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MULTIPLICITY RESULT OF THE SOLUTIONS FOR A
CLASS OF THE ELLIPTIC SYSTEMS WITH
SUBCRITICAL SOBOLEV EXPONENTS

TACKSUN JUNG* AND Q-HeuNG CHorf

ABSTRACT. This paper is devoted to investigate the multiple solu-
tions for a class of the cooperative elliptic system involving subcriti-
cal Sobolev exponents on the bounded domain with smooth bound-
ary. We first show the uniqueness and the negativity of the solution
for the linear system of the problem via the direct calculation. We
next use the variational method and the mountain pass theorem in
the critical point theory.

1. Introduction

Let € is a bounded domain of R™ with smooth boundary, n > 3, «,
B, v are real constants. In this paper we consider the multiplicity of
the solutions for the following class of the cooperative elliptic system
involving subcritical Sobolev exponents nonlinear term with Dirichlet
boundary condition

—AU = AU + (g) in Q, (1.1)
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()-(1) o
HereU:(g),A:(‘g 3)

2p p—1 ¢ 2q
u, v+ f, G =
p+q " T P+4q
where u, = max{u, 0}, p, ¢ are real constants, 2 < p+q < 2*, 2* = %
We may write f, g as

f=toi+ fi, g =5¢1+ g1,

where ¢, is the positive normalized function associated to the first eigen-
value A; of the eigenvalue problem —Au = Au in Q, ulsgq = 0, t, s are
real constants, f1, g1 € L*(Q) with

/Qf1¢1 = /lefbl = 0. (1.2)

Our problems are characterized as Ambrosetti-Prodi type problems.
Since the pioneering work on the subject in [2], these problem have
been investigated in many ways. For a survey on the scalar case we rec-
ommend the paper [4] and the references therein. For the system case
we recommend the paper [3]. Indeed the weak solutions of (1.1) corre-
spond to the critical points of the continuous and F'rechét differentiable
functional

F = uﬂvfl + g,

1
I(u,v) = 5 /Q[|Vu|2 + | Vv)? — au® — 2Buv — yv?]dx

=
obp+

Note that 2 < p+ ¢ < % is the subcritical Sobolev exponents for
the embedding W, *(Q) < LP*9(Q), where W, () is a Sobolev space.
Since this embedding is compact(cf. [1]), the functional I(u,v) satisfies
the (PS) condition. Thus we can use the mountain pass theorem with
(PS) condition to find the weak solution of (1.1).

Let B = Wy*(Q) x W3*(Q) be a Hilbert space endowed with the
norm

quﬁvf{r +toru+ fru+ sprv + grolde. (1.3)

s )1 = Nl gy + 101220
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Let A be ( Z 3 ) € Msyo(R) and ,ui:_ and p, be the eigenvalues of
the matrix
)\i — —5

_5 )\z — ) c MQXQ(R), 1. e.,

3, = 5l — o+ 7 — @l — H{0n — @) — )~ 1),

1
iy, =511 —a = V(=1 =) =\ — )i =) - A7}
We note that
if 4{(\i —a)(X —7) — %} <0, then py <0< pf,

if —~>aand 4{(\; —a)(\ —7) — %} >0, then 0 < iy, < g

if —v <aand4{(\; —a)(\; —7) — B*} >0, then My, < /'l/;: <0.

We are looking for the weak solutions of (1.1) in E. The weak solutions
in I satisfies

=80, -20) - (zy0) = (u+ v, pu+70) - (2, 0)
Q
— (to1 + fi, 801+ q1) - (z,w)]de =0 V(z,w) € E.
Our main result is as follows:

THEOREM 1.1. Assume that

(z’)det()\i__g Ai__f)>o for i>1,

(i) a>0,5>0,v<0, \; —a>0.

Then there exists (t1,s1) with t; < 0 and s; < 0 such that for any (t, s)
with t < t; and s < s1, (1.1) has at least two weak solutions (u,v), one
of which is a negative solution.

In section 2, we obtain a negative solution of (1.1) by direct compu-
tation. In section 3, we approach the variational technique and show
the existence of the second weak solution of (1.1) by the mountain pass
theorem with (PS) condition, so we prove Theorem 1.1.
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2. A negative solution

LEMMA 2.1. Assume that the conditions (i) and (i) of Theorem 1.1
hold. Let M.z, : E — E be the operator defined by Mg (u,v) =
(—Au — au — pv, —Av — fu — yv). Then the operator

M}t . E—SE

afy
is well defined and continuous, and the system
—Au =au+pv+ fi in €,
—Av = fu+yv+ g, in Q, (2.1)
u =v=>0 on 0f)

has a unique solution (ug, vg), which is of the form

_ O‘m B V)hm + 6km
=2 B O )

m

B (A — @)k + Bhiy,
o 2m:(()‘m - a)()‘m —7) — /82)¢m’
where fi = Y hp¢m with > h2 < +oc and g1 = Y., km@m with

Proof. Let us take (fi,¢01) in E. Then we can write fi = > humodn,
with Y hZ, < 4ooand g1 = Y. kmon, with > k2 < 4+00. We define,
for m integers,

u - (A — ) i + Bk, A (Am — @)k, + Bhy,
" ()\m_a)<)‘m_7)_ﬁ2’ " ()\m_a)()\m_/y)_62’
(2.2)
which make sense since (A, — @) (A, —7) — 5% # 0 for every m. We note
that o

|| < m(!hml + |kml),

from which it follows that
Nostiz, < Ca(hi, + K7y
for suitable constants C', C'; not depending on m. We apply the same

inequality for v,,. So if ug =Y Um®m, Vo = D, Vm®m, then (ug,vo) €
E. We can check easily that

Mg (uo,v0) = (f1,91)
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So M ;/317 : E — FE is well defined, so we prove the lemma. n
The following Lemma 2.2 come from Lemma 2.1.

LEMMA 2.2. Assume that the conditions (i) and (i) of Theorem 1.1
hold. Then for any (t,s) witht < 0 and s < 0, the linear system

—Au = au+ fv+tp, in €,
—Av = fu+yv+ s¢; in €, (2.3)
u =v=0_0 on 0f)
has a unique negative solution (u,,v,) € E, which is of the form
(%5 + Bs(A\ — ) t
+ < 0,
=i~ =) =) h—a”
v _[ ﬁt‘i‘S()\l—CY)

N (M=) = B2
Proof. We note that (u.,v,) is a solution of system (2.3) for any (¢, s)

with t < 0 and s < 0, and the uniqueness is the consequence of Lemma
2.1. m

uy = |

]¢1 < 0.

The following lemma can be obtained by Lemma 2.1 and Lemma 2.2.

LEMMA 2.3. Assume that the conditions (i) and (i) of Theorem 1.1
hold. Then there exist constants t, < 0 and s, < 0 such that for any
(t,s) witht < t, and s < s,, the system

—Au =oau+pPuv+tpr+ fL in €,
—Av  =fu+yv+sér+ ¢ in €, (2.4)
u =v=>0 on 02

has a unique negative solution (u, vys) € E with uys < 0 and v < 0,
which is the negative solution of (1.1) and of the form

Uts = U + Uy

o (/\m - 7)hm + 6km

= G O ) -

B2t + Bs(A\ — «) N t ]

M=) (M —a) M=) =52 A —a
Uis = Vg + Vs

B (A — @)k + Bhiy, Bt + s(A — «)

Dy T e v ey

+[ ¢17

|1,
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where fi = Y B¢, with > h2 < +oo and g1 = Y., kyn¢m with

Proof. Since for any (¢,s) with ¢t < 0 and s < 0, u, < 0 and v, < 0,
we can choose t* < 0 and s* < 0 such that for any (¢, s) with ¢ < ¢, and
§ < Sy, Ups = Ug + Uy < 0 and vys = vg + v, < 0. O

3. Second solution and Proof of Theorem 1.1

We observe that the weak solutions of (1.1) coincide with the critical
points of the the associated functional

I:E— ReC",

I(0,0) = Qugs ()~ | |

2
; quﬁvi+tgb1u+f1u+sgz51v—|—glv]d:p, (3.1)
Q

where
1
Qapy(u,v) = 3 / [[Vul® + |Vo]? — au?® — 2Buv — yv?]dz.
Q

We note that if (u, v) is a solution of (1.1), then (u,v) = (2, w)+ (us, vVis),
where (uys, vis) is a negative solution of (1.1) and (z,w) is a nontrivial
solution of the system

—Au = o+ Bu 4 2 (u+ w)T (v 4 vg) L in Q,

p+q
—Av = Butw+ Z(utuiv+o) i Q (32)

Thus it suffices to find the nontrivial solution of (3.2) to find the solution
of (1.1). We observe that the weak solutions of (3.2) coincide with the
critical points of the functional

F.:E— ReCH,

1
F(u,v) = 3 /Q[|Vu|2 + | Vo]? — au® — 2Buv — yv?|dx

2
—m Q(u + uts)ﬁ- (U + Uts>3_d$. (33)

Thus it suffices to find the critical points of F'. Let us set
H>\i = span{¢j| )‘j = /\1}

Let us denote by (i ,dy ) and (c; ,d; ) the eigenvectors of
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A __g \ __f/ ) € Msy»(R) corresponding to uf and py respec-
tively. Let u; set

Dy = {(a,8,7) € B’| (\i —a)(\i =) — 52 = 0},

D, = Dyn{-y<a},

DY, = Dyn{—>a},

E\, = {(cp,d¢) € E| (c,d) € R*,¢ € H,,},

25 {(cx,0.d},¢) € E| ¢ € Hy },

Ey = {leyo.dy0) € El 6 € HyJ,

H (@, 8,7) = (@5 50ER) ® (B, 0Fh);
H(a,8,7) = (B4 0E) @ (®,@_<0E};)a
H'(,8,7) = (@ £ =0ER) @ (B, o Ex)-

Then HY (o, 8,7), H (« 6 v) and H°(a, 3,7) are the positive, negative

and null space relatlve to the quadratic form ), 5, in E. Because (\; —
a)( N — ) —b* #£0,
H%a, B,7) = {0}.

LEMMA 3.1. Assume that the conditions (i) and (it) of Theorem 1.1
hold. Let («, B,v) € R3. Then

(i) EY and E5 are eigenspace for the operator Mg, Mag,(u,v) =
(—Au—au— fv, —Av — fu—yv) associated with (),3, with eigenvalues
% and & ? respectively.
(i) E;. and B, generate E.
(iii) Let @ > 1. Then we have that
f (a,B,7) € Dy, py, < pf, <0,
f (. 8,7) € Dy, 0<piy, <

lim (00, Bo.,
(a757’y) (Oé() Bo, ’70) ( /B 7> 'U/Al( 0 50 ’}/0)

and

lim +- «, O, = +. Qp, s .
(@)~ (a0 B010) | x (@ B8,7) = 1 (0, Bo, 70)

uniformly with respect toi € N.

Proof. The proof can be obtained by easy computations. m
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Let us define

(|Vul? + |Vv]?)dx
Cpal®) Jo

 @)EB\OO) ([ |ulp|v]adz)Fia
fQ(\VuP)dx

C..(Q) = inf OV T for u € WEAH(Q). 3.5
pra(§2) (u,v)eE\{(0,0)} ( fQ|u|p+q)ﬁ 0 () (3.5)

for (u,v) € E. (3.4)

LEMMA 3.2. Let §2 be a domain (not necessarily bounded) and a+f <
2*. Then we have

D\ P, =
Cpa(2) = [(5)”“ + (5)P+q]0p+q(9)- (3.6)
Proof. The proof can be found in [1]. O

We shall show that F' satisfies the mountain pass geometry.
Let (a0, B0, %) € D) . Let W be any neighborhood of (ao, o, 70)-
Then

W= (W N (UiGM (@0,80,70)€0D} Dg\z)) D (W\ Uien, (@0,80,70)€0D} | D;\l)
Thus we have that
if (a,ﬁ,”y) S Wﬂ(UieN’ (aoﬁoﬁo)EaD;iDi\i)’ then ,u;z < [L;: <0 Vi>1

(3.7)
and
if (o, B,7) € W\ Uien, (c0.B0.70)€0D}, D,,, then 0 < py < py Vi > 1.
(3.8)

By (3.8), we have that if («,5,7) € W\ Uien, (co.0.70) 0D, D), then
E=H"(a,B,7).

Let (ao, fo,70) € OD), and W be a neighborhoodof (ao, £o, 7). Then
by Lemma 3.1, we have, for any («, 5,7) € W\ Ujen, (c0.B0.70) 0D}, D
and (u,v) € E,

1
Qapy(u,v) = 5 /Q[\Vu)\z +|Vu* — au® — 2Buv — yv?]dx

> a||(u,v)||%g(9) >0  for some a > 0. (3.9)
We note that F(0,0) = 0.

i

LEMMA 3.3. Assume that the conditions (i) and (i) of Theorem 1.1
hold. Leti € N and (g, Bo,7) € OD) . Then there exist a neighbor-
hood W of (av, By, 7o) such that for any (o, 5,7) € W\Uien, (c0.80:70) €0},
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D),
(i) there exists a constant p > 0 such that

F(u,v) >0 VYU € 0B,, F(u,v) > —oo VU € B,

where B, is a ball centered at (0,0) with radius p > 0, and
(ii) there exist a constant R > 0 and an element Uy € E such that

F(Uy) <0 for ||Us]| > R, F(u,v) < oo Y(u,v) € Bg,
where Bp is a ball centered at (0,0) with radius R > 0.

Proof. (i) Let («, 8,7) be any element of W\ Uien, (ag,50.70)c0D; D, -
By (3.4) and (3.9), we have

2
F(u,v) = Qapy(u,v) — m Q(u + ) (v 4 vgs) S d

il
2 Py
> all(u,v)||72(00 — —— ulP || dx
00}y = = [ Tulolt
2 —bde p+aq
o Cral )l (o)l
Since 2 < p+q < %, there exists a small constant p > 0 such that if
(u,v) € 0B,, then F(u,v) > 0. Moreover if (u,v) € B,, then F(u,v) >
_pta
—522(Cog ()~ I (w, ) 57 > —o0.
(ii) Let us choose an element (e, e5) € E with (e, e5) # (0,0) such that

/(el —1)% (e2 — 1)%dzx > 0. (3.10)
Q
Let 0 > 0 be any real number. Then we have
F , = 2Q, ,v) — oPte /e—l—%pe—i——qdaj.
(0(e1,€2)) = 0°Qapy(u,v) — 0 o Q( 1 Vilea+—)3

If we choose ; > 0 such that "t;—im) > —1, vi;—(lx) > —1, Vx € Q, then we
have, by (3.10), that [,(e; + %) (es + %)% dx > 0 for any o > oy, it
follows from that

> GH(%U)”%Z(Q) -

F(o(ey,e)) = —00 as o — 00.
Thus there exist o’ > 0 and a constant R > 0 such that F'(¢'(e,e3)) <0
and ||o'(e1,e2)]] > R. Then Uy = o'(ey, e2) is the required point such
that F(Up) < 0 and ||Uy|| > R. Moreover if (u,v) € Bg, then F(u,v) =
Qapy(u,v) — ]%q fﬂ(u + uts) (v + vgs) L dr < Qapy(u,v) < +00. O
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LEMMA 3.4. Assume that the conditions (i) and (i) of Theorem 1.1
hold. Then the functional F' satisfies the (P.S.). condition for any any
real number c.

Proof. Let i € N, (o, Bo,7) € 0D), and W be a neighborhood of
(0, Bo,70). Let (a, B,7) € W\ Usen, (co.0.70) €D, D) . Let c € R and
(h,) be a sequence in N such that h, — 400, (u,,v,), be a sequence
such that (un,v,) € Eh,, Yn, F(u,,v,) — ¢ and DF(up,,v,) — 0,
6 = (0,---,0). We claim that (u,,v,), is bounded. By contradiction

we suppose that ||(u,,v,)||r = 400 and set (u,,v,) = H(S:‘% If

(o, B,7) € W\ Uien, (co.f0.70)€0D, D)\, then Qupy(tn,v,) > 0, it follows
that we have

2
4 F(tn, vn) = Qapy(tn, vn) — ——— [ (Un + wss)" (vn + ves) da
P+qJo
2
> ———— | (uy + )5 (v, + Vi) Ld.
| (o )
Thus
———— [ (uy + )t (v, +vi5)Ldx is bounded .
—— ( )4 )%
We also have
F ns Un
DF(u, 0) - (thy, 1) = 2 nstn)_
H(u e
Jo (p+q (tp + ) (0 + vis) Ly + p+q 29 (44, 4 g )% (U + 1) 5 0
[ (tn, vn)| 2
— (U + ) (v + v55) % )d 0
[(tn, vn)| 2
It follows from F'(uy,,v,) is bounded and ||(uy,v,)||g — oo that
F(un, vy,
o F(n, )
[ (tn, vn)[ 2
and
fﬂ(p2fq (un + uts); (U + vis) Sy + p2+q (Un + us) T (v + vts)?[lvn)da:
[ (tn, vn)| 2
- Ifq Jo(tn + i) (vn + v4s) 4 da .

H(um Un)HE
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Since _z%q Jo(un + ues)t (vn + v4s)% d is bounded in €,

—qu Jo(tn + i) (0n + vgs)4 da

converges to 0

[[(tn, o) ||
and
o, grad( e 2 (1w, + e (Vg + Vi) d) - (wy, v,)da
TG o) converges to 0.
ny Un) || E

We note that

DF (un, vy) . grad (3. (un + ues)’ (vn + v4s)%)
2 = MO‘vB"V(“’”? Un))n
[[(tn, vn) || 1t v )1

where Ma/gv(u, v) = (—Au — au — Pv, —Av — fu — yv). Since

rad Un+uts)E (Vntves)d N N
e ||<un+,v,i>)||%( ZR converges 10 0, 0 = (0,0), (Mo (tin, 6))n
converges to . Since (tiy, U, )n is bounded and M éﬁ is a compact map-
ping, up to subsequence, (i, V), converges strongly to Maﬁw(e) =0,
which is a contradiction to the fact that ||(w,, V)| g = 1 Thus (un, Un)n

is bounded. Since 2 < p+ ¢ < 2% the embedding Wy () < LP+9(Q),

is compact, by Lemma (3.2), the sequence (u,,v,) has a subsequence,
up to a subsequence, (u,,v,) which converges strongly to some (ug.vp)
with DF(ug,vy) = lim DF (uy,,v,) = 0. Thus we prove the lemma. [

— 0,

ptq

PROOF OF THEOREM 1.1
We note that the functional F € C'(E, R) and F'(0,0) = 0. By Lemma
3.4, F satisfies (PS). condition for any real number. Let us define
['={y e C(0,1], E)| v(0) = (0,0), ~(1) = Uy},
where Uy is a point in E such that F(Uy) < 0. Let us define

T=1infyer sup F(u,v).
(uw)ev(t)

By Lemma 3.3, there exist a constant p > 0 and an element U, such
that F'|sp, > 0 and F(Uy) < 0. By the mountain pass theorem (cf. [5]),
7 is a critical value of F' with a critical point (uy,v;) such that

T = F(U,l,Ul).

Thus we prove Theorem 1.1.
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