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STUDIES ON BOUNDARY VALUE PROBLEMS FOR
BILATERAL DIFFERENCE SYSTEMS WITH
ONE-DIMENSIONAL LAPLACIANS

XIAOHUI YANG AND YuJr Liu*

ABSTRACT. Existence results for multiple positive solutions of two
classes of boundary value problems for bilateral difference systems
are established by using a fixed point theorem under convenient as-
sumptions. It is the purpose of this paper to show that the approach
to get positive solutions of boundary value problems of finite differ-
ence equations by using multi-fixed-point theorems can be extended
to treat the bilateral difference systems with one-dimensional Lapla-
cians. As an application, the sufficient conditions are established
for finding multiple positive homoclinic solutions of a bilateral dif-
ference system. The methods used in this paper may be useful for
numerical simulation. An example is presented to illustrate the main
theorems. Further studies are proposed at the end of the paper.

1. Introduction

Difference equations appear naturally as analogues and as numerical
solutions of differential and delay differential equations having applica-
tions in applied digital control, biology, ecology, economics, physics and
so on [37]. It is extremely difficult to understand thoroughly the be-
haviors of their solution. Recent studies on finite difference equations
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may be seen in [2,4,5,9,10,18,20-22,24,35,38,39,52,55,63,64] and the
references therein.

Boundary value problems for difference equations can be studied in
several ways: usually, numerical analysis is employed together with fixed
point methods or other tools from nonlinear operator theory (see the
classical monographs of Agarwal [1], Kelley and Peterson [33] and Lak-
shmikanham and Trigiante [34]). In the last decade, the use of varia-
tional methods in such problems has gained increasing interest: this was
made possible by Agarwal, Perera and O’Regan [8], who established a
convenient variational framework for discrete BVP’s, analogous to that
used in differential equations.

Many authors have applied different results in critical point theory
to prove existence and multiplicity results for the solutions of discrete
BVP’s: let us mention the works of Cabada, Iannizzotto and Tersian [14],
Cai, Guo and Yu [16], Candito and Giovannelli [17], Faraci and Ianniz-
zotto [23], Jiang and Zhou [30], Kong [31], Long [36], Mihailescu, Rad-
ulescu and Tersian [54], and Ricceri [57] and so on. We also mention the
papers [25,26,42,45,49,51,58,61] concerning the existence of periodic
solutions, homoclinic solutions, subharmonic solutions of bilateral dif-
ference equations and papers [40, 43,44, 46-48,50, 59, 60, 65] concerning
the solvability of boundary value problems of difference equations on
bounded discrete intervals of the type [m,n] = {k € Z : m < k < n}
which allows one to search for solutions in a finite-dimensional Banach
space.

The asymptotic theory of difference equations is an area in which there
is great activity among a large number of investigators. In this theory, it
is of great interest to investigate, in particular, the existence of solutions
with prescribed asymptotic behavior, which are global in the sense that
they are solutions on the whole discrete interval (Z = {0,+1,£2,---})
or semi-infinite discrete intervals (IN = {0,1,2,---}). The existence of
global solutions with prescribed asymptotic behavior is usually formu-
lated as the existence of solutions of boundary value problems on the
whole discrete interval (Z = {0,4+1,+£2,---}) or semi-infinite discrete
intervals (IN = {0,1,2,---}). The issue of finding solutions for discrete
BVP’s on unbounded discrete intervals is more delicate.

Cabada and Cid [12] and Cabada and Tersian [13] and authors in
[3,6,7,32,62] studied the existence of solutions of difference equations
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defined semi-infinite discrete intervals (IN = {0, 1,2,---}) by using dif-
ferent methods such as the approximation method.
In [62], the existence of multiple positive solutions of the boundary
value problems for second-order discrete equations
(1)
A?z(n—1) —pAz(n —1) — gz(n — 1) + f(n,z(n)) = 0,n € IN,

azr(0) — fAz(0) =0, lim z(n) =0,
n—-+oo
was investigated by using the cone compression and expansion fixed
point theorems in Banach spaces, where a > 0,5 > 0, p > 0,¢ > 0 and
f is a continuous function.

In paper [3], it was considered the existence of solutions of a class of
the infinite time scale boundary value problems. It is easy to see that
the results in [3] can be applied to the following BVP for the infinite
difference equation

A%z(n) + f(n,z(n)) =0, n € N,

(2)
z(0) =0, z(n) is bounded.

The methods used in [3] are based upon the growth argument and the
upper and lower solutions methods.

In [56], the authors dealt with the second-order non-autonomous dif-
ference equation

(3) Azx(n) = (ni 1) (Aaz(n —1)+ h2f(a:(n))) ,n €N,

which is a difference model reduced from a differential model in hydro-
dynamics or in nonlinear field theory. (3) can be transformed to the
following form

A(n*Az(n —1)) = h*(n+1)*f(z(n)),n € N,

where h > 0 is a parameter and f is Lipschitz continuous and has three
real zeros Ly < 0 < L, conditions for f under which for each sufficiently
small h > 0 there exists a homoclinic solution of the above equation
were presented.
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In [66], the periodic difference equation with saturable nonlinearity
defined on whole discrete interval (Z = {0, £1,42,---})

3

(4) apx(n+1)+a,_12(n — 1) + byz(n) —wx(n) = oXnx(n)

= 2 nheZ
1+ cpz(n)? "

was considered, where Z denotes the set of all integers, {a,} and {b,}
are real valued T'—periodic sequences, {x,} and {¢,} are positive real
valued T'—periodic sequences. It is easy to see that (4) can be changed
to the following form

3
oxnz(n
Aap—1Az(n —1)) = HXC—Z(‘(T>1)2 +w—b, —a, —ay,_1]z(n),n € Z.

In [37], authors investigated the existence at least three solutions
of the following boundary value problem of the second order bilateral
difference system

( Alp(n)¢(Az(n))] + f(n,2(n),y(n)) =0, neZ,

Alg(n)(Ay(n)] + g(n, z(n),y(n)) =0, n € Z,

lim_r(n) — 5 ayr(n) = Tim_y(n)— 35 uy(n) =0,

n——00 n=-—00 n=-—o00

lim ¢ (p(n)Az(n) — 5. Bula(n) =0,

n—-+oo n——oo

lim ¢ (g(n)Ay(n) — S b.Ay(n) = 0.

L n—-+00 n=—o0

In applications, it occurs that there exist many kinds of bilateral
difference systems [1,2,11,28,41] and the nonlinearities always depend
on the A operator. Motivated by [28,29,37], the purpose of this paper
is to investigate the following boundary value problems of the second
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order bilateral difference systems with one-dimensional Laplacians
( Alp(n)@(Az(n))] + f(n,y(n), Ay(n)) =0, n€Z,

Alg(n)¥(Ay(n))] + g(n, z(n), Ax(n)) =0, n € Z,

) i at)— 55 auatn) = Tm_yn) = 5 () =

n——00 n=-—oo - n=-—oo

lim x(n) — JFZO:O frr(n) = lim y(n) — JFZO:O dpy(n) =0

L n——+00 n——o0 n—+oo n——oo
and
( Alp(n)®(Az(n))] + f(n,y(n), Ay(n)) =0, ne€Z,
Alg(n)¥(Ay(n))] + g(n,z(n), Az(n)) =0, n € Z,
+oo +o0
lim_o(n) = 35 aua(n) = lim_y(n) = 55 () =0,
(5)
im0 3 g ) =0,
n—+o00 1+S:2 7(? (o)) n;w ( )
lim —— 20— Sy 0
\ n—4o00 1+S:z_: 7‘11 1( D)) n_z—oo ( )
where

(a) Z denotes the set of all integers, Az(n) = z(n + 1) — x(n),
Ay(n) =y(n+1) —y(n),
(b) p(n),q(n) > 0 for all n € Z satisfying

0

0
Z@ 7Zq>lp(5 qu 72@1 <+OO

(b") p(n),q(n) >0 for all n € Z satisfying

400 +o00 0 0
1 _ 1 _ 1 1
L TG — 2 T 0% L w2 v ey < P
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(c) an, BnsYn, 0n > 0 for all n € Z and satisfy

+oo +00
Yooan <1, > B.<1, Zalzél(p(s))<+oo,

+o00o +o00o
n§w7n< 1, n;@% <1, 72 Vi Z Ty < 100

(c) an, Bn, Yn, 0n > 0 for all n € Z and satisfy

+o0 +oo
Yooa, <1, > <1

n=—oo n=—oo

E /Bn “+00

- —— EO%Z@l(p ZﬁnZ@ Oa

1- Z an n=—00
n=-—oo

Z On 400 +oo n—1

- == Z %L Z T=1(a(D) Z 2 q(t) >0,

1- Z Yn M=—00 —
n=—oo

(d) f,9 : Z x[0,400) x R — [0,4+0c0), f is a g—Carathéodory
function, and g a p—Carathéodory function (see Definitions 9 and 10 in
Section 2), and f(n,0,0)? + g(n,0,0)? > 0 for n € Z,

(d) f,9:Zx[0,400) x R — [0, +00), f is a g—sub-Carathéodory
function, and g a p—sub-Carathéodory function (see Definitions 5 and 6
in Section 2), and f(n,0,0)% + g(n,0,0)> > 0 for n € Z,

(e) @ is defined by ®(z) = |z|*?z with s > 1, and ¥(z) = |z|'2x
with £ > 1 are called one-dimensional Laplacian or Laplacian operator,
their inverse functions are denoted by ®~! and ¥~! respectively, ®, ¥
are called one-dimensional Laplacian operators.

A pair of bilateral sequences {(z(n),y(n))} is called a solution of
BVP(5) (or BVP(Y)) if x(n),y(n) satisfy all equations in (5) (or (5')).
A solution {(xz(n),y(n))} of BVP(5) (or BVP(5')) is called a positive
solution of (5) (or (5')) if x(n) > 0,y(n) > 0 for all n € Z and any
integers M > m, z(n)? + y(n)? £ 0 for n € [m, M].

We establish sufficient conditions for the existence of at least three
positive solutions of BVP(5) and BVP(5') respectively. This paper may
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be the first one to study the solvability boundary value problems of bilat-

+o0o +oo
eral difference systems with > m = > m = +o00. The

most interesting part in this article is to transform these BVPs to oper-
ator equations and to construct nonlinear operators on cones of suitable
Banach spaces, this constructing method is not found in known papers.

As an application, we consider the existence of multiple positive so-
lutions of the following problem:

( Al(ln] +1)*Az(n)] + f(n,y(n), Ay(n)) =0, n€Z,
Al(In] + 1)*Ay(n)] + g(n, x(n), Az(n)) =0, n € Z,

lim z(n) =0, lim y(n)=0,

n——oo n——oo

where f,g:Z x [0,+00) x R — [0,400) are continuous functions sat-
isfying for each ng € Z, f(n,0,0)? + g(n,0,0)? # 0 for n < ny, for each
n € Z, f(n,0,0)* + g(n,0,0)* # 0 for n > ny;. Obviously, (6) is a
special case of (5) with ¢(x) = (z) = z, p(n) = q(n) = (|n| + 1),
Q= Bp =9 =0, =0foralln € Z.

As usual, we say that a solution (z,y) of the following bilateral dif-
ference system

Al(In] + 1)*Az(n)] + f(n,y(n), Ay(n)) =0, n€Z,

(7)
A[(In + 1)*Ay(n)] + g(n, x(n), Az(n)) =0, n € Z,

is homoclinic (to 0) if

lim z(n)= lim y(n)=0 holds.
[n]—+o0 |n]—+o00
Hence the solutions of (6) are homoclinic solutions of (7). Thus the suf-
ficient conditions are established for finding multiple positive homoclinic
solutions of the bilateral difference system (7).

The remainder of this paper is organized as follows: in Section 2,
we first give some technical lemmas and preliminary results. The first
result is proved for the existence of multiple positive solutions of BVP(5)
under (a), (b), (¢), (d) and (e) in Section 3. The second result for the
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existence of solutions of BVP(5’) under (a), (b’), (¢’), (d) and (e) is
proved in Section 4. An example is presented in Section 5.

2. Preliminary Results

In this section, we present some background definitions in Banach
spaces, state an important three fixed point theorem [9] and then prove
some technical lemmas.

DEFINITION 1. [9] Let E be a real Banach space. The nonempty
convex closed subset P of E is called a cone in E if ax € P for all z € P
and a > 0,z € F and —z € E imply x = 0.

DEFINITION 2. [9] A map ¢ : P — [0,400) is a nonnegative con-
tinuous concave or convex functional map provided ¢ is nonnegative,
continuous and satisfies ¢(tz + (1 — t)y) > to(x) + (1 — t)p(y), or
otz + (1 —t)y) <tp(z)+ (1 —t)p(y), for all z,y € P and t € [0, 1].

DEFINITION 3. [9] An operator T': E — E is completely continuous
if it is continuous and maps bounded sets into relatively compact sets.

DEFINITION 4. [9] Let a,b,c,d,h > 0 be positive constants, a, ¢ be
two nonnegative continuous concave functionals on the cone P, v, 3,6 be
three nonnegative continuous convex functionals on the cone P. Define
the convex sets as follows:

P.={x € P:||z|]| <c},
P(y,a;a,¢c) ={x € P:a(x) > a, y(z) < c},
P(v,0,a;a,b,¢c) ={x € P:a(x) >a, O(x) <b, v(x) <c},
Q(v.8;,d,c) ={zx € P: B(z) <d, y(z) < c},
Q(v. 8, ¢:h.d,c) ={x € P:o(x) > h, f(z) < d, y(x) < c}.
LEmMMA 1. [9,10] Let E be a real Banach space, P be a cone in E,
a, ¢ be two nonnegative continuous concave functionals on the cone P,

v, 8,0 be three nonnegative continuous convex functionals on the cone
P. There exist constant M > 0 such that

a(z) < B(x), ||z|| < M~(x) for all x € P.

Furthermore, Suppose that h,d,a,b,c > 0 are constants with d < a. Let
T : P.— P. be a completely continuous operator. If
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(C1): {y € P(v,0,c;a,b,c)|a(x) > a} # () and
a(Tz) > a for every x € P(v,0,a;a,b,c);

(C2): {y € Q(7.0,¢:h,d,c)|B(x) < d} # 0 and
B(Tx) < d for every x € Q(,0,p;h,d, c);

(C3): a(Ty) > a fory € P(vy,a;a,c) with 0(Ty) > b;
(C4): B(Tx) < d for each x € Q(v, B;d,c) with o(Tx) < h,

then T has at least three fixed points vy, yo and y3 such that
Bly) < d, a(y2) > a, Bys) > d, alys) <a.

DEFINITION 5. f is called a g—sub-Carathéodory function if it satis-
fies that

n 1 1
(u,v) = f (n (1 + _2030 qfl(qw)) , W(q(n))“)

is continuous, and for each r > 0 there exists a nonnegative bilateral

+o00
real number sequence {¢,(n)} with > ¢,(n) < +oo such that

n=—0oo

(0 (14 2 by ) e )| < 6o0m € 2l < el <

DEFINITION 6. f is called a ¢g—Carathéodory function if it satisfies
that

1
(U, ’U) — f (n, u, WU)
is continuous, and for each r > 0 there exists a nonnegative bilateral

+oo
real number sequence {¢,(n)} with > ¢,(n) < +oo such that

n=—oo

1 (s grie) | € 6 m € ZJul < v ol < 7

3. Existence of positive solutions of BVP(5’)

In this section, we establish existence result for three positive solutions
of BVP(5).
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Choose
z(n) € R,n € Z, there exist the limits
lim —— i
Yoy AT i e,

S ()

. —1 . —1
im_ &7 (p(n) A(n), Tim_ @ (p(n))Ac(n)
Define the norm

][ x = max § sup —="—— sup,. .z @7 (p(n))|Az(n)] p ,x € X.

n€Z W ¥ 5=rony

It is easy to see that X is a real Banach space.

Choose
y(n) € R,n € Z, there exist the limits
lim () , lim y(n),
Y = {y(n)} n—+o00 14 4\11—1111(3)) n—>—ooy< )

8§=—00

Jim W g(n)Ay(n), lim U (g(n))Ay(n)

Define the norm

lylly = max ¢ sup —=20—— sup U (g(n))|Ay(n)| o,y €Y.

nef 1+ 72 4\11*1(11(3)) neZ

It is easy to see that Y is a real Banach space.
Let E = X XY be defined by F = {(z,y) : x € X,y € Y} with the
norm ||(z,y)|| = max{||z||, ||y||}. Then E is a Banach space.

Denote

Z Bn —+00

51:1n_; Z@nch )+25n2¢ (1)’

n=-—oo

Z 571 +OO

€9 = —Fo— Z’Van; )+Z(5 Z\p T(q()

1— Z Yn N=—00

_ _%(e1) _ _¥(e2)
€1 = 1—<1>(151)’ €2 = 1—\1/(252)'
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LEMMA 2. Suppose that (b'), (C’) and (e) hold and h(n) # 0(n € Z)

be a nonnegative sequence with Z h(n) converging. Then there exists

n=—oo

+o0
a unique number Ay € [0, €1y, h(n)] such that

n=—oo

Z Bn  +oo
v = $ S e (e She)
1— Z ap N=—00
) o
+n_z_ooﬁn Z - p(t <Ah+szth( ))
Proof. Let

Z B +o0 +o00
Gle)=1———=— > a, Z sy (1 +Iy h(s))
1— Z Qp N=—00 s=t

n=-—oo

E Bn Z T (1+§§h<s)).

n=—0o0

It is easy to see that G is increasing on (—o0, 0) and (0, +00) respectively.
One has

lim G(c) = 400, lim G(c) = —o0,

c—0~ c—07t

Z Bn “+o0
lim Gle)=1——"—=— > a, Z =T
=00 1- Z o N=—00

n=-—oo

Zﬁn2¢ > 0.

n=—oo
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Furthermore, we have

n:z—ooﬁn oo n—1 1 . . +oo
=1 1— +2°:° an n:z—:oo cn Z Qil(p(t))q) L+ €1 E):O h(n) Z h(n)
+o0 n—1 . . , 1o
— > Bn 2 <I>—1(p(t))q) 1+ —— Z h(n)
S a 3 ) s
“+oo

>1- 222 3 4 ¥ gyt (14 2)
1— Z Qn n—z;oo Z e (p €

n=-—oo

- 5 2y Z e ® (14 ) =1-c07 (1+ 1) =0,

n=—oo

+oo
Hence there exists a unique Ay, € [O, €1 Y. h(n)} such that (8) holds.

n=—oo

The proof is complete. O

LEMMA 3. Suppose that (b'), (c’) and (e) hold and h(n) # 0(n € Z)

be a nonnegative sequence with Z h(n) converging. Then there exists

+o0 ,
a unique number By, € |:0,€2 > h(n)} such that
_zj On “+o0 —+o00
VB = S E S s (Bt S h0)
1— E Yn N=—00 = s=t
) —
+o0
n=—00 s=t

Proof. The proof is similar to Lemma 1 and is omitted. m



Studies on BVPs for bilateral difference systems 677

Consider the following BVP

( A[p(n)@(Ax(nL))l—i— h(n) =0, neZ,
lim z(n)— > ayz(n) =0,

(10) n——0o0 n——o0 .
lim 2(n) — > Bpx(n) =0,
\ n——+0oo 1+n—z—oo 74)_1(111(”)) n=—00

LEMMA 4. Suppose that (b'), (¢) and (e) hold. Then x is a nonneg-
ative solution of BVP(10) if and only if

z(n) = - ;: - n_z_oo Qp, Z o @7t (Ah + gh(8)>

(11)
n—1 1 . +o0
+t > T 2 (Ah + > h(5)> ;

=— s=t

+o0o
where Ay, € {O, €&y, h(s)} satisfying (8).

S§=—00

+oo
Proof. Suppose that x is a solution of (10). Because »_ h(n) is con-

n=—oo

+o0
vergent, so there exists A € R such that p(n)®(Az(n)) = A+ > h(s).
Thus there exists B € IR such that o

s=t

o) =B+ T e (44 ).

n

Since _Z m — +00 as n — +00, then

lim =) = lim & !(p(n))Ax(n).
n—+o00 14 m n—+00

n=-—oo
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+o00
Thus we have lirf ®~1(p(n))Ax(n) = > Bnz(n). Hence the bound-
n—-+0oo

n=—oo

ary conditions in (10) imply that

n=—oo n=-—oo s=t

+oo
=B 5 ht £ S bt (44 £00).

B = Bzan+ zanzél(p (A+Zh())

n=-—o00 n=—00 s=t

It follows that

B_1_ = ann;ooan 2 (A+ Zth( )>

n=-—o0

+ 565 vt (A+2h< >)

n=-—00 s=t

+o0o
From Lemma 2, we know that A = A, and A; € |:0,€1 > h(n)}

satisfies (8). Hence we get (11).

Now suppose that = satisfies (11) and A, satisfies (8). It is easy to
show that = is a solution of (10). We need to prove that x is pos-
itive. From Alp(n)®(Az(n))] = —h(n) < 0 for all n € Z, we see
®~!(p(n))Az(n) is decreasing. Since Aj = nl_l)riloop(n)qD(Ax(n)) > 0,

then ®~1(p(n ))A:c( ) > 0 for all n. So x(n) is increasing. Then
lim z(n) = Z ayz(n) > lim z(n) Z Q. SO

n——oo n=—oo n——oo n=—00

(1— +Zo° an) lim x(n) > 0.

N——o00 n——00

By (¢/), we know lim z(n) > 0. Then z(n) > 0 for all n € Z. The

——00
proof is complete. n
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Consider the following BVP
[ Alg(n)¥(Ay(n))] +h(n) =0, neZ

lim y(n)— > u(n) =0,

(12) < n——oo n——o0
- 5 duyln) =0
hm — 2yn)=2~u,

\ n=-—oo

Similarly to Lemma 4, we can prove the following lemma.

LEMMA 5. Suppose that (b'), (¢) and (e) hold. Then x is a nonneg-
ative solution of BVP(12) if and only if

v = —— ¥ 0 T gl (Bt E0o)

1— Z Yn, N=—00 s=t

n=—oo

(13)

n—1 +o0
+ 2 (Bh > h(s)) ,

+oo
where By, € |:0,€2 > h(s)} satisfying (9).

S§=—0Q

Choose k£ € Z with k > 2. Denote

1
1+Z@ Q=14 2 o)

P(t) = Py + (Puy1 —Pn)(t—n), tenn+1,neZ,
Q) =Qn+ (Quni1 — Qn)(t—n), t€n,n+1],neZ.
Then both P and Q are strictly increasing on R. Let ¢t = P7!(7) and

t = Q7(7) be the inverse function of 7 = P(t) — 1 and 7 = Q(t) — 1
respectively.

LEMMA 6. Suppose that (b'), (¢ ) and (e) hold, h(n) > 0 for alln € Z.
Suppose x is a solution of BVP(10). Then

14 — > — 7
(14) nilin By, S MR
where

P, —1
(15) M1 = il .

Py,



680 Xiaohui Yang and Yuji Liu

Proof. Since Alp(n)®(Ax(n))] = —h(n) < 0for all n € Z, we see that
p(n)®(Ax(n)) is decreasing. Then ®~!(p(n))Az(n) is decreasing.

It follow from Lemma 4 that ®(p(n))Az(n) > 0, z(n) is increasing
and z(n) > 0 for all n € Z. Denote z(t) = ( )+ (x (n—|—1) x(n))(t—n)

forallt € [n,n+1],n € Z. Then 2/(t) = Ax(n) for all t € (n,n+1). So
dedr dzdP(t) du 1 dx
A =a/(¢ = =—AF, = ——F——.
#(n) = 2'(t) = drdt  dr dt dr d-1(p(n)) dr
Then ®*(p(n))Az(n) = %. Hence x is concave with respect to 7.
Suppose that there ex1sts ng € Z such that sup 1(3 ) — @. Hence
neZ "o
i ) L 3R) _ at(r(=R) _ a(t(Py— 1)
ne[-kk P, b, b, b,

1 P,—P,—1 P,p—1 P,—1
= —x(t 0 P, -1
Pkm(( Pno PnO—Pfk_l—i_ Pno [ ’ ])>

Pug=P-i=1 . (t( P_—1 )) 4 (P_x=D)z(t(Pay—1))

- Prg Prg—P -1 Pry
> 2}
1 P—1
t(P, 1
Pk P'n,o .’17( ( 0 ))
1 P,—1 P,-1
S (ng) > — rino) msupx(n)
Pk Pno Pk PTLO neZ Pn
If sup 5+ 2(n) — lirin % we choose ng € Z. Similarly to above discussion,
neZ P n—1oo
we get
. x(n) z(no)
> .
nen[lflll;lvk] Pn = Pno
Let n — 400, we get (14). The proof is complete. ]

LEMMA 7. Suppose that (b'), (¢ ) and (e) hold, h(n) > 0 for alln € Z.
Suppose y is a solution of BVP(12). Then

n n
(16) min, ycg ) > iz SUP yé ),
n n ne n
where
Qp—1
17 = )
( ) 2 Or

Proof. The proof is similar to Lemma 6 and is omitted. O
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Let po = min{py, po}. Define the cone P in X x Y = E by

4

z(n),y(n) >0,n € Z, )
nl_l)I_nool’(n) — Jio apx(n) =0,
i ©7 ) A(n) = 3 ua(m) =
P=< (z,y) € E: ngfjlooy(n) - niooo%y(”) =0,
im0 ) Ay — 5 d.y(n) =
nel- mmfg) > Hsp
| i >

For (z,y) € P, define (T'(x,y))(n) = (Tiy)(n), (Tox)(n)) by

(Thy)(n) =

L LI R = ot CEUES S ENNE))
1- Z O N=—00 s=t

n=—oo

5 b (40 + 69,8006 )

where A;(y) € [O, €1 Jrzo:o f(s,y(s),Ay(s))] satisfying

S§=—00

(A (y) =

Z Bn —+o00

2 S e () B et 8000)
1— Z iy M= —00 — s=t

n=-—oo

b8 6 bt (A0 + £ 15000, 8005) ).
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and
(Tyx)(n) =
1 “+o0 n—1
Foo > T 2 T ((t

n—1
X T (Bg(""’*‘) +

+o00
where By(x) € [O, € >, g(s,x

S§=—00

U (By ()

Z On

_n=—-o0

—+00

Zﬁynz\yl(q

Yn M=—00
- (

)

n=-—oo

S }: e

n=—oo

Xiaohui Yang and Yuji Liu

1+ 3 g(s,a(s), Ax(s))

s=t
)

(s), Aa:(s))} satisfying

D@l(BAx)

S (s, 2(s), Ax(s)

s=t

v (Bg<x> 5% g(s, (), Ax(s))

)

By(z) + 5 (s, 2(s), Ax(s)

s=t

LEMMA 8. Suppose that (b'), ('), (d') and (e) hold. Then

(i): it holds that

(

(ii): T'(x,y) € P for each (z,

(iii): (x,y) is a positive solu
is a fixed point of T' in P;

Alp(n)®(A(Try)(n))] + f(n,y(n),

Ay(n)) =0, neZ,
A

Alg(n) V(A(Ta) ()] + gl a(n). Ax(n) = 0. n € Z.
Jim (Tg)n) = 3 an(Ti)(m) =0
Jim (Tur)(m) — fw 3(Ta)() = 0
Jim S ngwﬁn(le)( m =0

|l B2 5 6, (Tu)(n) = 0

y) e P
tion of BVP(5) if and only if (x,y)

(iv): T': P — P is completely continuous.

)

)

epP
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Proof. For (i), (ii) and (iii), the proofs follow from Lemmas 4, 5,
6 and 7. We need to prove that (z,y) is a positive solution if (z,y)
is a fixed point of T. In fact, by Lemmas 4-7, we know that both
x and y are nonnegative. If there exist integers M > m such that
z(n)? +y(n)?> = 0 for n € [m, M|, then we get Alp(n)®(A(Tyy)(n))] =
Alg(n)¥(A(Tyz)(n))] = 0 for n € [m, M — 1]. Hence f(n,0,0)* +
g(n,0,0)> = 0 for all n € [m, M — 1], a contradiction. Hence (z,y)
is a positive solution of (5').

(iv) It suffices to prove that 7" is continuous on P and 7" maps bounded
subsets into relatively compact sets. We divide the proof into four steps:

Step 1: Prove that both y — Af(y) and x — B,(z) are continuous.
Let (zg,yx) € P with yx — yo and xp — g as k — +00. Then
there exists positive number r > 0 such that

zi(n n _ _
sup —]}() ), sup —yk( ), sup @ (p(n))| Az (n)|, sup ¥ (g(n))|Ayp(n)| <7
neZ n neZ Qn neZ neZ

for all £ = 0,1,2,--- . Hence there exists a bilateral nonnegative

+oo
sequence {¢.(n)} with > ¢,.(n) + oo satisfying

n=—oo

0 < f(n,yr(n), Ayg(n))

= F (1 Qu ™, iy UM a(n) Agi(n) ) < 6,(n),
and

0 S g(”? mk(”)? Axk(n))

= g (n P, ok @ (p(n) A (n) ) < 6, (n).

One sees that

400 +00
0< Ap(ys) <@ > flt,uu(t), Aun(®)) < e D on(t).

We need to prove that As(yr) = Af(yo) as k — +o0. If Af(yx) 4
A¢(yo) as k — 400, then there exist a sub-sequence such that



684 Xiaohui Yang and Yuji Liu

Ap(yri)t — a1 # Ap(yo) as i — +o0o. Then
(A (i) =

Z Bn —+00

=l T S (Af<y,1i>++z°°f<s,y;i<s>,Ay,;<s>>)
1- Z ap n=—00 s=t

n=-—oo

+ 55 5 (Af<y>{ijf(s,y;i(s),Ay;i(s))).

n=—oo

Let ¢ — +o00, by using the generalized Leibegue dominated con-
vergence theorem, we get that

> Hay) =

Z Bn “+o00

S S it (w2 (). ()

n=-—oo

P58 S g (a1+§f<s,yo<smyo<s>>).

n=—oo

From Lemma 2, we know that a; = A¢(yo), a contradiction. Hence
As(yr) — Ap(yo) as k — +oo.

Step 2: Prove that both 77 : Y — X and T5 : X — Y are continu-
ous.

Let (zg,yx) € P with yp — yo and x — x¢ as k — +oo. We
need to prove that Tiy, — Tiyo as k — +oo and Toxy — Thxg
as k — +oo. By Step 1, A¢(yx) = As(yo and By(yr) — By(xo)
as k — +oo. This together with the continuous property of f,g
implies that 7" is continuous at (xg, yo).

Step 3: For each bounded subset 2 C P, prove that TC) is bounded.

Since 2 C P is bounded, then there exists positive number r > 0
such that

(13)
sup X up 2 1 () () sup W () )| < 7

nez Pn nez Qn nez nez
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for all (z,y) € Q. Hence there exists a bilateral nonnegative se-

+oo
quence {¢,(n)} with > ¢,.(n) + oo satisfying

n=—oo

0 < f(n,y(n),Ay(n)) < ¢.(n),

0 < g(n,z(n), Az(n)) < ¢r(n).

(19)

One sees that

0< A <a S Fltyd).Ay®) <e S oult) = My,

t=—o00 t=—o00

(20)
0<B,(0) <& 5 gltalt), Aa(t) Se2 5t 6u(t) = My,

t=—00 t=—00

By the definitions of 77 and 75, we can prove that TQ2 is bounded.

Step 4: For each bounded subset 2 C P, prove that T} is relatively
compact.

Since () C P is bounded, then there exists positive number r > 0

such that (18) holds for all (x,y) € €2. Hence there exists a bilateral

+o0o
nonnegative sequence {¢,(n)} with > ¢,(n)+ oo satisfying (19)
and (20). Then B

(T1y)(n) 1 ey n=l ‘Irl(Af(y)Jr:E:)Z> f(s,y(S),Ay(s)))
Fn - 1— Jgjo an n:z;oo n t:Z:m D=L (p(t))

+o0 n—1 <1>1<(1+61) jZOIO f(syy(S)yAy(S)))

S§=—00

Pp—1 1
S =D DRI M)

1 S bt () £ a8

S§=—00
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L o él(mel) bl ¢r<s>)
s;oo [ p(S B -&io o n;@ (7% tzgoo -1(p(t)

+o0o +00 n—1
<o (1) £ a) | —2— E ar & sty 1

S§=—00

n—1
> m — 0 uniformly as n — —oc.

On the other hand, we have

n—1

+oo
Z an Z 11<1>1<(1+51) S ¢T(s)>
(Try)(n) —A 1 n=—oo e~ (p(1) i
f(y)‘ <

P, P - 5
+oo
) n—1 &1 Af(y)+§tf(svy( ),Ay(s)) o
+P_n Z ,I,:l(p(t)) - (Af (y))

+0o
<t B S ettt (0va) £ o0)

-1 ‘@*I(Af<y)+ > f(s,y<s>,Ay<s>>)—<1>*1<Af<y>>\ L
1 = 2 (Ar(v)
+tr 2 *(p( ) T

+oo
<t o & wtme (0re) £ o0)

v S b o (40 + :Zojf(s, V(s A5(s)) ) = 0 ()

a1 <<1+el> b m(s))
- I :
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Furthermore, we have

|27 (p(n)) A(Thy)(n) — @71 (As(y))| =

o1 (4500 + £ 509, 89060 ) = 074 0)
and

o (p(m)A(Tiy)(n) — &' (Af<y>+ 5 f(t,y(t),Ay(t)))‘ _

t=—00

- (Af<y> .S f(t,ya),Ay(t)))

t=—00

—o7 (40— £ reu0.000) ).

t=—o00

For any € > 0, since ®! is uniformly continuous on [—2My, 2M],
then there exists A > 0 such that [®7!(u;) — @ (ug)| < € for all
1, Uy € [—QM(), QMQ] with |U1 — U2| < A

From

4w - 5 f<t,y<t>,Ay<t>>—Af<y>\ < ¥ s,

t=—00 t=—o0

A= 5 Flty(t), Ay(t) (Af<y>— b f(t,ym,Ay(t)))]

t=—o00 t=—o00
“+o00

S Z ¢T(t)7
t=s

we know that there exists N > 0 such that

) — S 1), Ay0) — Asly)

t=—00

< A uniformly as s < —N,

A — 5 Flty(t), Ay(t) (Af<y>— 5 f(t,ya),Ay(t)))\

t=—00 t=—00

< A uniformly as s > V.
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It follows that
[P~ (p(n))A(Try)(n) — @1 (Af(y))| < € uniformly as s < —N,

\¢1<p<n>>A<T1y><n>—<1>1 (- £ f(t,y(t),Ay(t)))‘

t=—00

< € uniformly as s > N.
Then

% — Af(:lj)‘ — 0 uniformly as n — +o0.

So

(Tyy)(n) is uniformly convergent as n — —oo,
(Thy)(n) is uniformly convergent as n — +o00,
&~ (p(n))A(Tyy)(n) is uniformly convergent as n — —oo,

&~ (p(n))A(Tyy)(n) is uniformly convergent as n — +oc.
Similarly, one has that

(Tyx)(n) is uniformly convergent as n — —oo,
(Tyx)(n) is uniformly convergent as n — 400,
U~1(q(n))A(Tyx)(n) is uniformly convergent as n — —oo,

U~1(q(n))A(Tyz)(n) is uniformly convergent as n — +oo.

One knows that T2 is relatively compact. Steps 1, 2, 3 and 4 imply
that T" is completely continuous.

]

Now, we establish existence of three positive solutions of BVP(5’) by
using Lemma 1. Suppose that

+oo — +00 — 1
up - ZatZ j < +eo, ingnZ%Z W) <t

=n S=n
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Denote
t—1
1+ Z at-i-supp Z o Z m

t=—o0 t=n =n

M = max )
1- Z on

n=-—oo

t—1
1
1+ Z ’Yt+sup Q Z Tt Zn T—1(q(s))

t=—o0

and for positive numbers ey, e5, ¢ and integers k1, ko, denote

o . 2k71 e 2k71 eo
W = min 3.2k71_1q) - ) )y Fok—1_7 v okt
lerap>

1 1
Py o T T Qk = T L(a(D)

. ®(c) U(c) 1 [ 1 c
Q = maX{3(61+1), 3(ea+1)’ 3(€1+1)(I> (M) ’ 3(62"1‘1)\]:/ (H)} )

E = max{m@ (eﬁl)a mqj (%)}

THEOREM 1. Let k > 0 be an integer, ;1 = min{py, pio} with iy, o
being defined by (15) and (17). Suppose that (b'), (¢), (d') and (e) hold
and there exist positive constants eq, es, ¢ such that

€2
c> — >ey>e >0.

i
If Q@ > W and

fn,Quu, ) oml

(Al): < v l(q( )> 2 for alln € Z,u € [0,c],v € [0,¢];
g (n P,u, ) < 2&
f <n Qnu, : > >

(A2): v (q ) 2" for alln € [—k, k], u € [es, 2],v €
g (n Pu, ) > 4 '

[076]7

f{n, Quu, < sy

(A3) < v l(q )> 2E‘ for all n € Z,u € [0,e1],v €
o (o P e <
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Then BVP(5') has at least three positive solutions (z1,y1), (%2, y2) and
(x3,y3) such that

(21) supx1(n), supyi(n) < e;, min xs(n), min ys(n) > es,
neZ nez ne[_k’k] nG[—k,k]
and
(22) either sup xz(n) or supys(n) > ey,
neZ neZ
23 either min x3(n) or min n) < es.
(23) ne[—k,k] 3(n) ne[—k,k] ys(n) < €2

Proof. Let E, P and T be defined in Section 2. We complete the
proof of Theorem 1 by using Lemma 1. Define the following functionals
by
(24)

(2, y) = max {Sup o~ (p(n))|Az(n)|, sup ‘1’1(61(”))|Ay(n)|} :

neZ neZ

B, y) — m{pﬁ pg} (o) e P,
ncZ " nezZ "

0(z,y) = max {Sup = sup %} ,(z,y) € P,
neZ neZ

— mi o x(n) o yn)
= St epP
Oé({lj', y) min {nen[’l_l’?’k] P, nen[’l—ll?,k] Qn } ) (ZIZ’, Z/) )

. s )
plery) = min{ i 22, win %24 (50) € P

It is easy to see that a, v are two nonnegative continuous concave func-
tionals on the cone P, 7, (3,60 are three nonnegative continuous convex
functionals on the cone P.

One sees a(x,y) < f(z,y) for all (x,y) € P. Lemmas in Section 2
imply that (z,y) = (z(n),y(n));> . is a positive solution of BVP(5) if
and only if (z,y) is a solution of the operator equation (z,y) = T'(z,y)
and T : P — P is completely continuous.

By the definition of P, for (z,y) € P, we have

+oo

lim_o(n) = 3 aye() =0, lim y(m)~ 3 () =0.

n——00 n=—o00 n=—o0
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Then
1 1 S
— 1 + 1 —
o< o(n) _ Lw(n) nﬁulloox(n) nﬁuzl@x(n) z(n) n:z—ooan
— P, ~ P, + oo
1- > an
n=—oo
n—1 +o0 400
S Az(t)+ DY, arx(t)—z(n) Y. ar
_ 1 t=—o0 t=—o00 t=—o00
= 7 -
1- > an
n—1 1 1 n—1 +oo
X eipuy T e@)Az)+ X arfz(t)—z(n)]+ X0 arle(t)—z(n)]
1 t=—oc p(t)) t=—o00 t=n
=5 —
1- > an
N aip@)aci)- S ar S @ (p(s))Ax(s)
1 = ) M 2 e T(p(s)
=5 -
1— Zoo Qan
+oo t—1 1 1
1AM E et A
Pn T
1- > an
n=—oo
1 +oo 1 +o0 t—1 1
< +t:¥m at+ilg; ﬁ t;n o s;n é_l(p(s)) @71 A
< e sup ©~ (p(n))|Az(n)|
1- > an neZ
n=—oo
and

+oo 1 +o0 t—1 1

1+ +sup ~— —1

0< y(n) ~ t:Z*:OO% ney @n t;n% s;nql La(s))
— Qn —

= p U (q(n))|Ay(n)|.
1- > 7 neZ

n=-—oo

we have ||(z,y)|| < M~y(z,y) for all (z,y) € P.
Corresponding to Lemma 1, choose

€2
h=upe, d=e, a=e, b=—, c=c.
1

Now, we prove that all conditions of Lemma 1 hold. One sees that
0 < d < a. The remainder is divided into five steps.

Step 1: Prove that T: P, — P.;
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For (x,y) € P., we have ||(z,y)|| < c¢. Then
y(n)

2(n)
0< Pn’Q__

c,nel,

0 < @~ (p(n))|Az(n)|, ¥ (q(n))|Ay(n)| < c forn € Z.
So (A1) implies that

n) ¥ 1(g(n))Ay(n
F(n,y(n), Ay(n) = f (n, Qu2, isu)) < 2 ez,

gln,(n), Ar(n)) = g (n, P25, se)) < 2 ez,

It follows from

(25) 0< Ay <612ij y(j))

]_—OO

that

" (p(n)|A(Thy)(n)] =

- <Af<y> 301G, v
§<I><61+1 ijy y()))

j=—o00

N——

<o <(e1 Yy 2%) <o (36 +1)Q) < e

j=—o0

(26) sup @~ (p(n))| A(Try)(n)| < c.

neZ
Then T'(z,y) € P implies that

TN < v sups~ (T < 0~ (60) < o

Hence

(27) sup [Ty) <c

neZ Pn -
Similarly we can show that
T
(28 sup U g(m)AlTr)(n))] < o, sup 2] o

neZ neZ Qn
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It follows from (26)-(28) that ||T(x,y)|| < c. Then T : P, — P..
Step 2: Prove that

{(z,y) € P(v,8,a;a,b,c)|a(x,y) > a} =

{(a:,y) cP (7,9,@;62, %,c) la(x,y) > 62} # ()

and a(T(x,y)) > eq for every (z,y) € P (7,9,04;62, %,C) ;

It is easy to show that {(z,y) € P(v,0,a;a,b,c)|a(z,y) > a} #
(. For (z,y) € P(v,0,;a,b,c), one has that

a(ZE, y) = min {ner{l_lilk] x](;z) ’ nér{l—l/gk] yé;? } =

I

€2
neZ Pn neZ Qn H

z(n) y(n) } <

0(xr) = max {sup , sup

and

7(x) = max {sup ®~(p(n))|Az(n)], Sup ‘Ifl(q(n))\Ay(n)\} <c

neZ

Then

and
0 < @ (p(n))|Az(n)], ¥ (q(n))|Ay(n)| < c.

Thus (A2) implies that

W

Fn,y(n), Ay(n)), g(n, x(n), Az(n)) = o, n € [k, K.
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So the definition of 7} and Tyy € X imply that

L (Tiy)(n) < (Tiy)(=k)
neloky o =R

>

n=—oo

b 5 a5 e (£ 765066080060

—k—1 “+o0o
4 3 e (5 f(s,y(S)Ay(S)))

—k—1

> 5 3 b (3 0t 8000

—k—

k
_ W
Z Tt ( ;k; W) '
So
min (Tll‘qi)(") > ey
nel—kk] Ir

Similarly we can show that min (ngw > eo. Then
nel—kk] @n

T T
This completes Step 2.
Step 3: Prove that

{(z,y) € Q(7,0,¢;h,d,c)|B(z,y) < d} =
{(z,y) € Q (7,0, 0; per, ex,¢) |Blz,y) < e} #0

and

ﬁ(T(‘T7 y)) <e fOI' every (LE', y) € Q(V? 67 2 h,d C) = Q (77 97 w; pe, e, C) )
Similarly to Step 2, we can see that {(z,vy) € Q(v, 0, ¢;h,d, )|
Bz,y) < d} 0.

For (z,y) € Q(v,0,p;h,d, c), one has that
o(z,y) = min{ min M y(n)} > pey

min

nel—kkl P, "nel—kk Qp
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z(n) y(n) }
O(x,y) = max < su ,sup ——= » < d =eq,
( y) {neg Pn nGIZ) Qn !

and
(e, y) = max {igq>—1<p<n>>rm<n>|,ig w—1<q<n>>|Ay<n>|} <.

Hence we get that

0< T I < 0 < 07 (o) Al U |Ay(w)] < € e Z
Then (A3) implies that
Fln,y(n), Ay(n), g(n, (), Aa(n)) < o7 meZ

So similarly to Step 1, it follows that
B(T(z, )
< Mmax {sup 1 (p(n) | A(Tay) (n)], sup w—1<q<n>>|A<T2x><n>|}

nef neZ

< Mmax{®'(3(e; + 1)E), ¥ *(3(ea + 1)E)} < e; = d.

This completes Step 3.
Step 4: Prove that a(T(z,y)) > a for (z,y) € P(v,a;a,c) with
0(T(x,y)) > b;
For (z,y) € P(y,a;a,¢c) = P(v,a; ey, ¢) with (T (z,y)) = 5(T(x,y))
>b= %, we have that

alz,y) = min{ 0 R— M}zeg,

nel—kkl P, "ne[—kk Qp

() = max{sup<1>-1<p<n>>rAx<n>\,supw-1<q<n>>|Ay<n>\} <

nez neZ

sup (T'(z,y))(n) > n

Then

o(T(e,y) = min (T(@.)(n) = pB(T@.y) > e2 = a.

This completes Step 4.
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Step 5: Prove that S(T(x,y)) < d for each (x,y) € Q(v, 5;d, ¢) with
o(Tz) < h.
For (z,y) € Q(v, B;d, c) with o(Tx) < h, we have

(ey) = max{sup@1<p<n>>|Ax<n>r,supw1<q<n>>my<n>r} <e

necZ neZ
T = max-< su z(n) su y(n) <d=e¢e
B(x,y) p , Sup :
neZ Pn neZ Qn
: . (Ty)n) . (Trz)(n)
T = Nk 1AL/ Sl AV — L€y,
p(rGe) = min{ iy, S i, EGE <

Then .
B(T(z,y) < —p(T(x,y) <er=d.
This completes the Step 5.

Then Lemma 1 implies that 7" has at least three fixed points (x1,y1),
(x2,y2) and (x3,ys) such that

=

B(z1,11) < e1, a(xa, ya) > €2, B(xs,ys3) > €1, alxs, ys) < ea.

Hence BVP(5) has three positive solutions (z1, 1), (z2,y2) and (x3,ys3)
satisfying (21)-(23). The proof is complete. O

4. Existence of positive solutions of BVP(5)

In this section, we establish existence result for three positive solutions
of BVP(5).

Choose
( z(n) e R,neZ, )
there exist the limits

X =<{z(n):neZ}: nl_lgloox(n), nlj}loox(n)’

im0 (p(n) A(n),
im0 () A (n)

\
Define the norm

ol = ol = mesx {sup (o)l sup @ (o) Al . € X
ne ne

It is easy to see that X is a real Banach space.
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Choose

y(n) € R,n € Z, )
there exist the limits
Y ={{yn):neZ}: Jim y(n), Lm y(n),
lim W (q(n))Ay(n),
n—-—+0oo
lim W~ (g(n))Ay(n)
n——oo

\ - 7

Define the norm

lylly = llyl] = max {Sup ly(n)], sup ‘I"I(Q(n))lﬁy(n)l} Yy EY.
neZ

neZ

It is easy to see that Y is a real Banach space.

Let E = X x Y be defined by F = {(z,y) : x € X,y € Y} with the
norm ||(z,y)|| = max{||z||, ||y||}. Then E is a Banach space.

LEMMA 9. Suppose that (b), (¢) and (e) hold and h(n) # 0(n € Z) be
+o0
a nonnegative sequence with > h(n) converging. Then there exists a

n=—oo

+o00
unique number A, € {O, > h(n)} such that

n=—0oo

i D] -1 =
[ 5 a Z T e (A 2 D)

1=—00 t=—00

400 s—1
e A G )

t=—00

Eoo B X pO—— <Ah - t:i; h(t)) .
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Proof. Let

1- _; a; 400 1 s—1
G === & o & g (v- £ o)

i=—00

+ Z T p(s (w_ jf h@))

-5 BZSZ . (w— _f h(t)).

i=—00

Then

+oo

1- _Z; a; 400 1 s—1
Glw)= = 5 o L CRRI0)

1=—00

(1— ) 61) foo F=om 2 (w_ 5 h(t))

i=—00 t=—00

+200612q> (w—sfh(t)>.

1=—00 t=—00

It is easy to see that G is increasing on R. Since G(0) < 0 and
+o00 +o0
G( > h(n)) > 0, then there exists a unique A, € {O, > h(n)}

such that (29) holds. The proof is completed. B O
+o0
Let {h(n)} be a nonnegative sequence with > h(n) converging and

satisfies that for each ng € Z, h(n) # 0 for n < ng, for each ny € Z,
h(n) # 0 for n > n;.
Consider the following BVP

Alp(n)®(Az(n))] + h(n) =0, neZ,

(30) nl_i)r_noo z(n) — n;@ apz(n) =0,

lim x(n) — Jio Bnx(n) =0,

n—-+00 n——o0o
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LEMMA 10. Suppose that (b), (¢) and (e) hold. Then x is a nonneg-
ative solution of BVP(28) if and only if

2(n) = e z o z o6 (Ah_ f h(t))

i=—o0 ¥ ; 1T t=—00

(31)
S (Ah— > h(t))

=— t=—00

+o0o
where A, € {O, > h(s)} satisfying (29).

Proof. Suppose that z is a solution of (30). Form (30), we know that
there exist A, B € R such that

n—1

p(m)@(Az(n)) = A~ Y h(s),

t=—0o0

and

B+Z¢l 1(A—Sz_:h(t)>,n62

§=—00 t=—00

By the first boundary condition in (30) we get

B= BZaz—l—ZazZ@l 1<A—Sih(t)).

1=—00 1=—00 S=—00 t=—00

It follows that

B= Z%Z@l 1<A—§h(t)>.

1=—00 Zz'*—oo s=—00 t=—00

The second boundary condition in (30) implies that

Z+—Oo ; . s—1
e 0 S bt (4 5 h0)

1=—00 t=—00

+S+Z: T L ( Z it )>

) @SZ e (Ah— 5 h(t)).

1=—00
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+oo
It follows from Lemma 9 that there exists a unique A, € [0, > h(s)}
such that (29) holds. Hence A = A;. So R

B= s Z%Z@l 1<Ah—z_:h(t)>.

=00 Y = 00 s=—0 t=—o0
Then z(n) satisfies (31) with A, satisfying (29). Now we prove that
x € X and z is nonnegative.
In fact, we can prove that

in_o(0) = g 8 o T gdme (4 T w0)

n—+00 i=—00 t=—o0

+o0 s—1

t=—00

lim Jc(n)*Z*—,wz Z ¥ Z o (Ah— S_Zl h(t)),

n——00 = 1=—00 t=—00

lim @ 1(p(n))Az(n) = ®71(Ay),

n——oo

lim @ '(p(n))Az(n) = &~ (Ah— 5 h(n)>.

n—-+0o

Hence x € X.
Since A[p(n)®(Az(n))] = —h(n) < 0 for all n € Z and > h(n)
neZ
converges, we get that p(n)®(Axz(n)) is decreasing and there exists the

limit lim p(n)@(Ax?n)). ri“hem ®~!(p(n))Az(n) is decreasing. We will
provent?lzot nl_igloo d~(p(n))Az(n) < 0 and nEer d~(p(n))Az(n) > 0.

In fact, if nl_l}I_‘I_loo &~ 1(p(n))Az(n) > 0, then @ *(p(n))Az(n) > 0. So
Ax(n) > 0 for all n € Z. Then x is increasing. So we get that

lim z(n) = i apx(n) > i a, lim z(n).

n——oo — n——oo

It follows that

(1 - i an) nEIme(n) > 0.

n=—oo
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Hence lim xz(n) > 0. It follows that z(n) > 0 for all n € Z.

n——oo

On the other hand, we have

lim z(n) = +Zoo Brz(n) < Jio Br lim z(n).

n—-+00 n——oco n——oo n—-+00
We get similarly that z(n) < 0 for all n € Z, a contradiction. So

lim ® !(p(n))Ax(n) < 0.

n—-+o0o

Similarly we can show that lim ®~!(p(n))Az(n) > 0.

n——oo

Then there exists ny € Z such that
d 1 (p(n))Az(n) > 0 for all n < ny and &~ '(p(n))Ax(n) < 0 for all n > ny+1.

Then (9) implies that

B (p(m) M) + 52 h(s), m <
p(m)B(Aa(n)) =
O p(ny +1)Az(ng +1) — > h(s), n>mng+ 1.
s=na+1
So
( nE@@x(n)—i—

no—1

Snz_:; m@—l ((I)—l(p(ng))Aa:(ng) + Z h(t)) ,n<ng+1,

t=s

z(n) = liIJqu x(n)—
n——+0oo
—+o0 s—1
> e @ (@7 (p(ne + 1) Az(ng +1) = Y0 h(t) ),
= (p(s)) i1
L n > ng + 1.

It follows that

2(n) Zmin{ lim z(n), lim x(n)}.

n——0o0 n—-+o0o
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Thus (9) implies that

+oo
lim x(n) > > anmin{ lim x(n), lim x(n)},
n——0o0 n=—o0 n——oo n—-+00

lim 2(n) > S Bnmin{ lim 2(n), lim x(n)}.

n—-+00 n——o00 n——0o0 n——+0oo
It is easy to see that

lim z(n) >0, lim z(n)>0.

n——00 n—-+o00

Then x(n) > 0 for all n € Z. Now we prove that x(n) > 0 for all n € Z.
In fact, if there exists z(n3) < 0, then either ny < ny or ng > ny + 1. If
ng < ng, then we get from Az(n) > 0 for all n < ny that z(n) = 0 for
all n < ny. Hence h(n) = 0 for all n < ngy, a contradiction. Similarly we
get a contradiction for ng > ny + 1. Hence z(n) > 0 for all n € Z.

On the other hand, if x satisfies (31) with A, satisfying (29), then we
can prove that z is a nonnegative solution of (30), we omit the details.
The proof is completed. O

Consider the following BVP

Alg(n)¥(Ay(n))] + h(n) =0, neZ,

(32) Jim y(n) — HZZ: Yny(n) =0,

lim y(n)— S buy(n) =0,

n—-+00 n——o0
Similarly we can prove the following three lemmas:

LEMMA 11. Suppose that (b), (c¢) and (e) hold and h(n) # 0(n € Z)
+00

be a nonnegative sequence with »_ h(n) converging. Then there exists

n=—oo
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+o0
a unique number By, € [O, > h(n)} such that

n=—oo

1§y too ; s—1
Loy B0 E et (8- o)

i=—00 t=—00

(33) +€§§;5:%@5W_1(Bh—?jimh@i>
Eooé Z S (Bh —;ioh(t)).

LEMMA 12. Suppose that (b), (c) and (e) hold. Then y is a positive
solution of BVP(32) if and only if

s = —— ¥ 5 T gy (- £ w0)

1- Z ¥i 1=—00 t=—00

i=—00

(34)
+ nil m‘lﬁl (Bh_ Sil h@))

§=—00 t=—00

S=—00

+oo
where By, € [0, > h(s)} satisfying (33).

LEMmMA 13. Choose integers ki, ko € Z with ki + 3 < ky. Suppose
that (b), (c) and (e) hold, h(n) > 0 for alln € Z. Suppose x is a solution
of BVP(28). Then

(35) min z(n) > uy sup z(n),
né€(ky,ko] neZ
where
.| Py — Py Pk+1_Pk}
36 = min ! = C
(36) . {&w—&” Pri

Proof. Since Alp(n)®(Ax(n))] = —h(n) < 0 for all n € Z, we see that
p(n)®(Ax(n)) is decreasing. Then ®~!(p(n))Az(n) is decreasing.

It follow from Lemma 10 that #(n) > 0 for alln € Z. For ny,n,ny € Z
with ny < n < ny, Since ®~!(p(n))Az(n) is decreasing, we get

7 (p(s))Ax(s) < @~ (p(k))Ax(k)
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for all s > k. So there there is A such that
O (p(s)Az(s) <A< D (p(k)Az(k), s >n > k.
Then we get (16) similarly to the proof of Lemma 6. We will use (16)
to complete the proof of (35). We consider three cases:
Case 1: there is ny € Z such that ig};a:(n) = z(ng).

If ng = ky, we get by using (13) that

. e
i w(n) = a (k)

P - P Py, —
ko+1 ka(kl) + ko
Pk2+1 - Pkl Pk2+1 Pk'l
P]C2+1 - P]fz
Pk’2+1 -

> iy sup z(n).
neZ

z(ky + 1)

v

If ng = ko, we get by using (13) that

. o
i x(n) = (k)

P]{:Q_Pk:l Pk’l_Pk’l—l
-5 -5 —(k2)
P, — P, Py, — Py

v

v

(N
Pk:g_Pkl—l ( 0)

> pysupz(n).
nez

If ng > ko, for n € [k; — 1, ng], by using (11) we have

Png—Py Py—Py, Po—Py, -
x(n) 2 # (]{?1 — 1) + %_—Ifkll_lll'(no) Z %_—;kll_llﬂ?(no).
It follows for n € [ky, ko] that

Pkl _Pkl—l

x(n) > x
() 2 5l
Then
. Pkl—Pk1,1
min xz(n) > —— x(ng) > supz(n).
nelky, ko) ( )_P+OO_Pk1 1 (0)_M1n€IZ) ( )

If ng < ky, for n € [ng, ko + 1], by using (11) we have

Pioi1—P, P,—P, P P
r(n) > _p,f:llfp:gx(no) + Poii— 11 no_x(kb +1)> 'p:;:ll Pnngx(%)-
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It follows for n € [k, ko] that

P - P
x(n) > %m(no).
ko+1
Then
P - P
min z(n) > 2 282 p000) > 4y sup z(n).
nelki ko] Pyt neZ

If k1 < ng < ko, for n € [ky — 1,ng], by using (11) we have

Pn,—P, Pn—Py, _ Pp,—Py. _
(n) = p g ek = 1) + =g w(no) = 5 —p= x(no).

It follows for n € [ky,no) that

x(n) > B

1

> —P+oo — Pkl_lx(ng).

For n € [ng, k2 + 1], by using (11) we have

Poyi1—P, Pu—P, Ppyy1—P,
z(n) > ﬁx(no) + ﬁx(l@ +1)> ﬁx(no).

Then for n € [ng, k3] we have
Pry1 — B
rin) > 2~ ~ %2
(n) > P
It follows for n € [k, ko] that

| Py — By Pk+1_Pk}
x(n) > min ! 2 2 b x(ng).
(n) = {P—i-oo_Pkl—l Pryi1 (o)

Then

x(ng).

x(no) > pisup z(n).
neZ

min x(n) > min
nE[lﬁ,kz]

{Pkl_Pk1—1 Pkg-‘rl_Pkg}
P+OO_PI€1—17 Pk2+1
Case 2: supz(n) = lim z(n).
neZ n—-+0o
Choose n' > ko, similarly we can prove that

. > / )
nin x(n) = pa(n’)

Let n” — 400, one sees

min  x(n) > py sup x(n).
nelki,ka) neZ
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Case 3: supz(n) = lim z(n).
neZ n——oo
Choose n’' < kq, similarly we can prove that

min z(n) > wx(n’).
nin (n) > paz(n’)

Let n’ — —o0, one sees

min x(n) > py sup x(n).
ne€lkr ko] nezZ

From Cases 1, 2 and 3, we get (11). The proof is complete.
]

LEMMA 14. Choose integers ki, ko € Z with ki + 3 < ky. Suppose
that (b), (c) and (e) hold, h(n) > 0 for alln € Z. Suppose x is a solution
of BVP(30). Then

(37) min y(n) > pzsupy(n),
n€lky k2] neZ

where

38) — { Qn — Q1 Qres — Qe } |

Qoo = Qi1 Qo
Let g = min{py, o }. Define the cone P in X x Y = E by

' e(n).y(n) > O.n € Z, \
“+o00o
lim z(n)— Y. ayz(n)=0,
n——oo Ne—o00
+oo
Jim y(n) = X my(n) =0,
+oo
P=<(z,y) e E: hrf z(n)— > BuAz(n) =0,
n—+o0 n——o00
+o0
lim y(n) — > dnAy(n) =0,
n—-+00 n=——oo
min x(n) > psup z(n),
n€lky,ka) neZ

min y(n) > psupy(n)
\ nelki,ks] neZ



Studies on BVPs for bilateral difference systems 707

For (z,y) € P, define (T'(x,y))(n) = ((Try)(n), (T2x)(n)) by

i—1

E & > m <Af(y)—:2_3; f(t,y(t),Ay(t)))

=—00

(Tin) = == ——
n—1 s—1
+ 5 et (- T sen0.000)) ez

where As(y) € [O, Jrzozo f(s,y(s),Ay(s))} satisfying

S§=—00

1— Z o too s—1
Lt R S e (- 5 0. 800)

1- X) Bi i=—00 S§=—00 t=—00
+o0o 1 s—1
5 st () - T reuo.00)

- £ 5 5 st (400 - £ 1ta0.000)

1=—00 t=—00

and

+oo i—1

RS Wl}q(s))w—l(zag(m)— > g(t,m(tmx(t»)
(Tha)(n) = ——— -

1_271

1=—00

+ 5 ettt (B - S sttt 00)

t=—00
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where B,(z) € [O, ; g(s,z(s), Ax(s ))} satisfying

= F S et (Bgm— > g(t,w),ma)))
1- Z d; i=—00  s=— t=—o00

1=—00

+ 5 bt (Bg@:) - 5 altalt). 000 )
- £ 0 % g (B - £ gtest0) 2000)

LEMMA 15. Suppose that (b), (c), (d) and (e) hold. Then
(i): it holds that

( Alp(n)2(A(Thy)(n))] + f(n,y(n),ﬁy(n)) =0, ncZ,

Alg(n)W(A(Taz) ()] + g(n. (n), Aa(m) =0, n € Z.
Jm (D)) = 5 an(Tig)(m) =
Jim (L))~ 5 u(Ta)(n) =0,
Jm (T)n) ~ 55 Au(Tig)m) =0,
i (Ta)() = 5 8,(Ta)ln) = 0

(ii): T'(z,y) € P for each (z,y) € P;

(iii): (z,y) is a positive solution of BVP(5) if and only if (z,y) € P
is a solution of the operator equation (x,y) = T(x,y);

(iv): T : P — P is completely continuous.

Proof. For(i), (ii) and (iii), the proofs follow from Lemmas 2, 3, 4, 5,

6 and 7.
(iv) It suffices to prove that 7" is continuous on P and 7" maps bounded
subsets into relatively compact sets. We divide the proof into four steps:

Step 1: Prove that both y — Af(y) and x — B,(z) are continuous.
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Let (zx,yx) € P with yx — yo and xx — g as k — +00. Then
there exists positive number » > 0 such that

sup zx(n), supyr(n), sup @ (p(n))|Az(n)], sup ¥~ (q(n))[Ayx(n)| < r

nez nez nez nez

for all £ = 0,1,2,- Hence there exists a bilateral nonnegative
sequence {¢,.(n)} Wlth T o Or(n) 4+ 0o satisfying

0% Flm (), ) = £ (m (0, s 0 ) Aunn) ) < o)
and
0 < gl n(0), 81) = g (o (0), s ) Aal) ) < 610

One sees that

0< As(yr) < thyk , Ay(t) ZQZ«

t=—00 t=—00

We need to prove that As(yr) = Af(yo) as k — +o0. If Af(yr) 4
A¢(yo) as k — 400, then there exist a sub-sequence such that
Ap(yr)t = a1 # Ap(yo) as i — +oo. Then

1=—00 t=—00

oo ‘ s—1
1— %}:‘%:62 Z Q; Z T (n(a) o1 (Af<y]m‘)1_ > f(taylii(t)aAylii(t)O

—+00

s5—1
+ 8 byt (Af<ym>1—t; Ptk (0, 80,0

= S0 Y gt (Af@m-)l— > f(t,y;xt),Ay;i(t)))'

1=—00 t=—00
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Let ¢ — +o0, by using the generalized Leibegue dominated con-
vergence theorem, we get that

1= I = 1 -1 =
et B 0 5 st (a- £ fun(.0m(0)

1=—00 t=—00

Q0 s—1
+s+2_:oo o e (al— > f(t,yo(t),Ayo(t))>

t=—00

+o0 i—1 s—1

- B85 bt (0 5 0,500,
From Lemma 2, we know that a; = A;(yo), a contradiction. Hence
As(yr) — Af(yo) as k — +oo. Similarly we can prove that
By(x) = By(xg) as k — +o00.

Step 2: Prove that both 7} : Y — X and 75 : X — Y are continu-
ous.

Let (zg,yx) € P with yp — yo and x — x¢ as k — +oo. We
need to prove that Tiyr — Tiyo as k — +oo and Thry — Thxg
as k — +oo. By Step 1, A¢(yx) = As(yo and By(yx) — By(xo)
as k — +oo. This together with the continuous property of f, g
implies that T is continuous at (o, yo)-

Step 3: For each bounded subset 2 C P, prove that 72 is bounded.

Since () C P is bounded, then there exists positive number r > 0
such that

sup z(n), itelgy(n), Sup o~ (p(n))|Az(n)], sup U (g(n))|Ay(n)| < r

for all (z,y) € Q Hence there exists a bilateral nonnegative se-

+oo
quence {¢.(n)} with > ¢,(n) + oo satisfying

n=-—oo

0 < f(n,y(n), Ay(n)) < ér(n),
and

0 < g(n,z(n), Az(n)) < ¢r(n).
One sees that

0<Ap(y) < Y flty(t), Dy(t) < D on(t) = Mo

t=—o00 t=—o00
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and
+o0 +o0
0 < By(z) < Z g(t,z(t), Ax(t)) < Z br(t) = My
t=—00 t=—00
Then
+oo i—1 s—1
PIRCEDY @1&(5))@1(%\,«(9)— Py f(t,y(t)vAy(t))>
(Tig)(n) = e

5 et (A - T ata.800))

t=—00

rzjooa’ 2; m <t gmf(ty(t) Ay(t))— Z Fty(0),A (t))>
1= o

| /\

8 bt (a0, - T seso, u0))

t=—00

+oo +o0 i—1
1 <tzw r (t)) i:Z_:oo oy Szgoo 7@71(117(3)) . “+00 +oo L
=X o + ( 2 cbr(t)) SEOO ()

t=—00

IN

=: My,
and
o AT = [0 (4500~ T fie00. 90 )|

-1 (2t§m¢r(t)) My,

Similarly, one has that

w-l( 5 asr(t)) ORI -
(T :L‘)( ) < t=—o0 i=—00 S=—00 T2 (a(s)
2 =
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and

1 (g(n)| A (Th) (n)] < (2 5 ¢r(t)) M,

t=—00

It follows that TC2 is bounded.
Step 4: For each bounded subset 2 C P, prove that T is relatively
compact.
Since 2 C P is bounded, then there exists positive number r > 0
such that

sup x(n), sup y(n), sup ®~(p(n))|Az(n)], sup U (q(n)|Ay(n)] < v

for all (z,y) € Q Hence there exists a bilateral nonnegative se-

+oo
quence {¢,(n)} with > ¢,.(n) + oo satisfying

n=—oo

0% flny(), Ay() = f (00), G U ) y) ) < 00,
and
1

0 < g(n, #(n), Ax(n) = g (n,xm),
One sees that

0< A< 5 fhylt). Ay) < 5o bult) = My,

t=—00 t=—00

(39)
0<Bya) < S gltalt), Aa(t) € 52 6,(t) = My,

t=—00 t=—00
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Then

+oo i—1

s—1
X o Zoo m‘ﬁil <Af(y)_t_¥oo f(t,y(t),Ay(t)))

(Tiy)(n) — ——— [ S

< £ st (4 - T seun.n0)

t=—o00

t=—00

n—1 1 . 400 . 400 n—1 1
< £ sdmr ! (£ o) =2 ( £ o0) £ sy

— 0 uniformly as n — —o0,

“+oo i—1

Fax m@*(w(y)—ff f(t,ym,Ay(t)))
(Tiy)(m) - S

- 5 s (40— £ ea0.a0)|

t=—00

< ¥ bt (4 - T s, 200)

t=—00

+o00 1 = © = 1
<Y e om® Tt X e =27 X 6()) X sy
s=n t=—00 s=n

t=—00

— 0 uniformly as n — +o0.

On the other hand, we have
127 (p(n)A(T1y)(n) — @71 (A ()| =

o (40— 5 Ses(0.80)) - 07 (Ar(0)

t=—o00
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and

o (p(m)A(Tiy)(n) — &' (Af<y> > f(t,y(tLAy(t)))’ _

t=—00

- (Af<y> S f(t,y<t>,Ay<t>>)

t=—o00

g (Af@)— b f(t,yu),Ay(t))) |

t=—o00

For any € > 0, since ®! is uniformly continuous on [—2My, 2M],
then there exists A > 0 such that |[®7!(u;) — @ (uy)| < € for all
Uy, Ug € [—2]\/[0, 2M0] with ‘Ul — U2| < A

From

A= 3 Feyle), Ay(e)) - Af<y>\ < 0,

t=—o00

A4 - 5t y(t), Ay(e)) - (Af<y>— > f(t,y@),Ay(t)))\

t=—00 t=—00

+00
< > on(t),
t=s
we know that there exists N > 0 such that

Ay) — 5 1y, Ay(0) — Asly)

t=—00

< A uniformly as s < —N,

A= 3 Feyle), Ay(e)) - (Af<y>— > f(t,y@:),Ay(t)))]

t=—o00 t=—00

< A uniformly as s > N.

It follows that
[P~ (p(n))A(Try)(n) — @1 (As(y))| < € uniformly as s < —N,

& (p(m)A(Tiy)(n) — &' (Af<y>— b f(t,y(t),Ay(t)))‘

t=—00

< € uniformly as s > .
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Then

(Thy)(n) is uniformly convergent as n — —oo,
(T1y)(n) is uniformly convergent as n — +o00,
O~ (p(n))A(Tyy)(n) is uniformly convergent as n — —oo,

&~ (p(n))A(T1y)(n) is uniformly convergent as n — +oc.
Similarly, one has that

(Tox)(n) is uniformly convergent as n — —oo,
(Trx)(n) is uniformly convergent as n — o0,
U~1(q(n))A(Tex)(n) is uniformly convergent as n — —oo,

U~1(q(n))A(Tox)(n) is uniformly convergent as n — +o0.

One knows that T2 is relatively compact. Steps 1, 2, 3 and 4 imply
that T is completely continuous.

Now, we establish existence of three positive solutions of BVP(5) by
using Lemma 1. Denote

“+o0 1 9 —+o0 n—1 1
=TTy T2, M X TG0
M = max T ,
1- > an
n=—oo
“+oo 1 +oo n—1 1
2
2 Ty T2 M X T
o0
1- Z Tn

n=-—oo
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and for positive numbers ey, €5, ¢ and integers k1, ko, denote

W =min < & & ,
&2 1 1 = —|t|
© > o 2 > 2
S T]-‘rl tz[T}+l

o €2
[E55 B3
. s:Zkl @7lzp(s)) e ( tgs 2|t>

1 © ,
52 1 1 = [t]
’ klszQ =T ¢ k1§k2 2
s:[T]-‘—l t:[T]-&-l

g €2 .
=55 =57 |
1 -1 — ¢l
K s:Zkl vl (a(=)) v ( tgs 2 )

O = max {«1»(«:) V()

QD L (), b () )

B =max{3® (5), 5V (5)}-

THEOREM 2. Choose ki, ko € N with k1+3 < ko. Let pn = min{puy, po}
with 1, 1o being defined by (36) and (38). Suppose that (b)-(e) hold
and there exist positive constants ey, es, ¢ such that

D=

(&
CZ—2>€2>61>0.
ol

If Q > W and
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f(mw, ety ) < o
(A1): v 1iq 2;; for alln € Z,u € [0,c|,v € [0, ¢];
g (n7u7 o~ 1(p(n S 9ln]
£ (mu, 5=t ) >
(A2): v 11(}‘1 n) ?Vl for all n € [k, ko], u € [e2, %], v €
g (TL,U, o= 1(p(n > Z 2ln]
[0, ¢
(n,u, lg’ 7)< &
(A3): atn for alln € Z,u € [0,e;],v € [0, ].
9 (.t gy ) < o

Then BVP(5) has at Ieast three positive solutions (x1,1), (%2, y2) and
(x3,y3) such that

(40) supzy(n), supyi(n) < e;, min x9(n), min ys(n) > ey,

nez nez nelky ko] né€(ky,ka)
and
(41) either sup x3(n) or supys(n) > ey,
neZ neZ
42 either min xz3(n) or min n) < e,.
( ) nE[kl,k‘Q] 3( ) ne[khkz} y3< ) 2

Proof. Let E, P and T be defined in Section 2. We complete the
proof of Theorem 1 by using Lemma 1. Define the following functionals
by

Y(z,y) = max{supq)_l(p(n))|Ax(n)|, iLeqz)\I/_l(q(n))|Ay(n)|},

neZ

neZ neZ

O(r,y) = max

Bas) = max {supa(u), supy(o (o) € P
{

sup z(n), supy(n)},(l’,y) € P,

neZ neZ

a(z,y) = mm{ min z(n), min y(n )},(x,y)ER

ne kl,kg TLE[kl,kz]
T, = min< min x(n), min ,(r,y) € P.
(1) { i o), min v {20

It is easy to see that a,1) are two nonnegative continuous concave func-
tionals on the cone P, 7, 3,6 are three nonnegative continuous convex
functionals on the cone P.
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One sees a(x,y) < B(z,y) for all (z,y) € P. Lemmas in Section 2
imply that (z,y) = (z(n),y(n)):> . is a positive solution of BVP(5) if

and only if (z,y) is a solution of the operator equation (z,y) = T'(z,y)
and T : P — P is completely continuous.

By the definition of P, for (x,y) € P, we have

z(n),y(n) >0 foralln e Z,

+0o0
lim x(n)— > ayz(n)=0,
n——oo n——oo

+0oo
Jim y(n) = >0 my(n) = 0.

Then

+o0o
x(n)—ngrlloox(n)—f—ngrlloox(n)—z(n) _Z an
O S x(n) = —+o0 —
1- > an

n=-—oo

n—1 +oo +oo
S Az(t)+ D, awx(t)—z(n) Y. a

_ t=—o0 t=—o00 t=—o0
= oo
1- > an
n—1 1 1 n—1 “+ oo
> aTom T e@)Ax(t)+ 30 aufz(t)—z(n)+ 30 alz(t)—z(n)]
t=— o0 @ (p(t)) t=—00 t=n
= +oo
1- > an
n—1 1 1 n—1 n—1 1 4
t:zoo oo 2 (P(t))Ax(t)—t:zoo a2 T & ((s)Ax(s)
— Too
1- > an
n=—oo

“+ oo t—1
ot el @ () Aa(s)
=n s=n

_|_

+oo
1- > an
n—=-—oo
T e 1703 M e N S e NP TP _
<t == ~— sup ®~(p(n))|Ax(n)|
1- > an neZ

n=-—oo
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and
T () = T 2 v (a(s) _
0<y(mn) <+ = up ¥'(q(n))|Ay(n)|.
1- > 7 neZ

we have ||(z,y)|| < M~y(z,y) for all (z,y) € P.
Corresponding to Lemma 1, choose

€2
h=upe, d=e, a=e, b=—, c=c.

Now, we prove that all conditions of Lemma 1 hold. One sees that
0 < d < a. The remainder is divided into five steps.

Step 1: Prove that T': P, — P.:
For (z,y) € P., we have ||(x,y)|| < ¢. Then

0 < 2(n),y(n) <cn € Z,
0 < @} (p(n))|Az(n)|, ¥~ (g(n))|Ay(n)| < cforn € Z.
So (A1) implies that

F(n.y(n), Ay(n) =  (ny(n), L) < & ez,

g(n,x(n), Az(n)) = g (n,z(n), ) < € nez

It follows from

(43) 0< Ap(y) < > fU.u0), Ay(h))

j==o0

that

o~ (p(n)|A(Tiy)(n)| =

! (Af(y) - i f(j,y(j),Ay(j))>‘

j=—o0

400
< o (2 S f<j,y<j>,Ay<j>>>

j=—o0

= Q
< @ <QZW

j=—o00

< 71 (6Q) <ec.
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So

(44) sup @~ (p(n))| A(Try)(n)| < c.

neZ

Then T'(z,y) € P implies that

(Tay)(n)| < M sup ¢~ (p(n))|A(T1y)(n)| < M (6Q) < c.

neZ

Hence

(45) sup [(Thy)(n)| < c.

neZ

Similarly we can show that

(46) sup U~ (q(n))|A|(Tox) (n))] < c, sup (Tax)(n)] < c.

neZ

It follows from (24)-(26) that ||T(x,)|| < c. Then T : P. — P..
Step 2: Prove that

{(z,y) € P(7,0,a;a,b,c)|la(z,y) > a} =
{(x,y) epP <%9,o¢;62, %,c) la(x,y) > 62} £

and o(T(x,y)) > eq for every (z,y) € P (7,9,04;62, ef,c) :

By the definition of u, we can choose A;(i = 1,2) and k; <[ <
[+ 1 < kg such that

A€ <6272:| , Ay € (62,@:| .
u 7

Since pp € (0,1), 1> 3" a,and 1 > 37> 4, we can choose

min{%, m} > Dy > Ay > e,

min{%am} >Dy > A > e
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and B;(i = 1,2) satisfying

pDy o Y %S(l— > an— D an>A1,
ng

ne[l+1,k2] [k‘l,kﬂ nE[kl,l]

Aq Z an+D1 Z Qn
B, = n€lky,l] n€[l+1,ko]
1= - > an )
nélky,ka]

D1 = il < 7=y

HDQ Z Tn < (1 - Z Tn — Z ’7n> AQ;

TLE[l+1,k‘2] ng[k:l,k‘g] ’ne[lﬂ,l}

Ao Z Yn+D2 Z Yn
B o nelky,l] nell+1,ko]
2= IEDY Tn !

né(ky,ka]

D2 = Ao| < g=iy-

It is easy to show that B; < D;(i = 1,2) and |B; — D;| < D;. Let

Ay,n € [k, ], Ag,m € [k, 1],
I(n): Dl’ne [l+17k2], y(n): Dg,ne [l+17k32],
By,n & [k, ko, Ba,n & [k1, k.

It is easy to show that (z,y) € P and

min xz(n) = min{A;, D1} = A; > e,
’I’LE[kl,kg]

min y(n) = min{Ay, Do} = Ay > ey,

ne[kl,kg]

sup z(n) < max {Ay, By, D1} = max{B;, D1} = D; < < =,
neZ

supy(n) < max {As, By, Do} = max{By, Do} = Dy < %2 =,

neZ
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sup 7 (p(n))|Ax(n)| = max{®~ (p(kr — 1))| A1 = Bil,
O~ (p(k2))|B1 — D, @7 (p(D) A1 = D} < ¢,

sup U (g()| y(n)| = max{¥ (gl ~ 1))}z = Bl
U= (q(k2))| B2 — Daof, U= (q(1))| A2 = Dal} < c.
Then
alz,y) > eq, O(z,y) <b, v(z,y) <c.

It follows that {(z,y) € P(v,6,a;a,b,c)|la(z,y) > a} # 0.
For (z,y) € P(v,0,a;a,b,c), one has that

al(r,y) =min<q min z(n), min n)p > es,
(w.9) = win{ win o), min y(n) b > e

0(z) = max {Supx(n),supy(n)} < @,
nez nez H

and

7(x) = max {sup ®~(p(n))|Az(n)|, sup ‘Ifl(q(n))lAy(n)\} <c

neZ neZ
Then

€2 < x(n)>y(n) < Ev ne [kl?kQ]a

and
0.< & (p(n))|Aa(m)], ¥ (g(m)) | Dy(n)] < c.
Thus (A2) implies that
(), Sy(n). g, 2(0), Aan) > S m € [ b

Then from the methods used in Lemma 3, we have (T}y)(n) > 0 for
all n € Z and there exists ny € Z such that @' (p(n))A(Tyy)(n) >
0 for all n < ny and @~ (p(n))A(Tiy)(n) < 0 for all n > ny + 1,
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and

(Thy)(n) =
( lim (Thy)(n)+

ng—1
net <I>—1<¢—1(p<n2)>A<T1y)(n2>+ 3 f(t,y@),Ay(t)))
2 TT60) s netl,

§=—00

too @71 <<I>‘1(p(n2+1))A(T1y)(nz+1) Z f(t y(t), Ay(t))>
> O > ny 41

= )

i P(s)) - (njg_:: f(ta y(t)a Ay(t))) ;n < ng+1,

v

400 s—1
5 e (£ fu0.000)) nz 1

t=no+1

It is easy to see from T'(x,y) € P that min,cp, )(T1y)(n) >
psup,ez(Thy)(n) = p(Tiy)(ne + 1). One sees that

3 (”zlfu (0. 80(0)).

(Tvy)(ne +1) > { *=52
2 e ( 5 sttt <>>)

2 bt (£ fea0.a0),
& e (£ 0. 000)).

s=ng+1 t=no+1

IV

We consider two cases:
(i): no > [M12]. We have

min (Tyy)(n) > psup(Tiy)(n) = p(Try)(ng + 1)
nelk,ka] nezZ

na ng—1
>0 8 b (8 s, 000)
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3t g

> Zk mq)—l tZ f(ty(), Ay(t))
s=k1 =s
g (e

> Zk W@f tz o | > e
s=kq =s

(ii): no < [BE2] We have

min (T1y)(n) = psup(Try)(n) = w(Tiy)(n2 + 1)
nelky ko] neZ

S L TRV}

t=no+1

ko s—1
>p Y e @ > fty(t), Ay(t))
W5 (p(s)) ot
[ 1 2]+1 t:[%]ﬁ*l
ko 1 s—1 w
=y > d1(p(s ! > o | = €2
W5 (p(s)) ot
[21£%2]+1 t=[M3"2]+1

So

min (7; n) > es.
ne[kl,kg]( 19)(n) 2

Similarly we can show that I[I;II}C ](TQI)(n) > e9. Then
ne|rR1,R2

a(T(z,y)) = min{ min (Thy)(n), min (TQx)(n)} > €.
nE[ijcg] ’nE[khkz}

This completes Step 2.
Step 3: Prove that

{(z,y) € Q(7,0,¢;h,d,c)|B(z,y) < d} =

{(z,y) € Q(1.0,p:pe1,e1,¢) |B(x,y) < e} #0

and

6(T(‘T7 y)) <e fOI‘ every (l’, y) € Q(V? 97 2 h7 d? C) - Q (77 87 @5 Heé, €1, C)

Y
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Similarly to Step 2, we can see that {(z,y) € Q(~,0,¢;h,d,c)]

Blz,y) <d} # 0.
For (z,y) € Q(v,0, ¢; h,d, c), one has that

r,Yy) =ming min x(n), min n) e > ue
oo =min{ min a(0), min g(n) } > e

b(a,1) = o {supa) supy(n) b < d = s,

neZ neZ
and

y(x,y) = max {Sup ' (p(n))|Az(n)|,sup ‘If‘l(Q(n))IAy(n)l} <ec.

neZ neZ o

Hence we get that

0 < 2(n),y(n) < e1,0 < 27 (p(n))|Ax(n)], ¥ (q(n))|Ay(n)| < c, n € Z.
Then (A3) implies that

Fln,y(n), Ay(n), g(n, (), Aa(n)) < 50 meZ
So (2.16) implies that
BT (2,)
< A {sup 071 (o) A(Tig) )] sup ¥ () ATz )]

< Mmax{®7'(6F), V1 (6F)} < e =d.

This completes Step 3.
Step 4: Prove that o(T(z,y)) > a for (z,y) € P(vy,a;a,¢) with
0(T (z,y)) > b;
For (z,y) € P(v, a5 a,¢) = P(y, a; €2, ¢) with 6(T(z, y)) = B(T'(,y))

>b= eﬁ, we have that

a(x, = min< min x(n), min n)p > eo,
(x.1) { min o0, min 00| = o

neZ neZ

2(,y) = max {sup <1>1<p<n>>|Ax<n>|,sup\v1<q<n>>|Ay<n>|} <

Sup (T'(z,y))(n) > n
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Then

o(T(wy)) = min (T(zy))(n) 2 ps(T(z,y)) > €2 = a.

This completes Step 4.
Step 5: Prove that S(T(x,y)) < d for each (x,y) € Q(v, 5;d, ¢) with
o(Tz) < h.
For (z,y) € Q(v, B;d, c) with o(Tx) < h, we have

(ey) = max{supcb1<p<n>>|Ax<n>r,igg\If1<q<n>>my<n>r} <e

neZ

Ble,y) = max{supxm),supy(n)} <d—e,

neZ neZ
o(T(x,y)) = min{ min (7T1y)(n), min (Tgx)(n)} < h = pe;.
ne[k‘l,kz] nE[kl,kQ]

Then
1

BT (x,y) < —p(T(x,y)) < e =d.
This completes the Step 5.
Then Lemma 1 implies that 7" has at least three fixed points (x1,y1),
(x2,y2) and (x3,ys) such that
B(x1,y1) < e1, a(wa,ya) > ea, B3, y3) > e1, aws,y3) < ea.

Hence BVP(5) has three positive solutions (x1, 1), (2, y2) and (x3,ys3)
satisfying (40)-(42). The proof is complete. O

=

5. An application

Now, we apply Theorem 2 to BVP(6). Corresponding to BVP(5), in
(6) we have p(n) = (|n| + 1 = g(n), (z) = V(z) =z and @, — G, —
Y = 0, = 0 for every n € Z.

+oo +oo
Note n_z_mm = %2 — 1 and Py = l—l—n_z_mm = %2 Let
k1 = 0 and ky = 102. Denote
400 1 2
MO:t:EOOM =5 -1

po=min{py, s} = min{ LT S 5 RS } > 0.004.

Pioo—Pr 17 Pryt1
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and for positive numbers ey, €5, ¢ and integers k1, ko, denote

Wy = min = = < 1308.078es.

102

t ||
M22(5+1>222|| ﬂz )222

THEOREM 3. Suppose that there exist positive constants e, es, ¢ such
that Qo > Wy and

<

Qo
<% neZuel0,d,vel,d,

=
s

Q
+
=

e

(A4): (

( j‘ )S2%4,”62,“6[0,0],2}6[070];
(A5); <n7U7 i )Z V\I:L()\)ne[k k‘],ue[eg,%],ve[o,c]?
(n . )2;‘:3,716% kol € [e2, 2], 0 € [0, )
(AG): n,u, i 7) < z\n\’n € INg,u € [0,e1],v € [0,],
g(n,u ,U)S%nelue[oel]ve[oc]

Then BVP(6) has at least three positive solutions (x1,y1), (x2,y2) and
(x3,y3) satisfying

supzi(n),supyi(n) < e;, min xs(n), min ys(n) > e,
nez neZ nelkl,ka] n€ki,ka]

and

either sup x3(n) or supys(n) > ey,
nez neZ

and

either min z3(n) or min n) < es.
né€(ky,k2] 3( ) nelki,ka] y3< )

Proof. Choose ky = 0,ky = 102, ®(z) = ¥(x) = z, p(n) = q(n) =
(Jn| +1)* and o, = B, = Y, = 0, = 0 for all n € Z. Tt follows from
Theorem 2 and the details are omitted. ]
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REMARK 1. Consider the following boundary value problem of differ-
ence system

( Alp(n)®(Az(n))] + f(n,y(n), Ay(n)) =0, n€Z,
Alg(n)¥(Ay(n))] + g(n, x(n), Az(n)) = 0, n€Z,
+00
lim —=2® S a,z(n) =0,
n——oo 1 _
L e
lim 1 5 () =0
m =g = Tmyin) =u,
(47) n——0oo 1+s§n 7\?*1&(5)) n=—oo
+00
lim % — Y. Bux(n) =0,
n—+oo 1+S§0 T T1(p(s) n=-—00
I i) SS ay(n) =0
n—1>r—{loo 1+i \II_% N——00 nY\N) =
\ s=0 (a(s))

where (a), (d) and (e) in Section 1 hold and
(b") p(n),q(n) > 0 for all n € Z satisfying

= 0 +o00 0
N S I 1 - 1 B

How to establish the existence results on solutions of BVP(47)? we
encourage readers to do it.

REMARK 2. Consider the following difference system

) Alp(n)®(Az(n))] + f(n,y(n), Ay(n)) =0, neZ,
Alg(n)¥(Ay(n))] + g(n, 2(n), Az(n)) = 0, n € Z,

where (a) and (e) in Section 1 hold. What conditions guarantee the
existence of solutions of (48)7 It is interesting to study the solvability
of (48).
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