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DISTANCE TWO LABELING ON THE SQUARE OF A

CYCLE

Xiaoling Zhang

Abstract. An L(2, 1)-labeling of a graph G is a function f from
the vertex set V (G) to the set of all non-negative integers such that
|f(u)− f(v)| ≥ 2 if d(u, v) = 1 and |f(u)− f(v)| ≥ 1 if d(u, v) = 2.
The λ-number of G, denoted λ(G), is the smallest number k such
that G admits an L(2, 1)-labeling with k = max{f(u)|u ∈ V (G)}.
In this paper, we consider the square of a cycle and provide exact
value for its λ-number. In addition, we also completely determine
its edge span.

1. Introduction

The notion of L(2, 1)-labeling was proposed by Griggs and Yeh [6],
which arose from a variation of the channel assignment problem intro-
duced by Hale [8]. Suppose we are given a number of transmitters or
stations. The L(2, 1)-labeling problem is to assign frequencies (non-
negative integers) to the transmitters so that “close” transmitters must
receive different frequencies and “very close” transmitters must receive
frequencies that are at least two frequencies apart.
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To formulate the problem in graphs, the transmitters are represented
by the vertices of a graph; two vertices are “very close” if they are
adjacent in the graph and “close” if they are of distance two in the
graph. More precisely, an L(2, 1)-labeling of a graph G is a function f
from the vertex set V (G) to the set of all non-negative integers such that
|f(u) − f(v)| ≥ 2 if d(u, v) = 1 and |f(u) − f(v)| ≥ 1 if d(u, v) = 2.
The λ-number of G, denoted λ(G), is the smallest number k such that
G admits an L(2, 1)-labeling with k = max{f(u)|u ∈ V (G)}. If an
L(2, 1)-labeling uses labels in the set {0, 1, · · · , k}, it will be called an
k-L(2, 1)-labeling.

The L(2, 1)-labeling problem has been widely studied over the past
decades [4, 5, 16]. Griggs and Yeh showed that the general problem
of determining λ-number of a graph is NP-complete; Moreover, this
problem remains NP-complete even for graphs with diameter two [6].
So it is not possible to compute λ-number of a graph in polynomial time
unless P = NP. Therefore, the problem has been studied for many special
classes of graphs, such as regular grids [1, 2], product graphs [10, 14],
trees [4, 18], planar graphs [17], generalized flowers [11], permutation
and bipartite permutation graphs [15] and so on. For more details, one
may refer to the surveys [3, 19].

The r-th power of a graph G, denoted Gr, is a graph on the same
vertex set such that two vertices are joined by an edge if and only if
their distance in G is at most r. In particular, we also call the 2-th
power as the square. In [13], Kohl studied the L(d, 1)-labeling of r-th
power of a cycle for all r ∈ N+ and d ≥ 3. However, he did not obtain
the exact λ-number of r-th power of a cycle even for r = 2. Hence
the problem of determining λ-number of r-th power of a cycle is clearly
welcome.

A lot of variants other than L(2, 1)-labeling problem have been also
introduced, e.g., optimize the number of effectively used colors [8], con-
sider the color set as a cyclic interval [9], use a more general model in
which the labels and separations are real numbers [7], minimize the edge
span [20], and so on. The L(2, 1) edge span of a graph G, denoted β(G),
is defined to be the minimum of β(G, f) over all the L(2, 1)-labelings f
of G, where β(G, f) = max{|f(u)− f(v)| : uv ∈ E(G)}.

In this paper, we provide exact λ-number for the square of a cycle. In
addition, we also completely determine its edge span. The main results
are the following two theorems, which will be proved in Sections 2 and
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3 respectively.

Theorem 2.6 Let n ≥ 4. We have

λ(C2
n) =

 6, if n = 4 or n ≡ 0(mod 7),
8, if n ∈ {5, 9, 10, 11, 17},
7, otherwise.

Theorem 3.3 Let n ≥ 4. Then β(C2
n) = 5 if and only if the sys-

tem of equations and an inequality has a non-negative integer solution.
Otherwise, β(C2

n) = 6. 
5x3 = 2x1 + 3x2,

n = x1 + x2 + x3,

x1 ≥ x2 + x3 + 2.

2. The λ-number of the square of a cycle

Let Cn = v1v2 · · · vnv1 be a cycle of length n and C2
n be the square of

Cn. Throughout this article, we always think that subscripts are taken
modulo n. For simplicity, we refer to v(i+k)(mod n) as v(i+k).

The following result constitutes a useful lower bound.

Lemma 2.1. [6] Let G be a k-regular graph with k ≥ 2. Then λ(G) ≥
k + 2.

Given an k-L(2, 1)-labeling f of C2
n, let Li = {v ∈ V (C2

n)|f(v) = i}
and li be the cardinality of Li. It is not hard to see that li ≤ bn5 c for

0 ≤ i ≤ k and
∑k

i=0 li = n.

Lemma 2.2. Let n ∈ {5, 9, 10, 11, 17}. Then λ(C2
n) = 8.

Proof. Clearly, λ(C2
5) = λ(K5) = 8, where K5 is a complete graph

with 5 vertices.
For the case n = 9, the labels on V (C2

9) are pairwisely distinct since
d(u, v) ≤ 2 for u, v ∈ V (C2

9). This gives that λ(C2
9) ≥ 8. Furthermore,

[0, 4, 6, 8, 3, 1, 5, 7, 2] is an 8-L(2, 1)-labeling of C2
9 , which implies λ(C2

9) ≤
8. Therefore λ(C2

9) = 8.
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For the case n = 10, let f be an 7-L(2, 1)-labeling of C2
10.

Firstly, we find that li ≤ b105 c = 2 for each label i. Next, if li = 2,
then li−1 = li+1 = 0 (if i− 1 or i + 1 exist). Thus we have li + li+1 ≤ 2
for 0 ≤ i ≤ 6. So

∑7
i=0 li ≤ 8, which is a contradiction to

∑7
i=0 li = 10.

This shows that λ(C2
10) ≥ 8. On the other hand, [0, 2, 4, 6, 8, 0, 2, 4, 6, 8]

is an 8-L(2, 1)-labeling of C2
10. Hence λ(C2

10) = 8.
Now we consider the case n = 11. Let f be an 7-L(2, 1)-labeling of

C2
11.
Then li ≤ b115 c = 2 for each label i. Furthermore, if li = 2 for

1 ≤ i ≤ 6, then li−1 + li+1 ≤ 1; And if li = 2 and li±1 = 1, then li±2 ≤ 1.
Thus li−1 + li + li+1 ≤ 3 for 1 ≤ i ≤ 6; l0 + l1 + l2 ≤ 4 and l5 + l6 + l7 ≤ 4.
So

∑7
i=0 li ≤ 10, which is again a contradiction. Therefore λ(C2

11) ≥ 8.
Since [0, 2, 5, 7, 3, 0, 8, 5, 1, 3, 6] is an 8-L(2, 1)-labeling of C2

11, this implies
λ(C2

11) ≤ 8. Therefore λ(C2
11) = 8.

Finally, we treat the case when n = 17. Let f be an 7-L(2, 1)-labeling
of C2

17.
Now, it is straightforward to check that the following facts hold:
Fact 1. li ≤ b175 c = 3 for each label i.
Fact 2. If li = 3, then li−1 ≤ 2 and li+1 ≤ 2 (if i− 1 or i+ 1 exist).
Fact 3. If li = 3 for 1 ≤ i ≤ 6, then li−1 + li+1 ≤ 2.
Fact 4. If li = 3 and li±1 = 2, then li±2 ≤ 1.

By Fact 1 and Fact 2, we have |{i : li = 3}| ≤ 4.
Now let |{i : li = 3}| = 4. Then {i : li = 3} ∩ {0, 7} 6= ∅ and

there must exist some label i ∈ {0, 1, · · · , 7}\{i : li = 3} such that
li = 2. Otherwise,

∑7
i=0 li ≤ 4 · 3 + 4 · 1 = 16. Without loss of gen-

erality, we assume that 0 ∈ {i : li = 3}. The only possible cases are
{i : li = 3} = {0, 2, 4, 6}, {0, 2, 4, 7}, {0, 2, 5, 7} or {0, 3, 5, 7}. Ac-
cording to Fact 3 and Fact 4, we can check that it is impossible for
{0, 2, 4, 6} or {0, 2, 5, 7}. Now if {i : li = 3} = {0, 2, 4, 7} or {0, 3, 5, 7},
then we leave (l0, l1, · · · , l7) = (3, 1, 3, 1, 3, 1, 2, 3) or (l0, l1, · · · , l7) =
(3, 2, 1, 3, 1, 3, 1, 3). Now, we will prove that above two cases are impos-
sible.

For (l0, l1, · · · , l7) = (3, 1, 3, 1, 3, 1, 2, 3), without loss of generality, let
f(v1) = 7. Then f(v6) = f(v11) = 7 or f(v6) = f(v12) = 7. But l6 = 2,
so f(v1) = f(v6) = f(v12) = 7 and f(v9) = f(v15) = 6. Since l4 = 3,
we have f(v2) = 5 or f(v4) = 5. Actually, f(v2) = 5 and f(v4) = 5 are
symmetrical in this case. So we only need to consider f(v2) = 5. Thus,
f(v5) = f(v10) = f(v16) = 4, f(v13) = 3 or f(v5) = f(v11) = f(v16) =
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4, f(v8) = 3. Now there are no proper positons for the label 2 due to l2 =
3. Therefore, it is impossible for (l0, l1, · · · , l7) = (3, 1, 3, 1, 3, 1, 2, 3). An
similar argument can be made for (l0, l1, · · · , l7) = (3, 2, 1, 3, 1, 3, 1, 3).

This implies |{i : li = 3}| ≤ 3. On the other hand, |{i : li = 3}| ≥ 1,
otherwise

∑7
i=0 li ≤ 2 · 8 = 16. Now, let xk be the cardinality of {i : li =

k}. Then we have

(1)


x0 + x1 + x2 + x3 = 8,

x1 + 2x2 + 3x3 = 17,

1 ≤ x3 ≤ 3.

Thus the system of equations and an inequality in (1) have the fol-
lowing solutions: (x0, x1, x2, x3) = (0, 0, 7, 1), (1, 0, 4, 3), (0, 1, 5, 2) or
(0, 2, 3, 3). It follows from Fact 3 and Fact 4 that all the solutions are
impossible. Hence λ(C2

17) ≥ 8. On the other hand, [0, 2, 4, 6, 8, 0, 2, 4,
6, 8, 0, 2, 4, 6, 1, 3, 5] is an 8-L(2, 1)-labeling of C2

17. Therefore, λ(C2
17) =

8.

Lemma 2.3. Let f be an L(2, 1)-labeling of C2
n. Then the following

two statements will not occur:
(i) There are three consecutive labels or two pairs of consecutive labels

on four consecutive vertices on Cn.
(ii) There are five consecutive labels on five consecutive vertices on

Cn.

Proof. (i) Suppose that there are four consecutive vertices, say vi,
v(i+1), v(i+2) and v(i+3), such that {a, a + 1, a + 2} ⊆ {f(vi), f(v(i+1)),
f(v(i+2)), f(v(i+3))}, where a ∈ N. If f(vi) = a, this implies f(v(i+3)) =
a + 1. But there is no proper position for a + 2 on v(i+1) and v(i+2), a
contradiction. If f(v(i+1)) = a, then there is no proper position for a+ 1
on vi, v(i+2) and v(i+3), again a contradiction. By the symmetry of vi and
v(i+3), v(i+1) and v(i+2), we have the result follow.

Similarly, let a, a + 1 and b, b + 1 be two pairs of consecutive labels.
And {f(vi), f(vi+1), f(vi+2), f(vi+3)} = {a, a + 1, b, b + 1}. In this case,
if f(vi) = a, then f(v(i+3)) = a+ 1, but we leave {f(v(i+1)), f(v(i+2))} =
{b, b + 1}, a contradiction. If f(v(i+1)) = a, then there is no proper
position for a+ 1, a contradiction.

(ii) Suppose that there are five consecutive vertices, say vi, v(i+1), v(i+2),
v(i+3) and v(i+4), such that {a, a+ 1, a+ 2, a+ 3, a+ 4} = {f(vi), f(vi+1),
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f(vi+2), f(vi+3), f(v(i+4))}, where a ∈ N. By the symmetry of vi and
v(i+4), v(i+1) and v(i+3), we only need to consider the following cases.

Case 1. f(vi) = a, then we derive f(v(i+3)) = a + 1 or f(v(i+4)) =
a + 1. Now, if f(v(i+3)) = a + 1, then there is no proper position
for a + 2. If f(v(i+4)) = a + 1, then f(v(i+2)) = a + 2, thus we leave
{f(v(i+1)), f(v(i+3))} = {a+ 3, a+ 4}, a contradiction.

Case 2. f(v(i+1)) = a, then f(v(i+4)) = a + 1. But now there is no
proper position for a+ 2, a contradiction.

Case 3. f(v(i+2)) = a, then there is no proper position for a + 2, a
contradiction.

Therefore we complete the proof.

Lemma 2.4. Let f be an 6-L(2, 1)-labeling of C2
n such that f(vi) =

f(vj) = k, where 0 ≤ k ≤ 6. Then |i− j| ≥ 7.

Proof. Notice that |i− j| ≥ 5 by the definition of L(2, 1)-labeling.
If |i−j| = 5, we may assume j = i+5. In the case, if k = 0 or 6, then

{(f(v(i+1)), f(v(i+2)), f(v(i+3)), f(v(i+4))} ⊆ {2, 3, 4, 5, 6} or {0,1,2,3,4}.
If k ∈ {1, 2, 3, 4, 5}, then {f(v(i+1)), f(v(i+2)), f(v(i+3)), f(v(i+4))} =
{0, 1, · · · , 6}\{k−1, k, k+1}. For the two cases, there always exist three
consecutive labels or two pairs of consecutive labels on v(i+1), v(i+2), v(i+3)

and v(i+4). But this is impossible in view of Lemma 2.3. Therefore, we
have |i− j| ≥ 6.

Next, if |i − j| = 6, suppose that j = i + 6. We have the following
three cases.

Case 1. k = 0. In the case, if f(v(i+3)) = 1, then we obtain a
labeling [0, 5, 3, 1, 6, 4, 0] on vi, v(i+1), · · · , v(i+6). Thus f(v(i+7)) = 2 and
f(v(i+8)) = 5, but now no label can be assigned to the vertex v(i+9). If
f(v(i+3)) 6= 1, then {f(v(i+1)), f(v(i+2)), f(v(i+3)), f(v(i+4)), f(v(i+5))} =
{2, 3, 4, 5, 6}. According to Lemma 2.3, it is impossible. By symmetry,
we can show for k = 6.

Case 2. k = 1. If f(v(i+3)) = 0, then we have a labeling [1, 5, 3, 0, 6, 4, 1]
on vi, v(i+1), · · · , v(i+6), but now no label can be assigned to the ver-
tex v(i+7). If f(v(i+3)) 6= 0, then {f(v(i+1)), f(v(i+2)), f(v(i+3)), f(v(i+4)),
f(v(i+5))} = {2, 3, 4, 5, 6}, again a contradiction to Lemma 2.3. By sym-
metry, it is proved similarly for k = 5.

Case 3. k ∈ {2, 3, 4}. If f(v(i+3)) = k − 1 or k + 1, then {f(v(i+1)),
f(v(i+2)), f(v(i+4)), f(v(i+5))} ⊆ {0, 1, · · · , 6}\{k, k − 1, k, k + 1} or
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{0, 1, · · · , 6}\{k − 1, k, k + 1, k + 2}. Otherwise, {f(v(i+1)), f(v(i+2)),
f(v(i+3)), f(v(i+4)), f(v(i+5))} ⊆ {0, 1, · · · , 6}\{k − 1, k, k + 1}. Both of
the cases are impossible.

Hence |i− j| ≥ 7. �

Given an 6-L(2, 1)-labeling f of C2
n, then by Lemma 2.4, it is easy to

see that li ≤ bn7 c for 0 ≤ i ≤ 6.

Theorem 2.5. If n 6= 0(mod 7) and n ≥ 8, then λ(C2
n) ≥ 7.

Proof. Without loss of generality , we assume that n = 7k + i, where
1 ≤ i ≤ 6.

Suppose for contradiction that there is an 6-L(2, 1)-labeling f of C2
n.

Then by Lemma 2.4, li ≤ bn7 c = k for 0 ≤ i ≤ 6. This implies 7k+i ≤ 7k,
a contradiction.

Hence λ(C2
n) ≥ 7 when n 6= 0(mod 7) and n ≥ 8.

Theorem 2.6. Let n ≥ 4. We have

λ(C2
n) =

 6, if n = 4 or n ≡ 0(mod 7),
8, if n ∈ {5, 9, 10, 11, 17},
7, otherwise.

Proof. For n = 4, λ(C2
4) = λ(K4) = 6, where K4 is a complete graph

with 4 vertices. If n = 0(mod 7), without loss of generality, let n = 7k.
Then we can repeat the sequence [4, 2, 0, 5, 3, 1, 6] k times. This implies
that λ(C2

n) ≤ 6. On the other hand, λ(C2
n) ≥ 6 due to Lemma 2.1, by

the fact that C2
n is a 4-regular graph. Thus we conclude that λ(C2

n) = 6,
if n = 4 or n = 0(mod 7).

If n 6= 0(mod 7), we may assume n = 7k + i, where 1 ≤ i ≤ 6. We
have two cases as follows.

Case 1. If k ≥ i, then we take the sequence [4, 2, 0, 5, 7, 3, 1, 6] i times
and follow by the sequence [4, 2, 0, 5, 3, 1, 6] (k− i) times repeated. Thus
λ(C2

n) ≤ 7. Furthermore, λ(C2
n) ≥ 7 follows by Theorem 2.5. Therefore

λ(C2
n) = 7.
Case 2. If k < i, we can rewrite n = 7k+ i = 6k+(k+ i) = j(mod 6),

where 0 ≤ j ≤ 5.
Subcase 2.1. If k + i ≥ 6, then j ≤ k. We repeat the sequence

[1, 3, 7, 0, 4, 6] (k − j + 1) times and [1, 3, 5, 7, 0, 4, 6] j times. Again by
Theorem 2.5, this gives that λ(C2

n) = 7.
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For all n ≥ 4 the label pattern
n ≡ 0(mod 7) A, · · · , A,A
n ≡ 1(mod 7) A, · · · , A,A1

n ≡ 2(mod 7) A, · · · , A,A2

n ≡ 3(mod 7) B, · · · , B,A3

n ≡ 4(mod 7) A, · · · , A,A4

n ≡ 5(mod 7) A, · · · , A,A5

n ≡ 6(mod 7) A, · · · , A,A6

Table 1. The L(2, 1)-labeling of C2
n with edge span 6 for different

cases of n.

Subcase 2.2. If k+ i < 6, then we have n ∈ {4, 5, 9, 10, 11, 17}. When
n ∈ {5, 9, 10, 11, 17}, the result is already proved in Lemma 2.2.

This completes the proof of Theorem 2.6.

3. The L(2, 1) edge span of the square of a cycle

The main objective of this section is to determine the L(2, 1) edge
span of the square of a cycle. Firstly, we establish the lower and upper
bound.

Lemma 3.1. 5 ≤ β(C2
n) ≤ 6 for all n ≥ 4.

Proof. It is clear that β(C2
n) ≥ β(C3) = 4 since C3 is an induced

subgraph of C2
n. Now suppose that C2

n admits an L(2, 1)-labeling f with
edge span 4. Without loss of generality, let f(v1) = 0. In this case,
if f(v2) = 2, then f(vn) = 4. However, no label can be assigned to
the vertex vn−1, a contradiction. An similar argument can be made for
f(v2) = 4. If f(v2) = 3, then no label can be assigned to the vertex vn.
Hence β(C2

n) ≥ 5.
Next, we show that β(C2

n) ≤ 6.
Firstly, let A = [0, 2, 4, 6, 1, 3, 5], B = [4, 2, 0, 5, 3, 8, 6],

A1 = [8, 10, 14, 12, 9, 7, 3, 5], A2 = [8, 10, 13, 15, 11, 9, 7, 3, 5], A3 = [11, 9, 7],
A4 = [8, 10, 12, 15, 17, 13, 11, 9, 7, 3, 5],
A5 = [8, 10, 12, 14, 18, 16, 13, 11, 9, 7, 3, 5],
A6 = [8, 10, 12, 14, 17, 19, 15, 13, 11, 9, 7, 3, 5].

Now we give an L(2, 1)-labeling of C2
n with edge span 6, as shown in

Table 1.
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Therefore the lemma is proved.

To determine the exact value of β(C2
n), we need to use a consequence

in [21]. Firstly, we gives some notations in the following.

Let G be an undirected simple graph. An orientation
−→
G of G is

an assignment of directions to each edge of G. In this sense, we also

call G the underlying graph of
−→
G . Let

−→
G be an orientation of a graph

G and let W = u1u2 · · ·ul be a trail in G. For an edge ei = uiui+1

(i = 1, 2, · · · , l − 1), we call ei a forward edge (resp., backward edge) of

W if the direction of ei in
−→
G is from ui to ui+1 (resp., ui+1 to ui). Denote

by W+ and W− the set of the forward edges and backward edges of W ,
respectively.

A k-tension [12] on G is an ordered pair (
−→
G, φ), where

−→
G is an ori-

entation of G and φ : E(
−→
G) 7→ {0, 1, · · · , k − 1} is a map such that∑

e∈C+ φ(e) =
∑

e∈C− φ(e) for every cycle C in G. In particular, if φ is

an integer-valued function then (
−→
G, φ) is called an integer tension. An

integer tension (
−→
G, φ) is a nowhere-zero k-tension if 0 < φ(e) < k for

every e ∈ E(
−→
G).

The authers in [21] established a connection between the L(2, 1)-
labeling and integer tension of a graph. This connection provides us
with an effective way to minimize the edge span.

Lemma 3.2. [21] Let G be a simple graph and let k be a positive
integer. Then G admits an L(2, 1)-labeling with edge span k − 1 if and

only if G admits a k-tension (
−→
G, φ) satisfying the following conditions:

(i) For any edge e of G, 2 ≤ φ(e) ≤ k − 1;
(ii) For any two adjacent arcs e1 = ux and e2 = xv where u and v are
not adjacent, if x is the common head or the common tail of e1 and e2,
then |φ(e1) − φ(e2)| ≥ 1; and if x is the head of one in {e1, e2} and the
tail of the other, then φ(e1) + φ(e2) ≥ 1.

In view of Lemma 3.2, we have the following main result.

Theorem 3.3. Let n ≥ 4. Then β(C2
n) = 5 if and only if the system

of equations and an inequality in (2) has a non-negative integer solution.
Otherwise, β(C2

n) = 6.
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(2)


5x3 = 2x1 + 3x2,

n = x1 + x2 + x3,

x1 ≥ x2 + x3 + 2.

Proof. Firstly, we prove the necessity. Let (
−→
C2

n, φ) be a 6-tension of
C2

n satisfying the two conditions of Lemma 3.2.

Claim 1. φ(viv(i+1)) 6= 4 for i = 1, 2, · · · , n.

Suppose to the contrary that there exists some i such that φ(viv(i+1)) =
4. Then φ(v(i−1)v(i+1)) = φ(v(i+1)v(i+2)) = 2 and the two adjacent arcs
v(i−1)v(i+1) and v(i+1)v(i+2) have v(i+1) as their common head or tail, a
contradiction to Lemma 3.2.

Claim 2. There do not exist two adjacent arcs viv(i+1) and v(i+1)v(i+2)

with weight 3 and 5, respectively.

If φ(viv(i+1)) = 3, φ(v(i+1)v(i+2)) = 5, then φ(v(i+k)v(i+k+1)) = 3 for k =
0, 2, · · · and φ(v(i+k)v(i+k+1)) = 5 for k = 1, 3, · · · . Moreover, those arcs
with weight 3 and 5 have the same orientation respectively. Therefore,∑

e∈C+
n
φ(e) 6=

∑
e∈C−

n
φ(e), where Cn = v1v2 · · · vn, a contradiction to

the definition of tension.

Claim 3. If φ(viv(i+1)) = 5 and φ(v(i+1)v(i+2)) = 2, then φ(v(i+2)v(i+3)) 6=
3.

Let φ(viv(i+1)) = 5, φ(v(i+1)v(i+2)) = 2 and φ(v(i+2)v(i+3)) = 3. Then
we know that φ(viv(i+1)) = φ(v(i+1)v(i+3)) = 5 and the two adjacent arcs
viv(i+1) and v(i+1)v(i+3) have v(i+1) as their common head or tail. This
contradicts with Lemma 3.2.

Let x1, x2, x3 be the number of arcs in {viv(i+1)|i = 1, 2, · · · , n} with
weight 2, 3 and 5 , respectively. Thus Claim 1 implies that 5x3 =
2x1 + 3x2 and n = x1 + x2 + x3. Furthermore, we have x1 ≥ x2 + x3 + 2
by Claim 2 and Claim 3.

Secondly, we prove the sufficiency. Suppose that the system of equa-
tions and an inequality in (2) has a non-negative integer solution. Then

we can give an ordered pair (
−→
C2

n, φ) by the following three steps:

Step 1.

φ(viv(i+1)) =

 3, if i ∈ {2x3 + 2, 2x3 + 4, · · · , 2x3 + 2x1},
5, if i ∈ {1, 3, · · · , 2x3 − 1},
2, otherwise.
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Step 2. We assign each edge viv(i+1) an orientation such that the
orientations on those edges with weight 5 have the same orientation
which are opposite to those edges with weight 2 and 3.

Step 3. For those edges viv(i+2) (i = 1, 2, · · · , n), we assign the weight
and the orientation to each edge such that

∑
e∈C+

i
φ(e) =

∑
e∈C−

i
φ(e),

where Ci = viv(i+1)v(i+2)vi.

Obviously, φ is well-defined since the system of equations and an
inequality in (2) holds. Moreover, we can check that the ordered pair

(
−→
C2

n, φ) is a 6-tension satisfying the two conditions of Lemma 3.2. There-
fore the result follows.

Corollary 3.4 Let n ≥ 37. Then β(C2
n) = 5.

Proof. Let a ∈ Z such that 0 ≤ a ≤ 6 and a ≡ 5n(mod 7). Since
5n − 8a ≡ 0(mod 7) and 5n − 8a ≥ 5 · 37 − 8 · 6 > 0, 5n − 8a = 7b for
some b ∈ Z+. Let x1 = b, x2 = a and x3 = n − a − b. Then x1, x2 ≥ 0,
x3 = n− a− b = n− a− 5n−8a

7
= 2n+a

7
≥ 0. Also

5x3 = 5n− 5a− 5b = 8a+ 7b− 5a− 5b = 2b+ 3a = 2x1 + 3x2,

n = b+ a+ n− a− b = x1 + x2 + x3
and

x1 = b =
5n− 8a

7
=

2n

7
+

3n− 8a

7
≥ 2n

7
+

111− 48

7
≥ 2n

7
+

63

7

>
2n

7
+

43

7
+ 2 = n− 5n− 8a

7
+ 2 = n− b+ 2 = x2 + x3 + 2.

Thus the system of equations and an inequality in Theorem 3.3 has a
non-negative integer solution if n ≥ 37. Hence β(C2

n) = 5 if n ≥ 37.
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