $(A \times B)\left(\left(p_{1} \wedge p_{2}, q_{1} \wedge\right.\right.$ $\left.\left.q_{2}\right),(v, w)\right)=0$. Thus

$$
(A \times B)\left((v, w),\left(p_{1} \wedge p_{2}, q_{1} \wedge q_{2}\right)\right) \geq(A \times B)\left(\left(p_{1} \wedge p_{2}, q_{1} \wedge q_{2}\right),(v, w)\right) .
$$

From (i)', (ii) ${ }^{\prime}$, and (iii) ${ }^{\prime}$,

$$
(A \times B)\left((v, w),\left(p_{1} \wedge p_{2}, q_{1} \wedge q_{2}\right)\right) \geq(A \times B)\left(\left(p_{1} \wedge p_{2}, q_{1} \wedge q_{2}\right),(v, w)\right) .
$$

Thus $\left(p_{1} \wedge p_{2}, q_{1} \wedge q_{2}\right)$ is the greatest lower bound of $\left\{\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right)\right\}$. That is, for every $\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right) \in P Q$, there exists the greatest lower bound $\left(p_{1} \wedge p_{2}, q_{1} \wedge q_{2}\right)$ of $\left\{\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right)\right\}$. Hence $(P Q, A \times B)$ is a fuzzy lattice.

References

[1] N. Ajmal and K. V. Thomas, Fuzzy lattices, Inform. Sci. 79 (1994), 271-291.
[2] I. Chon, Fuzzy partial order relations and fuzzy lattices, Korean J. Math. 17 (2009), 361-374.
[3] J. A. Goguen, L-fuzzy sets, J. Math. Anal. Appl. 18 (1967), 145-174.
[4] E. Sanchez, Resolution of composite fuzzy relation equation, Inform. and Control 30 (1976), 38-48.
[5] L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338-353.
[6] L. A. Zadeh, Similarity relations and fuzzy orderings, Inform. Sci. 3 (1971), 177-200.

Inheung Chon
Department of Mathematics
Seoul Women's University
Seoul 139-774, South Korea
E-mail: ihchon@swu.ac.kr

[^0]: Received August 28, 2015. Revised September 14, 2015. Accepted October 15, 2015.

 2010 Mathematics Subject Classification: 06B99.
 Key words and phrases: fuzzy partially ordered set, fuzzy lattice.
 This work was supported by a research grant from Seoul Women's University (2014).
 (c) The Kangwon-Kyungki Mathematical Society, 2015.

 This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

