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MULTIPLICITY RESULT OF THE SOLUTIONS FOR A

CLASS OF THE ELLIPTIC SYSTEMS WITH

SUBCRITICAL SOBOLEV EXPONENTS

Tacksun Jung∗ and Q-Heung Choi†

Abstract. This paper is devoted to investigate the multiple solu-
tions for a class of the cooperative elliptic system involving subcriti-
cal Sobolev exponents on the bounded domain with smooth bound-
ary. We first show the uniqueness and the negativity of the solution
for the linear system of the problem via the direct calculation. We
next use the variational method and the mountain pass theorem in
the critical point theory.

1. Introduction

Let Ω is a bounded domain of Rn with smooth boundary, n ≥ 3, α,
β, γ are real constants. In this paper we consider the multiplicity of
the solutions for the following class of the cooperative elliptic system
involving subcritical Sobolev exponents nonlinear term with Dirichlet
boundary condition

−∆U = AU +

(
F

G

)
in Ω, (1.1)

Received July 17, 2015. Revised December 2, 2015. Accepted December 3, 2015.
2010 Mathematics Subject Classification: 35J50, 35J55.
Key words and phrases: Cooperative elliptic system, subcritical Sobolev expo-

nents nonlinear term, variational method, mountain pass theorem.
* Corresponding author.
† This work was supported by Basic Science Research Program through the Na-

tional Research Foundation of Korea(NRF) funded by the Ministry of Education,
Science and Technology (KRF-2013010343).

c© The Kangwon-Kyungki Mathematical Society, 2015.
This is an Open Access article distributed under the terms of the Creative com-

mons Attribution Non-Commercial License (http://creativecommons.org/licenses/by
-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduc-
tion in any medium, provided the original work is properly cited.



620 Tacksun Jung and Q-Heung Choi(
u

v

)
=

(
0

0

)
on ∂Ω.

Here U =
(
u
v

)
, A =

(
a b
b d

)
,

F =
2p

p+ q
up−1

+ vq+ + f, G =
2q

p+ q
up+v

q−1
+ + g,

where u+ = max{u, 0}, p, q are real constants, 2 < p+ q < 2∗, 2∗ = 2n
n−2

.
We may write f , g as

f = tφ1 + f1, g = sφ1 + g1,

where φ1 is the positive normalized function associated to the first eigen-
value λ1 of the eigenvalue problem −∆u = λu in Ω, u|∂Ω = 0, t, s are
real constants, f1, g1 ∈ L2(Ω) with∫

Ω

f1φ1 =

∫
Ω

g1φ1 = 0. (1.2)

Our problems are characterized as Ambrosetti-Prodi type problems.
Since the pioneering work on the subject in [2], these problem have
been investigated in many ways. For a survey on the scalar case we rec-
ommend the paper [4] and the references therein. For the system case
we recommend the paper [3]. Indeed the weak solutions of (1.1) corre-
spond to the critical points of the continuous and Frechét differentiable
functional

I(u, v) =
1

2

∫
Ω

[|∇u|2 + |∇v|2 − αu2 − 2βuv − γv2]dx

−
∫

Ω

[
2

p+ q
up+v

q
+ + tφ1u+ f1u+ sφ1v + g1v]dx. (1.3)

Note that 2 < p + q < 2n
n−2

is the subcritical Sobolev exponents for

the embedding W 1,2
0 (Ω) ↪→ Lp+q(Ω), where W 1,2

0 (Ω) is a Sobolev space.
Since this embedding is compact(cf. [1]), the functional I(u, v) satisfies
the (PS) condition. Thus we can use the mountain pass theorem with
(PS) condition to find the weak solution of (1.1).

Let E = W 1,2
0 (Ω) × W 1,2

0 (Ω) be a Hilbert space endowed with the
norm

‖(u, v)‖2
E = ‖u‖2

W 1,2
0 (Ω)

+ ‖v‖2
W 1,2

0 (Ω)
.
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Let A be

(
a b
b d

)
∈ M2×2(R) and µ+

λi
and µ−λi be the eigenvalues of

the matrix(
λi − α −β
−β λi − γ

)
∈M2×2(R), i. e.,

µ+
λi

=
1

2
{−γ − α +

√
(−γ − α)2 − 4{(λi − α)(λi − γ)− β2}},

µ−λi =
1

2
{−γ − α−

√
((−γ − α))2 − 4{(λi − α)(λi − γ)− β2}}.

We note that

if 4{(λi − α)(λi − γ)− β2} < 0, then µ−λi < 0 < µ+
λi
,

if − γ ≥ α and 4{(λi − α)(λi − γ)− β2} > 0, then 0 < µ−λi < µ+
λi
.

if − γ ≤ α and 4{(λi − α)(λi − γ)− β2} > 0, then µ−λi < µ+
λi
< 0.

We are looking for the weak solutions of (1.1) in E. The weak solutions
in E satisfies

∫
Ω

[(−∆u,−∆v) · (z, w)− (αu+ βv, βu+ γv) · (z, w)

− (tφ1 + f1, sφ1 + g1) · (z, w)]dx = 0 ∀(z, w) ∈ E.

Our main result is as follows:

Theorem 1.1. Assume that

(i) det

(
λi − α −β
−β λi − γ

)
> 0 for i ≥ 1,

(ii) α > 0, β > 0, γ < 0, λ1 − α > 0.

Then there exists (t1, s1) with t1 < 0 and s1 < 0 such that for any (t, s)
with t < t1 and s < s1, (1.1) has at least two weak solutions (u, v), one
of which is a negative solution.

In section 2, we obtain a negative solution of (1.1) by direct compu-
tation. In section 3, we approach the variational technique and show
the existence of the second weak solution of (1.1) by the mountain pass
theorem with (PS) condition, so we prove Theorem 1.1.
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2. A negative solution

Lemma 2.1. Assume that the conditions (i) and (ii) of Theorem 1.1
hold. Let Mαβγ : E → E be the operator defined by Mαβγ(u, v) =
(−∆u− αu− βv,−∆v − βu− γv). Then the operator

M−1
αβγ : E → E

is well defined and continuous, and the system −∆u = αu+ βv + f1 in Ω,
−∆v = βu+ γv + g1, in Ω, (2.1)

u = v = 0 on ∂Ω

has a unique solution (u0, v0), which is of the form

u0 =
∑
m

(
(λm − γ)hm + βkm

(λm − α)(λm − γ)− β2
)φm,

v0 =
∑
m

(
(λm − α)km + βhm

(λm − α)(λm − γ)− β2
)φm,

where f1 =
∑

m hmφm with
∑

m h
2
m < +∞ and g1 =

∑
m kmφm with∑

m k
2
m < +∞.

Proof. Let us take (f1, g1) in E. Then we can write f1 =
∑

m hmφm
with

∑
m h

2
m < +∞ and g1 =

∑
m kmφm with

∑
m k

2
m < +∞. We define,

for m integers,

um =
(λm − γ)hm + βkm

(λm − α)(λm − γ)− β2
, vm =

(λm − α)km + βhm
(λm − α)(λm − γ)− β2

,

(2.2)
which make sense since (λm−α)(λm−γ)−β2 6= 0 for every m. We note
that

|um| ≤
C

|λm|
(|hm|+ |km|),

from which it follows that

λ2
mu

2
m ≤ C1(h2

m + k2
m)

for suitable constants C, C1 not depending on m. We apply the same
inequality for vm. So if u0 =

∑
m umφm, v0 =

∑
m vmφm, then (u0, v0) ∈

E. We can check easily that

Mαβγ(u0, v0) = (f1, g1).
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So M−1
αβγ : E → E is well defined, so we prove the lemma.

The following Lemma 2.2 come from Lemma 2.1.

Lemma 2.2. Assume that the conditions (i) and (ii) of Theorem 1.1
hold. Then for any (t,s) with t < 0 and s < 0, the linear system −∆u = αu+ βv + tφ1 in Ω,

−∆v = βu+ γv + sφ1 in Ω, (2.3)
u = v = 0 on ∂Ω

has a unique negative solution (u∗, v∗) ∈ E, which is of the form

u∗ = [
β2s+ βs(λ1 − α)

(λ1 − α)((λ1 − α)(λ1 − γ)− β2)
+

t

λ1 − α
]φ1 < 0,

v∗ = [
βt+ s(λ1 − α)

(λ1 − α)(λ1 − γ)− β2
]φ1 < 0.

Proof. We note that (u∗, v∗) is a solution of system (2.3) for any (t, s)
with t < 0 and s < 0, and the uniqueness is the consequence of Lemma
2.1.

The following lemma can be obtained by Lemma 2.1 and Lemma 2.2.

Lemma 2.3. Assume that the conditions (i) and (ii) of Theorem 1.1
hold. Then there exist constants t∗ < 0 and s∗ < 0 such that for any
(t, s) with t < t∗ and s < s∗, the system −∆u = αu+ βv + tφ1 + f1 in Ω,

−∆v = βu+ γv + sφ1 + g1 in Ω, (2.4)
u = v = 0 on ∂Ω

has a unique negative solution (uts, vts) ∈ E with uts < 0 and vts < 0,
which is the negative solution of (1.1) and of the form

uts = u0 + u∗

=
∑
m

(
(λm − γ)hm + βkm

(λm − α)(λm − γ)− β2
)φm

+[
β2t+ βs(λ1 − α)

(λ1 − α)((λ1 − α)(λ1 − γ)− β2)
+

t

λ1 − α
]φ1,

vts = v0 + v∗

=
∑
m

(
(λm − α)km + βhm

(λm − α)(λm − γ)− β2
)φm + [

βt+ s(λ1 − α)

(λ1 − α)(λ1 − γ)− β2
]φ1,
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where f1 =
∑

m hmφm with
∑

m h
2
m < +∞ and g1 =

∑
m kmφm with∑

m k
2
m < +∞.

Proof. Since for any (t, s) with t < 0 and s < 0, u∗ < 0 and v∗ < 0,
we can choose t∗ < 0 and s∗ < 0 such that for any (t, s) with t < t∗ and
s < s∗, uts = u0 + u∗ < 0 and vts = v0 + v∗ < 0.

3. Second solution and Proof of Theorem 1.1

We observe that the weak solutions of (1.1) coincide with the critical
points of the the associated functional

I : E → R ∈ C1.1,

I(u, v) = Qαβγ(u, v)−
∫

Ω

[
2

p+ q
up+v

q
+ + tφ1u+f1u+sφ1v+g1v]dx, (3.1)

where

Qαβγ(u, v) =
1

2

∫
Ω

[|∇u|2 + |∇v|2 − αu2 − 2βuv − γv2]dx.

We note that if (u, v) is a solution of (1.1), then (u, v) = (z, w)+(uts, vts),
where (uts, vts) is a negative solution of (1.1) and (z, w) is a nontrivial
solution of the system
−∆u = αu+ βv + 2p

p+q
(u+ uts)

p−1
+ (v + vts)

q
+ in Ω,

−∆v = βu+ γv + 2q
p+q

(u+ uts)
p
+(v + vts)

q−1
+ in Ω, (3.2)

u = v = 0 on ∂Ω.

Thus it suffices to find the nontrivial solution of (3.2) to find the solution
of (1.1). We observe that the weak solutions of (3.2) coincide with the
critical points of the functional

F : E → R ∈ C1,1,

F (u, v) =
1

2

∫
Ω

[|∇u|2 + |∇v|2 − αu2 − 2βuv − γv2]dx

− 2

p+ q

∫
Ω

(u+ uts)
p
+(v + vts)

q
+dx. (3.3)

Thus it suffices to find the critical points of F . Let us set

Hλi = span{φj| λj = λi}.
Let us denote by (c+

λi
, d+

λi
) and (c−λi , d

−
λi

) the eigenvectors of
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λi − α −β
−β λi − γ

)
∈ M2×2(R) corresponding to µ+

λi
and µ−λi respec-

tively. Let us set

Dλi = {(α, β, γ) ∈ R3| (λi − α)(λi − γ)− β2 ≥ 0},
D′λi = Dλi ∩ {−γ ≤ α},
D′′λi = Dλi ∩ {−γ ≥ α},
Eλi = {(cφ, dφ) ∈ E| (c, d) ∈ R2, φ ∈ Hλi},
E+
λi

= {(c+
λi
φ, d+

λi
φ) ∈ E| φ ∈ Hλi},

E−λi = {(c−λiφ, d
−
λi
φ) ∈ E| φ ∈ Hλi},

H+(α, β, γ) = (⊕µ+λi>0E
+
λi

)⊕ (⊕µ−λi>0E
−
λi

),

H−(α, β, γ) = (⊕µ+λi<0E
+
λi

)⊕ (⊕µ−λi<0E
−
λi

),

H0(α, β, γ) = (⊕µ+λi=0E
+
λi

)⊕ (⊕µ−λi=0E
−
λi

).

Then H+(α, β, γ), H−(α, β, γ) and H0(α, β, γ) are the positive, negative
and null space relative to the quadratic form Qα,β,γ in E. Because (λi−
α)(λi − γ)− b2 6= 0,

H0(α, β, γ) = {0}.

Lemma 3.1. Assume that the conditions (i) and (ii) of Theorem 1.1
hold. Let (α, β, γ) ∈ R3. Then
(i) E+

λi
and E−λi are eigenspace for the operator Mαβγ, Mαβγ(u, v) =

(−∆u−αu−βv,−∆v−βu−γv) associated with Qαβγ with eigenvalues
µ+λi
λi

and
µ−λi
λi

respectively.

(ii) E+
λi

and E−λi generate E.
(iii) Let i ≥ 1. Then we have that

if (α, β, γ) ∈ D′λi , µ
−
λi
< µ+

λi
≤ 0,

if (α, β, γ) ∈ D′′λi , 0 ≤ µ−λi < µ+
λi
,

lim
(α,β,γ)→(α0,β0,γ0)

µ−λi(α, β, γ) = µ−λi(α0, β0, γ0)

and
lim

(α,β,γ)→(α0,β0,γ0)
µ+
λi

(α, β, γ) = µ+
λi

(α0, β0, γ0).

uniformly with respect to i ∈ N .

Proof. The proof can be obtained by easy computations.
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Let us define

Cp,q(Ω) = inf
(u,v)∈E\(0,0)

∫
Ω

(|∇u|2 + |∇v|2)dx

(
∫

Ω
|u|p|v|qdx)

2
p+q

for (u, v) ∈ E. (3.4)

Cp+q(Ω) = inf
(u,v)∈E\{(0,0)

}
∫

Ω
(|∇u|2)dx

(
∫

Ω
|u|p+q)

2
p+q

for u ∈ W 1,2
0 (Ω). (3.5)

Lemma 3.2. Let Ω be a domain (not necessarily bounded) and α+β ≤
2∗. Then we have

Cp,q(Ω) = [(
p

q
)

q
p+q + (

p

q
)
−p
p+q ]Cp+q(Ω). (3.6)

Proof. The proof can be found in [1].

We shall show that F satisfies the mountain pass geometry.
Let (α0, β0, γ0) ∈ ∂D′λi . Let W be any neighborhood of (α0, β0, γ0).

Then

W = (W ∩ (∪i∈N, (α0,β0,γ0)∈∂D′λi
D′λi))⊕ (W\ ∪i∈N, (α0,β0,γ0)∈∂D′λi

D′λi).

Thus we have that

if (α, β, γ) ∈ W∩(∪i∈N, (α0,β0,γ0)∈∂D′λi
D′λi), then µ−λi < µ+

λi
< 0 ∀i ≥ 1

(3.7)
and

if (α, β, γ) ∈ W\∪i∈N, (α0,β0,γ0)∈∂D′λi
D′λi , then 0 < µ−λi < µ+

λi
∀i ≥ 1.

(3.8)
By (3.8), we have that if (α, β, γ) ∈ W\ ∪i∈N, (α0,β0,γ0)∈∂D′λi

D′λi , then

E = H+(α, β, γ).
Let (α0, β0, γ0) ∈ ∂D′λi and W be a neighborhoodof (α0, β0, γ0). Then

by Lemma 3.1, we have, for any (α, β, γ) ∈ W\ ∪i∈N, (α0,β0,γ0)∈∂D′λi
D′λi

and (u, v) ∈ E,

Qαβγ(u, v) =
1

2

∫
Ω

[|∇u)|2 + |∇v|2 − αu2 − 2βuv − γv2]dx

> a‖(u, v)‖2
L2(Ω) > 0 for some a > 0. (3.9)

We note that F (0, 0) = 0.

Lemma 3.3. Assume that the conditions (i) and (ii) of Theorem 1.1
hold. Let i ∈ N and (α0, β0, γ0) ∈ ∂D′λi . Then there exist a neighbor-
hoodW of (α0, β0, γ0) such that for any (α, β, γ) ∈ W\∪i∈N, (α0,β0,γ0)∈∂D′λi
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D′λi ,
(i) there exists a constant ρ > 0 such that

F (u, v) > 0 ∀U ∈ ∂Bρ, F (u, v) > −∞ ∀U ∈ Bρ,

where Bρ is a ball centered at (0,0) with radius ρ > 0, and
(ii) there exist a constant R > 0 and an element U0 ∈ E such that

F (U0) < 0 for ‖U0‖ > R, F (u, v) <∞ ∀(u, v) ∈ BR,

where BR is a ball centered at (0,0) with radius R > 0.

Proof. (i) Let (α, β, γ) be any element of W\ ∪i∈N, (α0,β0,γ0)∈∂D′λi
D′λi .

By (3.4) and (3.9), we have

F (u, v) = Qαβγ(u, v)− 2

p+ q

∫
Ω

(u+ uts)
p
+(v + vts)

q
+dx

> a‖(u, v)‖2
L2(Ω) −

2

p+ q

∫
Ω

|u|p|v|q+dx

> a‖(u, v)‖2
L2(Ω) −

2

p+ q
(Cp,q(Ω))−

p+q
2 ‖(u, v)‖p+qE .

Since 2 < p + q < 2n
n−2

, there exists a small constant ρ > 0 such that if
(u, v) ∈ ∂Bρ, then F (u, v) > 0. Moreover if (u, v) ∈ Bρ, then F (u, v) ≥
− 2
p+q

(Cp,q(Ω))−
p+q
2 ‖(u, v)‖p+qE > −∞.

(ii) Let us choose an element (e1, e2) ∈ E with (e1, e2) 6= (0, 0) such that∫
Ω

(e1 − 1)p+(e2 − 1)q+dx > 0. (3.10)

Let σ > 0 be any real number. Then we have

F (σ(e1, e2)) = σ2Qαβγ(u, v)− σp+q 2

p+ q

∫
Ω

(e1 +
uts
σ

)p+(e2 +
vts
σ

)q+dx.

If we choose σ1 > 0 such that uts(x)
σ1
≥ −1, vts(x)

σ1
≥ −1, ∀x ∈ Ω, then we

have, by (3.10), that
∫

Ω
(e1 + uts

σ
)p+(e2 + vts

σ
)q+dx > 0 for any σ ≥ σ1, it

follows from that

F (σ(e1, e2))→ −∞ as σ →∞.
Thus there exist σ′ > 0 and a constant R > 0 such that F (σ′(e1, e2)) < 0
and ‖σ′(e1, e2)‖ > R. Then U0 = σ′(e1, e2) is the required point such
that F (U0) < 0 and ‖U0‖ > R. Moreover if (u, v) ∈ BR, then F (u, v) =
Qαβγ(u, v)− 2

p+q

∫
Ω

(u+ uts)
p
+(v + vts)

q
+dx ≤ Qαβγ(u, v) < +∞.
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Lemma 3.4. Assume that the conditions (i) and (ii) of Theorem 1.1
hold. Then the functional F satisfies the (P.S.)c condition for any any
real number c.

Proof. Let i ∈ N , (α0, β0, γ0) ∈ ∂D′λi and W be a neighborhood of
(α0, β0, γ0). Let (α, β, γ) ∈ W\ ∪i∈N, (α0,β0,γ0)∈∂D′λi

D′λi . Let c ∈ R and

(hn) be a sequence in N such that hn → +∞, (un, vn)n be a sequence
such that (un, vn) ∈ Ehn , ∀n, F (un, vn) → c and DF (un, vn) → θ,
θ = (0, · · · , 0). We claim that (un, vn)n is bounded. By contradiction

we suppose that ‖(un, vn)‖E → +∞ and set (ûn, v̂n) = (un,vn)
‖(un,vn)‖E

. If

(α, β, γ) ∈ W\ ∪i∈N, (α0,β0,γ0)∈∂D′λi
D′λi , then Qαβγ(un, vn) > 0, it follows

that we have

c← F (un, vn) = Qαβγ(un, vn)− 2

p+ q

∫
Ω

(un + uts)
p
+(vn + vts)

q
+dx

> − 2

p+ q

∫
Ω

(un + uts)
p
+(vn + vts)

q
+dx.

Thus

− 2

p+ q

∫
Ω

(un + uts)
p
+(vn + vts)

q
+dx is bounded .

We also have

DF (un, vn) · (ûn, v̂n) = 2
F (un, vn)

‖(un, vn)‖E
−∫

Ω
( 2p
p+q

(un + uts)
p−1
+ (vn + vts)

q
+un + 2q

p+q
(un + uts)

p
+(vn + vts)

q−1
+ vn

‖(un, vn)‖E
− 4
p+q

(un + uts)
p
+(vn + vts)

q
+)dx

‖(un, vn)‖E
−→ 0.

It follows from F (un, vn) is bounded and ‖(un, vn)‖E →∞ that

2
F (un, vn)

‖(un, vn)‖E
→ 0

and∫
Ω

( 2p
p+q

(un + uts)
p−1
+ (vn + vts)

q
+un + 2q

p+q
(un + uts)

α
+(vn + vts)

q−1
+ vn)dx

‖(un, vn)‖E

−
4
p+q

∫
Ω

(un + uts)
p
+(vn + vts)

q
+dx

‖(un, vn)‖E
−→ 0.
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Since − 4
p+q

∫
Ω

(un + uts)
p
+(vn + vts)

q
+dx is bounded in Ω,

− 4
p+q

∫
Ω

(un + uts)
p
+(vn + vts)

q
+dx

‖(un, vn)‖E
converges to 0

and∫
Ω

grad( 2
p+q

(un + uts)
p
+(vn + vts)

q
+dx) · (un, vn)dx

‖(un, vn)‖E
converges to 0.

We note that

DF (un, vn)

‖(un, vn)‖2
E

= Mα,β,γ(ûn, v̂n))n−
grad( 2

p+q
(un + uts)

p
+(vn + vts)

q
+)

‖(un, vn)‖2
E

−→ θ,

where Mαβγ(u, v) = (−∆u− αu− βv,−∆v − βu− γv). Since
grad( 2

p+q
(un+uts)

p
+(vn+vts)

q
+)

‖(un,vn)‖2E
converges to θ, θ = (0, 0), (Mα,β,γ(ûn, v̂n))n

converges to θ. Since (ûn, v̂n)n is bounded and M−1
α,β,γ is a compact map-

ping, up to subsequence, (ûn, v̂n)n converges strongly to M−1
αβγ(θ) = θ,

which is a contradiction to the fact that ‖(ûn, v̂n)‖E = 1. Thus (un, vn)n
is bounded. Since 2 < p+ q < 2n

n−2
, the embedding W 1,2

0 (Ω) ↪→ Lp+q(Ω),
is compact, by Lemma (3.2), the sequence (un, vn) has a subsequence,
up to a subsequence, (un, vn) which converges strongly to some (u0.v0)
with DF (u0, v0) = limDF (un, vn) = 0. Thus we prove the lemma.

Proof of Theorem 1.1
We note that the functional F ∈ C1(E,R) and F (0, 0) = 0. By Lemma
3.4, F satisfies (PS)c condition for any real number. Let us define

Γ = {γ ∈ C([0, 1], E)| γ(0) = (0, 0), γ(1) = U0},

where U0 is a point in E such that F (U0) < 0. Let us define

τ = infγ∈Γ sup
(u,v)∈γ(t)

F (u, v).

By Lemma 3.3, there exist a constant ρ > 0 and an element U0 such
that F |∂Bρ > 0 and F (U0) < 0. By the mountain pass theorem (cf. [5]),
τ is a critical value of F with a critical point (u1, v1) such that

τ = F (u1, v1).

Thus we prove Theorem 1.1.
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