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UNIFORMLY LIPSCHITZ STABILITY AND

ASYMPTOTIC PROPERTY OF PERTURBED

FUNCTIONAL DIFFERENTIAL SYSTEMS

Dong Man Im and Yoon Hoe Goo∗

Abstract. This paper shows that the solutions to the perturbed
functional differential system

y′ = f(t, y) +

∫ t

t0

g(s, y(s), T y(s))ds

have uniformly Lipschitz stability and asymptotic property. To
show these properties, we impose conditions on the perturbed part∫ t

t0
g(s, y(s), Ty(s))ds and the fundamental matrix of the unper-

turbed system y′ = f(t, y).

1. Introduction

Dannan and Elaydi introduced a new notion of uniformly Lipschitz
stability (ULS)[8]. This notion of ULS lies somewhere between uni-
formly stability on one side and the notions of asymptotic stability in
variation of Brauer[4] and uniformly stability in variation of Brauer and
Strauss[3] on the other side. An important feature of ULS is that for
linear systems, the notion of uniformly Lipschitz stability and that of
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uniformly stability are equivalent. However, for nonlinear systems, the
two notions are quite distinct. Also, Elaydi and Farran[9] introduced
the notion of exponential asymptotic stability(EAS) which is a stronger
notion than that of ULS. They investigated some analytic criteria for an
autonomous differential system and its perturbed systems to be EAS.
Pachpatte[15,16] investigated the stability and asymptotic behavior of
solutions of the functional differential equation. Gonzalez and Pinto[10]
proved theorems which relate the asymptotic behavior and boundedness
of the solutions of nonlinear differential systems. Choi et al.[7] examined
Lipschitz and exponential asymptotic stability for nonlinear functional
systems. Also, Goo[11,12] and Choi and Goo[5,6] and Goo et al.[13] in-
vestigated Lipschitz and asymptotic stability for perturbed differential
systems.

Our purpose in this paper will be to investigate ULS and asymptotic
property for solutions of the functional differential systems using integral
inequalities.

2. Preliminaries

We consider the nonautonomous differential system

x′ = f(t, x), x(t0) = x0, (2.1)

where f ∈ C(R+ × Rn,Rn), R+ = [0,∞) and Rn is the Euclidean n-
space. We assume that the Jacobian matrix fx = ∂f/∂x exists and is
continuous on R+×Rn and f(t, 0) = 0. Also, we consider the perturbed
functional differential system of (2.1)

y′ = f(t, y) +

∫ t

t0

g(s, y(s), T y(s))ds, y(t0) = y0, (2.2)

where g ∈ C(R+ × Rn × Rn,Rn), g(t, 0, 0) = 0, and T : C(R+,Rn) →
C(R+,Rn) is a continuous operator .

The symbol | · | will be used to denote any convenient vector norm
in Rn. For an n × n matrix A, define the norm |A| of A by |A| =
sup|x|≤1 |Ax|.

Let x(t, t0, x0) denote the unique solution of (2.1) with x(t0, t0, x0) =
x0, existing on [t0,∞). Then we can consider the associated variational
systems around the zero solution of (2.1) and around x(t), respectively,
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v′(t) = fx(t, 0)v(t), v(t0) = v0 (2.3)

and

z′(t) = fx(t, x(t, t0, x0))z(t), z(t0) = z0. (2.4)

The fundamental matrix Φ(t, t0, x0) of (2.4) is given by

Φ(t, t0, x0) =
∂

∂x0
x(t, t0, x0),

and Φ(t, t0, 0) is the fundamental matrix of (2.3).
We now give the following fundamental concept[8].

Definition 2.1. The system (2.1) (the zero solution x = 0 of (2.1))
is called
(S)stable if for any ε > 0 and t0 ≥ 0, there exists δ = δ(t0, ε) > 0 such
that if |x0| < δ , then |x(t)| < ε for all t ≥ t0 ≥ 0,
(US)uniformly stable if the δ in (S) is independent of the time t0,
(ULS) uniformly Lipschitz stable if there exist M > 0 and δ > 0 such
that |x(t)| ≤M |x0| whenever |x0| ≤ δ and t ≥ t0 ≥ 0
(ULSV) uniformly Lipschitz stable in variation if there exist M > 0 and
δ > 0 such that |Φ(t, t0, x0)| ≤M for |x0| ≤ δ and t ≥ t0 ≥ 0,
(EAS) exponentially asymptotically stable if there exist constants K > 0
, c > 0, and δ > 0 such that

|x(t)| ≤ K |x0|e−c(t−t0), 0 ≤ t0 ≤ t

provided that |x0| < δ,
(EASV) exponentially asymptotically stable in variation if there exist
constants K > 0 and c > 0 such that

|Φ(t, t0, x0)| ≤ K e−c(t−t0), 0 ≤ t0 ≤ t

provided that |x0| <∞.

Remark 2.2. [10] The last definition implies that for |x0| ≤ δ

|x(t)| ≤ K |x0|e−c(t−t0), 0 ≤ t0 ≤ t.

For the proof we prepare some related properties.
We need Alekseev formula to compare between the solutions of (2.1)

and the solutions of perturbed nonlinear system

y′ = f(t, y) + g(t, y), y(t0) = y0, (2.5)
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where g ∈ C(R+×Rn,Rn) and g(t, 0) = 0. Let y(t) = y(t, t0, y0) denote
the solution of (2.5) passing through the point (t0, y0) in R+ × Rn.

The following is a generalization to nonlinear system of the variation
of constants formula due to Alekseev [1].

Lemma 2.3. [2] Let x and y be a solution of (2.1) and (2.5), re-
spectively. If y0 ∈ Rn, then for all t ≥ t0 such that x(t, t0, y0) ∈ Rn,
y(t, t0, y0) ∈ Rn,

y(t, t0, y0) = x(t, t0, y0) +

∫ t

t0

Φ(t, s, y(s)) g(s, y(s)) ds.

Lemma 2.4. (Bihari-type inequality) Let u, λ ∈ C(R+), w ∈ C((0,∞))
and w(u) be nondecreasing in u. Suppose that, for some c > 0,

u(t) ≤ c+

∫ t

t0

λ(s)w(u(s))ds, t ≥ t0 ≥ 0.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

λ(s)ds
]
,

where t0 ≤ t < b1, W (u) =
∫ u
u0

ds
w(s)

, W−1(u) is the inverse of W (u), and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

λ(s)ds ∈ domW−1
}
.

Lemma 2.5. [5] Let u, λ1, λ2, λ3, λ4, λ5, λ6 ∈ C(R+), w ∈ C((0,∞))
and w(u) be nondecreasing in u, u ≤ w(u). Suppose that for some c > 0,

u(t) ≤ c+

∫ t

t0

λ1(s)u(s)ds+

∫ t

t0

λ2(s)w(u(s))ds

+

∫ t

t0

λ3(s)

∫ s

t0

λ4(τ)u(τ)dτds

+

∫ t

t0

λ5(s)

∫ s

t0

λ6(τ)w(u(τ))dτds, 0 ≤ t0 ≤ t.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(
λ1(s) + λ2(s) + λ3(s)

∫ s

t0

λ4(τ)dτ

+λ5(s)

∫ s

t0

λ6(τ)dτ
)
ds
]
,
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where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 2.4,
and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

(
λ1(s) + λ2(s) + λ3(s)

∫ s

t0

λ4(τ)dτ

+λ5(s)

∫ s

t0

λ6(τ)dτ
)
ds ∈ domW−1

}
.

For the proof we need the following corollary from Lemma 2.5.

Corollary 2.6. Let u, λ1, λ2, λ3, λ4 ∈ C(R+), w ∈ C((0,∞)) and
w(u) be nondecreasing in u, u ≤ w(u). Suppose that for some c > 0 and
0 ≤ t0 ≤ t,

u(t) ≤ c+

∫ t

t0

λ1(s)u(s)ds+

∫ t

t0

λ2(s)w(u(s))ds

+

∫ t

t0

λ3(s)

∫ s

t0

λ4(τ)u(τ)dτds.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(
λ1(s) + λ2(s) + λ3(s)

∫ s

t0

λ4(τ)dτ
)
ds
]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 2.4,
and

b1 = sup
{
t ≥ t0 : W (c)

+

∫ t

t0

(
λ1(s) + λ2(s) + λ3(s)

∫ s

t0

λ4(τ)dτ
)
ds ∈ domW−1

}
.

Lemma 2.7. [12] Let u, λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8 ∈ C(R+), w ∈
C((0,∞)), and w(u) be nondecreasing in u, u ≤ w(u). Suppose that
for some c > 0 and 0 ≤ t0 ≤ t,

u(t) ≤ c+
∫ t
t0
λ1(s)u(s)ds+

∫ t
t0
λ2(s)w(u(s))ds+

∫ t
t0
λ3(s)

∫ s
t0

(λ4(τ)u(τ)

+λ5(τ)
∫ τ
t0
λ6(r)u(r)dr)dτds+

∫ t
t0
λ7(s)

∫ s
t0
λ8(τ)w(u(τ))dτds.

Then

u(t) ≤ W−1
[
W (c) +

∫ t
t0

(
λ1(s) + λ2(s) + λ3(s)

∫ s
t0

(λ4(τ)

+λ5(τ)
∫ τ
t0
λ6(r)dr)dτ + λ7(s)

∫ s
t0
λ8(τ)dτ

)
ds
]
,
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where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 2.4,
and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t
t0

(
λ1(s) + λ2(s) + λ3(s)

∫ s
t0

(λ4(τ)

+λ5(τ)
∫ τ
t0
λ6(r)dr)dτ + λ7(s)

∫ s
t0
λ8(τ)dτ

)
ds ∈ domW−1

}
.

For the proof we need the following corollary from Lemma 2.7.

Corollary 2.8. Let u, λ1, λ2, λ3, λ4, λ5, λ6,∈ C(R+), w ∈ C((0,∞)),
and w(u) be nondecreasing in u, u ≤ w(u). Suppose that for some c > 0
and 0 ≤ t0 ≤ t,

u(t) ≤ c+
∫ t
t0
λ1(s)

∫ s
t0

(λ2(τ)u(τ) + λ3(τ)
∫ τ
t0
λ4(r)u(r)dr)dτds

+
∫ t
t0
λ5(s)

∫ s
t0
λ6(τ)w(u(τ))dτds.

Then

u(t) ≤ W−1
[
W (c) +

∫ t
t0

(
λ1(s)

∫ s
t0

(λ2(τ) + λ3(τ)
∫ τ
t0
λ4(r)dr)dτ

+λ5(s)
∫ s
t0
λ6(τ)dτ

)
ds
]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 2.4,
and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t
t0

(
λ1(s)

∫ s
t0

(λ2(τ) + λ3(τ)
∫ τ
t0
λ4(r)dr)dτ

+λ5(s)
∫ s
t0
λ6(τ)dτ

)
ds ∈ domW−1

}
.

Theorem 2.9. [13] Suppose that x = 0 of (2.1) is ULS. Let the fol-
lowing condition hold for (2.2):∫ t

t0

|g(s, y(s), T y(s))|ds ≤ W (t, |y|, T |y|),

where 0 ≤ t0 ≤ t, W (t, u, v) ∈ C(R+ × R+ × R+,R+) is monotone
nondecreasing in u and v for each fixed t ≥ 0 with W (t, 0, 0) = 0.
Assume that u(t) is any the solution of the scalar differential equation

u′(t) = KW (t, u, Tu), u(t0) = u0 > 0, K ≥ 1, (2.6)

existing on R+ such that |y(t0)| < u(t0). If u = 0 of (2.6) is ULS, then
y = 0 of (2.2) is also ULS whenever K|y0| < u0.
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3. Main Results

In this section, we investigate uniformly Lipschitz stability and as-
ymptotic property for solutions of the perturbed functional differential
systems.

Theorem 3.1. For the perturbed (2.2), we assume that

|g(t, y, Ty)| ≤ a(t)|y(t)|+ b(t)w(|y(t)|) + |Ty(t)| (3.1)

and

|Ty(t)| ≤ c(t)

∫ t

t0

k(s)|y(s)|ds (3.2)

where a, b, c, k ∈ C(R+), a, b, c, k, w ∈ L1(R+), w ∈ C((0,∞)), and w(u)
is nondecreasing in u, u ≤ w(u), and 1

v
w(u) ≤ w(u

v
) for some v > 0,

M(t0) = W−1
[
W (M)+M

∫ ∞
t0

∫ s

t0

(
a(τ)+b(τ)+c(τ)

∫ τ

t0

k(r)dr
)
dτds

]
,

(3.3)
where M(t0) < ∞ and b1 = ∞. If the zero solution of (2.1) is ULSV,
then the zero solution of (2.2) is ULS.

Proof. Using the nonlinear variation of constants formula of Alek-
seev[1], the solutions of (2.1) and (2.2) with the same initial value are
related by

y(t, t0, y0) = x(t, t0, y0) +

∫ t

t0

Φ(t, s, y(s))

∫ s

t0

g(τ, y(τ), T y(τ))dτds.

Since x = 0 of (2.1) is ULSV, it is ULS([8],Theorem 3.3). Using the
ULSV condition of x = 0 of (2.1), together with (3.1) and (3.2), we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∫ s

t0

|g(τ, y(τ), T y(τ))|dτds

≤M |y0|+
∫ t

t0

M |y0|
∫ s

t0

(
a(τ)
|y(τ)|
|y0|

+ b(τ)w(
|y(τ)|
|y0|

)

+c(τ)

∫ τ

t0

k(r)
|y(r)|
|y0|

dr
)
dτds.

Set u(t) = |y(t)||y0|−1. Then an application of Corollary 2.8 yields

|y(t)| ≤ |y0|W−1
[
W (M) +M

∫ t

t0

∫ s

t0

(
a(τ) + b(τ) + c(τ)

∫ τ

t0

k(r)dr
)
dτds

]
,
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Thus, by (3.3), we have |y(t)| ≤M(t0)|y0| for some M(t0) > 0 whenever
|y0| < δ. Hence, the proof is complete.

Remark 3.2. Letting a(t) = 0 in Theorem 3.1, we obtain the same
result as that of Theorem 3.6 in [13].

Theorem 3.3. For the perturbed (2.2), we assume that∫ t

t0

|g(s, y(s), T y(s))|ds ≤ a(t)|y(t)|+ b(t)w(|y(t)|) + |Ty(t)| (3.4)

and

|Ty(t)| ≤ c(t)

∫ t

t0

k(s)|y(s)|ds (3.5)

where a, b, c, k ∈ C(R+), a, b, c, k, w ∈ L1(R+), w ∈ C((0,∞)), T is a
continuous operator, and w(u) is nondecreasing in u, u ≤ w(u), and
1
v
w(u) ≤ w(u

v
) for some v > 0,

M(t0) = W−1
[
W (M)+M

∫ ∞
t0

(
a(s)+b(s)+c(s)

∫ s

t0

k(τ)dτ
)
ds
]
, (3.6)

where M(t0) < ∞ and b1 = ∞. If the zero solution of (2.1) is ULSV,
then the zero solution of (2.2) is ULS.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(2.1) and (2.2), respectively. Since x = 0 of (2.1) is ULSV, it is ULS .
Applying Lemma 2.3, together with (3.4) and (3.5), we have

|y(t)| ≤M |y0|+
∫ t

t0

M |y0|[a(s)
|y(s)|
|y0|

+ b(s)w(
|y(s)|
|y0|

)]ds

+

∫ t

t0

M |y0|c(s)
∫ s

t0

k(τ)
|y(τ)|
|y0|

dτds.

Defining u(t) = |y(t)||y0|−1, then it follows from Corollary 2.6 that

|y(t)| ≤ |y0|W−1
[
W (M) +M

∫ t

t0

(
a(s) + b(s) + c(s)

∫ s

t0

k(τ)dτ
)
ds
]
.

Hence, by (3.6), we have |y(t)| ≤M(t0)|y0| for some M(t0) > 0 whenever
|y0| < δ. This completes the proof.

Remark 3.4. Letting a(t) = 0 in Theorem 3.3, we obtain the same
result as that of Theorem 3.5 in [13].
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To obtain ULS and asymptotic property, the following assumptions are
needed:

(H1) The solution x = 0 of (2.1) is EASV.
(H2) w(u) is nondecreasing in u, u ≤ w(u).

Theorem 3.5. Suppose that (H1), (H2), and the perturbing term
g(t, y, Ty) satisfies

|g(t, y(t), T y(t))| ≤ e−αt
(
a(t)|y(t)|+ b(t)w(|y(t)|) + |Ty(t)|

)
(3.7)

and

|Ty(t)| ≤ c(t)

∫ t

t0

k(s)|y(s)|ds (3.8)

where α > 0, a, b, c, k ∈ C(R+), a, b, c, k, w ∈ L1(R+), w ∈ C((0,∞)), T
is a continuous operator. If

M(t0) = W−1
[
W (c) +M

∫ ∞
t0

eαs
∫ s

t0

(
a(τ) + b(τ) + c(τ)

∫ τ

t0

k(r)dr
)
dτds

]
<∞,

(3.9)

where t ≥ t0 and c = |y0|Meαt0 , then all solutions of (2.2) approach
zero as t→∞

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(2.1) and (2.2), respectively. Since the solution x = 0 of (2.1) is EASV,
it is EAS by Remark 2.2. Using Lemma 2.3, together with (3.7) and
(3.8), we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
∫ s

t0

|g(τ, y(τ), T y(τ))|dτds

≤M |y0|e−α(t−t0) +

∫ t

t0

Me−α(t−s)
∫ s

t0

e−ατ
(
a(τ)|y(τ)|

+b(τ)w(|y(τ)|) + c(τ)

∫ τ

t0

k(r)|y(r)|dr
)
dτds.

It follows from (H2) that

|y(t)| ≤M |y0|e−α(t−t0) +

∫ t

t0

Me−α(t−s)
∫ s

t0

(
a(τ)|y(τ)|eατ

+b(τ)w(|y(τ)|eατ ) + c(τ)

∫ τ

t0

k(r)|y(r)|eαrdr
)
dτds.
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Set u(t) = |y(t)|eαt. An application of Corollary 2.8 and (3.9) yields

|y(t)| ≤ ce−αtW−1[
W (c) +M

∫ t

t0

eαs
∫ s

t0

(
a(τ) + b(τ) + c(τ)

∫ τ

t0

k(r)dr
)
dτds

]
≤ ce−αtM(t0),

where t ≥ t0 and c = M |y0|eαt0 . Hence, all solutions of (2.2) approach
zero as t→∞.

Remark 3.6. Letting b(t) = 0 in Theorem 3.5, we obtain the same
result as that of Theorem 3.8 in [13].

Theorem 3.7. Suppose that (H1), (H2), and the perturbed term
g(t, y, Ty) satisfies∫ t

t0

|g(s, y(s), T y(s))|ds ≤ e−αt
(
a(t)|y(t)|+ b(t)w(|y(t)|) + |Ty(t)|

)
,

(3.10)
and

|Ty(t)| ≤ c(t)

∫ t

t0

(
k(s)|y(s)|+ q(s)w(|y(s)|)

)
ds (3.11)

where α > 0, a, b, c, k, w ∈ C(R+), a, b, c, k, w ∈ L1(R+), T is a continu-
ous operator. If

M(t0) = W−1
[
W (c) +M

∫ ∞
t0

(
a(s) + b(s) + c(s)

∫ s

t0

(k(τ) + q(τ))dτ
)
ds
]

<∞,
(3.12)

where b1 = ∞ and c = M |y0|eαt0 , then all solutions of (2.2) approach
zero as t→∞

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(2.1) and (2.2), respectively. Since the solution x = 0 of (2.1) is EASV,
it is EAS. Using Lemma 2.3, together with (3.10) and (3.11), we have

|y(t)| ≤M |y0|e−α(t−t0) +

∫ t

t0

Me−α(t−s)
(
e−αs(a(s)|y(s)|+ b(s)w(|y(s)|))

+c(s)

∫ s

t0

(k(τ)|y(τ)|+ q(τ)w(|y(τ)|))dτ)
)
ds.
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By the assumption (H2), we obtain

|y(t)| ≤M |y0|e−α(t−t0) +

∫ t

t0

Me−αt
(
a(s)|y(s)|eαs + b(s)w(|y(s)|eαs)

+c(s)

∫ s

t0

(k(τ)|y(τ)|eατ + q(τ)w(|y(τ)|eατ ))dτ
)
ds.

Set u(t) = |y(t)|eαt. Then, an application of Lemma 2.5 and (3.12)
obtains

|y(t)| ≤ e−αtW−1
[
W (c) +M

∫ t

t0

(
a(s) + b(s) + c(s)

∫ s

t0

(k(τ) + q(τ))dτ
)
ds
]

≤ e−αtM(t0),

where c = M |y0|eαt0 . Therefore, all solutions of (2.2) approach zero as
t→∞.

Remark 3.8. Letting a(t) = k(t) = 0 in Theorem 3.7, we obtain the
same result as that of Theorem 3.7 in [13].

Theorem 3.9. Suppose that x = 0 of (2.1) is ULS and (H2). Consider
the scalar differential equation

u′(t) = KW (t, u, Tu) = K
(
a(t)u(t) + b(t)w(u(t)) + c(t)

∫ t

t0

k(s)u(s)ds
)
,

(3.13)
where w ∈ C((0,∞), u(t0) = u0 ≥ 1, K ≥ 1 and a, b, c, k ∈ C(R+)
satisfy the conditions:
(a)

∫ t
t0
|g(s, y(s), T y(s))|ds ≤ W (t, |y|, T |y|),where

∫ t
t0
g(s, y(s), T y(s))ds

is in (2.2),
(b) M(t0) = W−1[W (u0) + K

∫∞
t0

(a(s) + b(s) + c(s)
∫ s
t0
k(τ)dτ)ds] <∞,

b1 =∞, and a, b, c, k, w ∈ L1(R+). Then, y = 0 of (2.2) is ULS.

Proof. Let u(t) = u(t, t0, u0) be any solution of (3.13). Then, by
Corollary 2.6, we obtain

|u(t)| ≤ W−1
[
W (u0) +K

∫ t

t0

(
a(s) + b(s) + c(s)

∫ s

t0

k(τ)dτ
)
ds)
]

≤M(t0) ≤M(t0)|u0|,

Hence u = 0 of (3.13) is ULS. This implies that the solution y = 0 of
(2.2) is ULS by Theorem 2.9.
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Remark 3.10. Letting a(t) = 0 in Theorem 3.9, we obtain the same
result as that of Corollary 3.4 in [13].

Acknowledgement. The authors are very grateful for the referee’s
valuable comments.
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