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SOME INFINITE SERIES IDENTITIES

Sung-Geun Lim

Abstract. B.C. Berndt has established many relations between
various infinite series using a transformation formula for a large class
of functions, which comes from a more general class of Eisenstein
series. In this paper, continuing his study, we find some infinite
series identities.

1. Introduction

B.C. Berndt [3, 4] derived a transformation formula for a large class of
functions which comes from a more general class of Eisenstein series and
found various infinite series identities. In this paper, using his methods,
we derive some new results about infinite series and identities.

At first, we introduce some notations and definitions. Let H = {τ ∈
C | Im(τ) > 0}, the upper half-plane. For a complex number w, we
choose the branch of the argument defined by −π ≤ arg w < π. Let
e(w) = e2πiw. For a positive integer N , let λN denote the characteristic
function of the integers modulo N , i.e.,

λN(m) =

{
1, if m ≡ 0 (mod N),

0, otherwise.

Let V τ = V (τ) = aτ+b
cτ+d

denotes a modular transformation with c > 0
and c ≡ 0 (mod N) for every τ ∈ H.(We say that V corresponds to a
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matrix

(
a b
c d

)
.) Let r = (r1, r2) and h = (h1, h2) denote real vectors,

and define the associated vectors R and H by

R = (R1, R2) = (ar1 + cr2, br1 + dr2)

and
H = (H1, H2) = (dh1 − bh2,−ch1 + ah2)

.
For any real x, y and complex s with Re(s) > 1, let

ψ(x, y, s) :=
∑
n+y>0

e(nx)

(n+ y)s
.

For a real number x, [x] denotes the greatest integer less than or equal
to x and {x} := x − [x]. For τ ∈ H and an arbitrary complex numbers
s, define

AN (τ, s; r, h) :

=
∑

Nm+r1>0

∑
n−h2>0

e (Nmh1 + ((Nm+ r1)τ + r2)(n− h2))
(n− h2)1−s

.

Let

HN(τ, s; r, h) := AN(τ, s; r, h) + e
(s

2

)
AN(τ, s;−r,−h).

The following thoerem is a twist version of Berndt’s theorem in [4].

Theorem 1.1. ([4]) Let Q = {τ ∈ H | Re(τ) > −d/c}, %N = c{R2}−
Nd{R1/N} and c = c

′
N . Then for τ ∈ Q and all s,

(cτ + d)−sHN (V τ, s; r, h)

= HN (τ, s;R,H)

−λN (r1)e(−r1h1)(cτ + d)−sΓ(s)(−2πi)−s
(
ψ(h2, r2, s) + e

(s
2

)
ψ(−h2,−r2, s)

)
+λN (R1)e(−R1H1)Γ(s)(−2πi)−s

(
ψ(H2, R2, s) + e

(
−s

2

)
ψ(−H2,−R2, s)

)
+(2πi)−sLN (τ, s;R,H),

where

LN (τ, s;R,H) :

=

c′∑
j=1

e(−H1(Nj +N [R1/N ]− c)−H2([R2] + 1 + [(Njd+ %N )/c]− d))

·
∫
C

us−1
e−(cτ+d)(Nj−N{R1/N})u/c

e−(cτ+d)u − e(cH1 + dH2)

e{(Njd+%N )/c}u

eu − e(−H2)
du,
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where C is a loop beginning at +∞, proceeding in the upper half-plane,
encircling the origin in the positive direction so that u = 0 is the only
zero of

(e−(cτ+d)u − e(cH1 + dH2))(e
u − e(−H2))

lying “inside” the loop, and then returning to +∞ in the lower half
plane. Here, we choose the branch of us with 0 < arg u < 2π.

If s is an integer, then we can evaluate the integration in Theo-
rem 1.1 by using the residue theorem. Note that after evaluation of
LN(τ, s;R,H) for an integer s, the transformation formula in Theorem
1.1 will be valid for all τ ∈ H by analytic continuation. We shall use the
generating function

text

et − 1
=
∞∑
n=0

Bn(x)
tn

n!
(|t| < 2π)

for the Bernoulli polynomials Bn(x), n ≥ 0. The n-th Bernoulli number
Bn, n ≥ 0, is defined by Bn = Bn(0). Put B̄n(x) = Bn({x}), n ≥ 0.
Recall that B2n+1 = 0, n ≥ 1, and that B2n+1(1/2) = 0, n ≥ 0. We
often use the following formulas [1];

Bn(1− x) = (−1)nBn(x),

c−1∑
j=0

Bn

(
j

c
+ x

)
= c1−nBn(cx),

Bn

(
1

2

)
= −(1− 21−n)Bn, n ≥ 0.

For the zeta function ζ(s), we see in [1] that

ζ(2M) =
22M−1|B2M |π2M

(2M)!
, M > 0,

and

ζ(1− 2M) = −B2M

2M
, M > 0.

Let ζ(s, x) be the Hurwitz zeta-function. Here, for brevity, we set

D1(h2, r2, s) := −(cτ + d)−sΓ(s)(−2πi)−s
(
ψ(h2, r2, s) + e

(s
2

)
ψ(−h2,−r2, s)

)
,

and

D2(H2, R2, s) := Γ(s)(−2πi)−s
(
ψ(H2, R2, s) + e

(
−s

2

)
ψ(−H2,−R2, s)

)
.
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We have two lemmas as follows.

Lemma 1.2. Let n be an arbitrary integer and assume that r2, R2 are
not integers. If n < −1, then

lim
s→−n

D1(0, r2, s) = −(2πi)nΓ(−n)(cτ + d)n((−1)nζ(−n, {r2}) + ζ(−n, 1− {r2})),
lim
s→−n

D2(0, R2, s) = (2πi)nΓ(−n)((−1)nζ(−n, {R2}) + ζ(−n, 1− {R2})).

If n = −1, 0, then

lim
s→1

D1(0, r2, s) = (2i)−1(cτ + d)−1(cot(πr2)− i),
lim
s→1

D2(0, r2, s) = −(2i)−1(cot(πr2) + i),

lim
s→0

D1(0, r2, s) = log
(
1− e−2πir2

)
,

lim
s→0

D2(0, R2, s) = − log
(
1− e−2πiR2

)
− 2πiB̄1(R2).

If n > 0, then

lim
s→−n

D1(0, r2, s) = (−1)n+1(cτ + d)nψ(−r2, 0, 1 + n),

lim
s→−n

D2(0, R2, s) = ψ(R2, 0, 1 + n).

Proof. We only give a proof for the case of s = 1. The others are
immediate consequences of facts in [2], pp. 501–502 and an elementary
calculus. From [10], we see that

lim
s→1

(ζ(s, x)− 1

s− 1
) = −ψ0(x),

where ψ0 is the digamma function, i.e., ψ0(x) = d
dx

log Γ(x). It is known
[1] that ψ0 satisfies

ψ0(1− x)− ψ0(x) = π cot(πx).

Use now the expansions at s = 1,

ζ(s, x) =
1

s− 1
− ψ0(x) + · · · ,

e−πis = −1 + π(s− 1)i+ · · · ,

to conclude that

lim
s→1

(
ζ(s, x) + e

(s
2

)
ζ(s, 1− x)

)
= π cot(πx)− πi.
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Lemma 1.3. Let n be an arbitrary integer and assume that r2, R2 are
integers. Then

lim
s→0

(D1(0, r2, s) +D2(0, R2, s)) = πi− log(cτ + d).

If n 6= 0, then

lim
s→−n

D1(0, r2, s) = (−1)n+1(cτ + d)nζ(1 + n),

lim
s→−n

D2(0, R2, s) = ζ(1 + n).

This last lemma is obtained by the similar way in the proof of Lemma
1.2.

2. Infinite series

In this section, we find some infinite series from Theorem 1.1 under a
modular transformation. Let N be a positive integer, and let r1 and r2
be arbitrary real numbers. Put

r =
(
r1,

r2
N

)
, h = (0, 0), s = −n, τ =

N − 1

N
+

1

N
z, V τ =

1

N
− 1

N

1

z
for Re z ≥ 0 and for any integer n. Here, V is a modular transformation
corresponding to the matrix(

1 −1
N −N + 1

)
.

Then (R1, R2) = (r1 + r2,−r1 − r2 + r2/N). Now we let N | r1 and
N - (r1 + r2). By Theorem 1.1, we see that

znHN(V τ,−n; r, 0) = HN(τ,−n;R, 0) + (2πi)nLN(τ,−2n;R, 0)

+ lim
s→−n

D1

(
0,
r2
N
, s
)
.

We also obtain the following results regarding HN(τ, s; r, h). Let n be
an arbitrary integer. For N |r1,

HN(V τ,−2n; r, 0) = 2
∞∑
k=1

cos(2πr2k/N)

k2n+1(e2πik/z − 1)
(2.1)

and

HN(V τ,−2n− 1; r, 0) = 2i
∞∑
k=1

sin(2πr2k/N)

k2n+2(e2πik/z − 1)
.(2.2)
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For N - R1 = r1 + r2,

HN(τ,−2n;R, 0)(2.3)

=
∞∑
k=1

cosh(πik(−2r1/N + (2{(r1 + r2)/N} − 1)z))

k2n+1 sinh(−πikz)

and

HN(τ,−2n− 1;R, 0)(2.4)

=
∞∑
k=1

sinh(πik(−2r1/N + (2{(r1 + r2)/N} − 1)z))

k2n+2 sinh(−πikz)
.

Next, we have

LN(τ,−n;R, 0)(2.5)

= −2πi
n+2∑
k=0

B̄k((r1 + r2)/N)B̄n+2−k(%N/N)

k!(n+ 2− k)!
zk−1.

Since %N/N = −[−r2 + r2/N ]−N [r2/N ]+ [r2/N ], we have {%N/N} = 0.
Using Lemma 1.2, Lemma 1.3 and (2.1)–(2.5), it follows that

z2n
∞∑
k=1

2 cos(2πr2k/N)

k2n+1(e2πik/z − 1)
=

∞∑
k=1

cosh(πizk(2{r2/N} − 1))

k2n+1 sinh(−πizk)

−(2πi)2n+1
2n+2∑
k=0

B̄k(r2/N)B2n+2−k

k!(2n+ 2− k)!
zk−1 +K0(n),(2.6)

where

K0(n) : =


−z2n(2πi)2n(−2n− 1)!(ζ(−2n, {r2/N}) + ζ(−2n, 1− {r2/N})),

if n < 0,

log(1− e−2πir2/N ), if n = 0,

−z2nψ(−r2/N, 0, 2n+ 1), if n > 0,

and

z2n+1
∞∑
k=1

2i sin(2πr2k/N)

k2n+2(e2πik/z − 1)
=

∞∑
k=1

sinh(πizk(2{r2/N} − 1))

k2n+2 sinh(−πizk)

−(2πi)2n+2
2n+3∑
k=0

B̄k(r2/N)B2n+3−k

k!(2n+ 3− k)!
zk−1 +K0(n),(2.7)
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where

K0(n) :=


(2πiz)2n+1(−2n− 2)!(ζ(−2n− 1, {r2/N})− ζ(−2n− 1, 1− {r2/N})),

if n < −1,

(2πiz)−1 lims→1(ζ(s, {r2/N}) + e(s/2)ζ(s, 1− {r2/N})), if n = −1,

z2n+1ψ(−r2/N, 0, 2n+ 2), if n ≥ 0.

Theorem 2.1. Let α, β > 0 with αβ = π2 and let 0 < γ < 1. Then,
for any integer n,

α−n
∞∑
k=1

2 cos(2πγk)

k2n+1(e2αk − 1)
(2.8)

= (−β)−n
∞∑
k=1

cosh((1− 2γ)βk)

k2n+1 sinh(βk)
− 22n+1

n+1∑
k=0

B2k(γ)B2n+2−2k

(2k)!(2n+ 2− 2k)!
αn−k+1(−β)k

+i
(−α)−n(2π)2n+1B2n+1(γ)

2(2n+ 1)!
+K1(n),

where

K1(n) :=


−22n(−β)n(−2n− 1)!(ζ(−2n, γ) + ζ(−2n, 1− γ)), if n < 0,

log(1− e−2πiγ), if n = 0,

−α−nψ(−γ, 0, 2n+ 1), if n > 0.

Proof. Put z = πi/α and let {r2/N} = γ in (2.6). Use B1 = −1/2
and B2k+1 = 0 for k > 0.

Theorem 2.2. Let α, β > 0 with αβ = π2 and let 0 < γ < 1. Then,
for any integer n,

α−n−1/2
∞∑
k=1

2i sin(2πγk)

k2n+2(e2αk − 1)
= (−β)−n−1/2

∞∑
k=1

sinh((1− 2γ)βk)

k2n+2 sinh(βk)

−22n+2πi

n+1∑
k=0

B2k+1(γ)B2n+2−2k

(2k + 1)!(2n+ 2− 2k)!
αn−k+

1
2 (−β)k

+
(−1)n+1(2π)2n+2α−n−1/2B2n+2(γ)

2(2n+ 2)!
+K1(n),(2.9)

where

K1(n) :=


22n+1(−β)n+1/2(−2n− 2)!(ζ(−2n− 1, γ)− ζ(−2n− 1, 1− γ)), if n < −1,

−α1/2(1 + i cot(πγ))/2, if n = −1,

α−n−1/2ψ(−γ, 0, 2n+ 2), if n ≥ 0.

Proof. Put z = πi/α and let {r2/N} = γ in (2.7). For n = −1, apply
Lemma 1.2.
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Theorem 2.1 for n ≥ 0 and Theorem 2.2 for n ≥ 1 have been given by
Berndt [3] in different forms employing

cosh((1− 2γ)βk)

sinh(βk)
=

2 cosh(2βkγ)

e2βk − 1
+ e−2βkγ.(2.10)

Some special cases of Theorem 2.1 and Theorem 2.2 have been given by
other authors. In case of n = −1, Schlömilch [7, 8] established (2.8) and
(2.9) in different forms using (2.10). For n = −1 and α = β = π, (2.8)
was given by Watson [9]. Lagrange [5] has given a proof for (2.9) in case
of n = −1 and a proof of (2.8) in case of n = 0. With replacing α by
α2, β by β2, and letting γ = t/β, (2.9) in cases of n = −1 and n = 0 are
found in Ramanujan’s Notebooks [6]. By equating the imaginary parts
and the real parts of (2.8) and (2.9), respectively, we have the Fourier
series of the Bernoulli polynomials [3], i.e., for any positive integer M ,

B2M−1(γ) =
2(2M − 1)!(−1)M

(2π)2M−1

∞∑
k=1

sin(2πγk)

k2M−1
,

B2M(γ) =
2(2M)!(−1)M−1

(2π)2M

∞∑
k=1

cos(2πγk)

k2M
.

Let
( ·
3

)
be the Legendre symbol.

Proposition 2.3. Let α, β > 0 with αβ = π2. Then, for any integer
n,

√
3α−n−1/2

∞∑
k=1

(
k

3

)
k−2n−2

e2αk − 1
= (−1)n+1β−n−1/2

∞∑
k=1

sinh(βk/3)

k2n+2 sinh(βk)

−22n+2π

n+1∑
k=0

B2k+1(1/3)B2n+2−2k

(2k + 1)!(2n+ 2− 2k)!
αn−k+1/2(−β)k +K4(n),

where

K4(n) :=


−3−2n−3/2α−n−1/2B−2n−1(1/3)/(2n+ 1), if n < −1,

−
√

3α1/2/6, if n = −1,

−2−13−2n−3/2α−n−1/2(ζ(2n+ 2, 1/3)− ζ(2n+ 2, 2/3)), if n ≥ 0.

Proof. Put γ = 1/3 in Theorem 2.2. For n < −1, we obtain

ζ

(
−2n− 1,

1

3

)
− ζ

(
−2n− 1,

2

3

)
(2.11)

=
(−1)n(6π)−2n−1B−2n−1(1/3)√

3(−2n− 1)!
.
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For n ≥ 0, we see

Im

(
ψ

(
−1

3
, 0, 2n+ 2

))

= −
√

3

2

 ∑
k≡1 (mod 3)

1

k2n+2
−

∑
k≡2 (mod 3)

1

k2n+2


= −3−2n−3/2

2

(
ζ

(
2n+ 2,

1

3

)
− ζ

(
2n+ 2,

2

3

))
.

Equate the imaginary parts in Theorem 2.2.

Corollary 2.4. Let α, β > 0 with αβ = π2. Then

√
3α1/2

(
∞∑
k=1

(
k

3

)
1

e2αk − 1
+

1

6

)
= β1/2

(
∞∑
k=1

sinh(βk/3)

sinh(βk)
+

1

6

)
.

Proof. Put n = −1 in Proposition 2.3.

Corollary 2.5. For any positive integer M ,
∞∑
k=1

(
k

3

)
k2M

e2πk − 1
=

(−1)M√
3

∞∑
k=1

k2M sinh(πk/3)

sinh(πk)
+

32MB2M+1(1/3)

2M + 1
.

Proof. Put n = −M − 1 and let α = β = π in Proposition 2.3.

Corollary 2.5 should be compared with Proposition 4.24 and Proposition
4.25 in [3], p. 185.

Proposition 2.6. Let α, β > 0 with αβ = π2. Then, for any integer
n,

√
3α−n−1/2

∞∑
k=1

(
k

3

)
(−1)k+1k−2n−2

e2αk − 1

= (−1)n+1β−n−1/2
∞∑
k=1

k−2n−2 sinh(2βk/3)

sinh(βk)

−22n+2π

n+1∑
k=0

B2k+1(1/6)B2n+2−2k

(2k + 1)!(2n+ 2− 2k)!
αn−k+1/2(−β)k +K5(n),

where

K5(n) :=


−3−2n−3/2(2−2n−1 + 1)α−n−1/2B−2n−1(1/3)/(2n+ 1), if n < −1,

−
√
3
2 α

1/2, if n = −1,

−
√
3
2 6−2n−2α−n−

1
2 fn, if n ≥ 0

and fn := ζ(2n+ 2, 1/3)− ζ(2n+ 2, 2/3) + ζ(2n+ 2, 1/6)− ζ(2n+ 2, 5/6).
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Proof. Put γ = 1/6 in Theorem 2.2. For n < −1, we have

ζ

(
−2n− 1,

1

6

)
− ζ

(
−2n− 1,

5

6

)
=

(−1)n(2−2n−1 + 1)(6π)−2n−1B−2n−1(1/3)√
3(−2n− 1)!

.

For n ≥ 0, we see

Im

(
ψ

(
−1

6
, 0, 2n+ 2

))
=

√
3

2

 ∑
k≡1 (mod 3)

(−1)k

k2n+2
−

∑
k≡2 (mod 3)

(−1)k

k2n+2


= −
√

3

2
6−2n−2

(
ζ

(
2n+ 2,

1

3

)
− ζ

(
2n+ 2,

2

3

)
+ ζ

(
2n+ 2,

1

6

)
− ζ

(
2n+ 2,

5

6

))
.

Equate the imaginary parts in Theorem 2.2.

Corollary 2.7. Let α, β > 0 with αβ = π2. Then

√
3α1/2

(
∞∑
k=1

(
k

3

)
(−1)k+1

e2αk − 1
+

1

2

)
= β1/2

(
∞∑
k=1

sinh(2βk/3)

sinh(βk)
+

1

3

)
.

Proof. Put n = −1 in Proposition 2.6.

Corollary 2.8. For any positive integer M ,
∞∑
k=1

(
k

3

)
(−1)k k2M

e2πk − 1

=
(−1)M√

3

∞∑
k=1

k2M sinh(2πk/3)

sinh(πk)
+

32M(22M+1 + 1)B2M+1(1/3)

2M + 1
.

Proof. Put n = −M − 1 and let α = β = π in Proposition 2.6.

Remark 2.9. In case of N | r1 and N | (r1 + r2), we have

z2nHN (V τ,−2n; r, 0) = HN (τ,−2n;R, 0) + (2πi)2nLN (τ,−2n;R, 0)

+ lim
s→−2n

(
D1

(
0,
r2
N
, s
)

+D2

(
0,−r1 − r2 +

r2
N
, s
))

.

Hence employing Lemma 1.3, we obtain

z2n
∞∑
k=1

1

k2n+1

2

e2πik/z − 1
(2.12)

=

∞∑
k=1

1

k2n+1

2

e−2πikz − 1
− (2πi)2n+1

2n+2∑
k=0

BkB2n+2−k

k!(2n+ 2− k)!
zk−1 + J(n),

where

J(n) :=

{(
1− z2n

)
ζ(1 + 2n), if n 6= 0,

πi− log z, if n = 0.
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For z = πi/α, (2.12) was fully studied by Berndt [3]. In fact, many
authors containing Ramanujan established various infinite series which
come from (2.12) and these are written very well in [3]. For example,
‘Ramanujan’s Formula for ζ(2M+1)’ that is stated twice in Ramanujan’s
Notebooks [6](vol. I, p.259, no.15; vol. II, p.177, no.21) can be obtained
from (2.12).

Acknowledgement. The author thanks B.C. Berndt for his sugges-
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