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INTERACTIVE DYNAMICS IN A BISTABLE
ATTRACTION-REPULSION CHEMOTAXIS SYSTEM

YOONMEE HAM AND SANG-GU LEE*

ABSTRACT. We consider a bistable attraction-repulsion chemotaxis
system in one dimension. The study in this paper asserts that con-
ditions for chemotactic coefficients for attraction and repulsion to
show existence of stationary solutions and Hopf bifurcation in the
interfacial problem as the bifurcation parameters vary are obtained
analytically.

1. Introduction

We consider an attraction-repulsion chemotaxis system ([5,7,9, 11,
16)):

e0pr = €% pux — eR1(p az)s + ehin(pby). + F(p, a),
(1) ay = Qzp + pp — a,
by =bye +p+a—0b, ©>0,t>0,

where p(z,t) is the cell density, a(x,t) and b(x,t) are the chemical con-
centrations of attractant and repellent, respectively. The function F
is of the bistable type investigated by McKean [12], namely F(p,a) =
—p+ H(p — ap) — a, where H is a Heaviside step function. The con-
stants €, 0, ap and p are positive and the parameters x; and ko measure
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the strength of the attraction and repulsion, respectively. The system
with F' = 0 and € = 1 was proposed in [11] to describe the aggregation
of microglia observed in Alzheimer’s disease and in [15] to address the
quorum effect in the chemotactic process. The system with F' = 0 and
e = 1 in the one dimensional case is globally well-posed in the sense
that kg — pry > 0 in [10] and in the multi-dimensional case was essen-
tially determined by the competition of attraction and repulsion which
is characterized by the sign of ko — pk; in [6,16].

When ¢ is small, the stationary solution, being smooth, exhibits an
abrupt but continuously differentiable transition at the location of the
limiting discontinuity. The transition takes place with in an z-interval of
length O(e). An z-interval, in which such an abrupt change takes place,
is loosely called an internal layer when it is in the interior of the interval.
An analysis of the layer solutions suggests that the layer of width O(e)
converges to an interfacial curve x = n(t) in z,t-space as ¢ | 0. In
this paper, we derive an evolutional equation of an interfacial curve that
is controlled by two chemicals a and b and examine the behavior of
solutions in this free boundary problem.

Suppose that there is an interfacial curve n(t), which is simply a single
closed curve given in 2 = [0, 00) in such a way that Q = Q(¢) Un(t) U
Qo(t), where Q,(t) = {z € R* : p(z,t) > ao} and Qy(t) = {x € R
p(z,t) < ap}. The velocity of the one-dimensional interface 7(t) is given
by (see [13,17]);

@) DO = L(Cane) + w1 n(t).) = mabo (1)1« € ().

where C' is a continuously differentiable function defined on an interval
I := (—ag,1 — agp), which is given by ( [3,8])

1 —2ay — 2a(n)
Cl(a = — '
(3) ( (n)) \/(a(n) + a0)<1 — Qg — CL(??))

Hence, a free boundary problem of (1) when ¢ is equal to zero is given

by :

=gy — (p+La+pu, t>0, xeQy(t)
ay = Qg — (L+1)a, >0, z€Q(t)
a(n(t) - Oat) = aln t) + Oat)

(4) (
aw(n(t) -0, t) = %(U(t) +0, t)
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and
by =by —b+1, >0, z€ Q)
b =bow — b, >0, z€ Q)
b(n(t) —0,t) = b(n(t) +0,1)
ba(n(t) — 0,t) = ba(n(t) +0,1).

(5)

The organization of the paper is as follows: In section 2, a change
of variables is given which regularizes problem (4) and (5) in such a
way that results from the theory of nonlinear evolution equations can
be applied. In this way, we obtain a regularity of the solution which
is sufficient for an analysis of the bifurcation. In section 3, we show
the existence of equilibrium solutions for (4) and (5) and obtain the
linearization of problem (4) and (5) under the condition ke — puky > 0.
In the last section, we investigate the conditions to obtain the periodic
solutions and the bifurcation of the interface problem as the parameter
o varies.

2. Regularization of the interface equation

Now, we consider the existence problem of (4) and (5).
(6)
ar = Gge — (W + 1)a+ pH(z —n(t)), >0, >0
by =byy — b+ H(x—n(t), x >0,t>0
a4,(0,1) = 0,b,(0,£) = 0, ¢ >0

Un/(t) = O(a(n)) + K1 az(n(t)>t> — K2 bx(n(t)vt)7 t>0; 77(0) = To-

Let A be an operator defined by A := —% + 1+ 1 with domain D(A) =
{a € H**(R) : a,(0,t) = 0}. Let Ay := —25 + 1 with domain D(A,) =
{b € H*?((0,00)) : b,(0,¢) = 0}. In order to apply semigroup theory to
(6), we choose the space X := Ly(0,00) with norm || - ||2.

To get differential dependence on initial conditions, we decompose v
in (6) into two parts: w, which is a solution to a more regular problem
and ¢, which is less regular but explicitly known in terms of the Green’s
function G of the operator A. Namely, we define g : [0, 00) x [0,00) — R,
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gla,n) = A H( — 1)) = / " Gla,y) Hiy — ) dy,

where G : [0,00) x [0,00) — R is a Green’s function of A satisfying the
Neumann boundary conditions, and v : [0,00) — R,

() = g(n,n).
If we take a transformation u(t)(x) = a(x,t)—g(z,n(t)), we have (u,)(t)(x)
= ag(z,t)—g.(x,n(t)). Since G, (x, n) is discontinuous, we cannot obtain
one step more regular than that of (6).
To overcome this difficulty, let p(z,t) = a,(z,t) and define g : [0, 00) x
[0,00) — R,

~

§la.m) = A7 (ub(- — () = g / " Clany) by — ) dy.

where G : [0,00) x [0,00) — R is a Green’s function of A satisfying the
Dirichlet boundary conditions, and 4 : [0,00) — R,

A(n) == g(n,n).
We note that
i) = p o Gla,y) £6(y —n)dy = 2 Gla,n)

and

~!

(n) = nG(n,n) =~ () + nGn,m), ¥ (n) = —/T+ ury/'(n)
are positive for all n > 0.
We define j : [0,00) x [0,00) — R,

[e.e]

J(am) = AFNH( — )(r) = / T, y)H(y — ) dy

0
and « : [0,00) x C — C,

a(n) = j(n,n).
Here J : [0,00)? — R is a Green’s function of Ay satisfying the boundary
conditions.

To overcome this difficulty, let ¢(z,t) = b,(z,t) and define j : [0, 00) x
[0,00) — R,

jam) = A7N5( — n)(a)) = / " e y) 6y — ) dy,
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where J : [0,00) % [0,00) — R is a Green’s function of Ay satisfying the
Dirichlet boundary conditions and & : [0, 00) — R,

a(n) = j(n,7)-
Applying the transformations u(t)(z) = a(z,t) — g(z,n(t)), v(t)(z) =

p(z,t) — g(z,n(t)) and w(t)(z) = b(x,t) — j(z,n(t)), s(%)(;p) . q(z,t) —
7( n(t)), then (6) becomes

J

i w + Au = LG, n) (Cluln) +5(n) + k1 (v(n) + 3 (m) = wa(s(n) + a(n) )
v+ Av = = LEG(z,n) (Cluln) + () + Fa(v(n) +5(n) = k2(s(n) + a(n)))
wi + Agw = L7 () (Culn) +7(n) + k1 (0(n) + 5(m) = ra((n) + G ()
s+ Aos =~ J <x,n>(c< (1) +5(n) + Fa (0(n) +4(m) = Ka(s(n) + (n)) )

(8) = £(Culn) + () + ka(0(m) +5(n) = ra(s(n) + a(m) ), ¢ > 0.

Thus, we obtain an abstract evolution equation equivalent to (6) :

) { jt(uvwsn)%—A(uvwsn)—lf(u,v,w,s,n),
(uvv’w78’n)<0) = (uo(x),vo(x),wo(x), 50(@7770)7

where A is a 5 x 5 matrix where (1,1) and (2,2)-entries are an operator
A, (3,3) and (4,4)-entries are an operator Ay and all the others are zero.
The nonlinear forcing term f is

f(u,v,w,s,n)
fi(m) - (far(w,v,w, s,m) + foolu,v,w,s,m) —
fo(n) - (far(uw, v,w, 8,m) + fao(u, v, w,8,m) = fas(u, v,w, 8,7
= | fs(m) (for(u,v,w,8,m) + foolu,v,w,s,n)—
(n) - (fa( (
v

fa for(u,v,w,8,m) + fao(u,v,w,8,m) — foz(u,v,w,s,m
for(u,v,w,8,m) + fao(u,v,w,s,m) — foz(u,v,w,s,n)
where fi : (0,00) = X, fi(n)(z) := pG(z,n), fo : (0,00) = X,
L) == =LG(z,n), f3 : (0,00) = X, fs(n)(z) = J(z,n), fa :

(07 OO) — X7 f4(?7)($) = —%j(l}n), f21 W — (Ca f21(uav7w75777) =

C(U(ﬂ) + 7(”))7 f22 W= (Ca f22(uvv7w7san) = ’%1(7}(7]) + ’A}/(n))a
foz(u, v, w, 8,m) := Kka(s(n)+a(n)) and W := {(u, v, w, s,n) € C(0,00)x
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C(0,00) x C(0, )><Cl(0 00) % (0,00) : u(n)+7(n) € I, v
1, w(n) +a(y) € I, s(n) + &(n) € I} Copen C(R) x C'(R)
CYR) x R.

The well-posedness of solutions of (8) is shown in [1,13,14] with the
help of the semigroup theory using domains of fractional powers 6 €
(3/4,1] of A, Ay and A. Moreover, the nonlinear term f is a continuously
differentiable function from W N X? to X, where X := D(A) = D(A) x
D(A) x D(4g) x D(Ag) xR, X% := D(A@) . X0 = D(AD) and XY :=
D(A%) = X x X% x X0 x X! x R.

The velocity of n is denoted by

1 —2a9 — 2(u(n) +~(n)) '
V(@) + (1) + a) (1= a0 — (u(n) + ()

The derivative of f can be obtained from the following in [4]:

LEMMA 2.1. The functions G(-,n) : (0,00) = X, G(-,n) : (0,00) —
X, J(,n) : (0,00) — X, J(-,n) : (0,00) = X, C(-) : W — C and
f: W — X xR are continuously differentiable with derivatives given by

AAAAA

D for(u, v, w, 8,0)(@, 0,0, 5,7) = C"(u(n) +v(n )) ( (n)ﬁ+ a(n) +~'(n)n)
D for(u, v, w, s,n) (@, 9,1, 8,9) = k1 (V' ()7 + 0(n "(n)n)

Df(u,v,w,s,n)(t,0,w0,5,1) = (for(u,v,w,s 7])—|—f22(u v,w, 8,M))
(f1(n), f2(n), f3(n), f4(n), 0) % + (D for (u, v, w, 5,1m)
+Df22(uvvaw>$7n>>(ﬁ7@7w>§vﬁ)'(fl( >>f2( )7f3( )7f4<77>71)'

3. Equilibrium solutions and Linearization of the interface
equation

In this section, we shall examine the existence of equilibrium solutions
of (8). We look for (u*, v*, w*, s*,n*) € D(A)NW satisfying the following
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equations:
10

. )Au = 5 HG () (Clu(n) +~(n) + r1(v(n) +A(n) — ka(s(n) + a(n)))
Av = = G () (Cu(n) +v(n) + r1(v(n) +4(n) — Ka(s(n) + a(n)))
Agw = 2 J (") (Cu(n) + () + &1(v(n) +4(n)) — r2(s(n) + a(n)))
Ags = =2 J () (Cluln) + () + w1 (v(n) +A(n)) — ra(s(n) + a(n)))

= C(u(n) +v(n)) + w1(v(n) +5(n) — K2(s(n) + &(n))

' (0) =0 = u/(00), v(0) =0=v(x), w'(0) =0=w'(c0), s(0) =0 = s(cx)

THEOREM 3.1. Suppose that 2—(1’i—u) < % —ap < ﬁ and pk; < Ka.

Then equation (8) has at least one equilibrium solution (0,0, 0,0, n*).
The linearization of f at the stationary solution (0,0,0,0,n*) is

AAAAA

&' (n*)n). The pair (0,0,0,0,n*) corresponds to a unique steady state
(a*,p*,b*,¢*,n*) of (6) for o ?é 0 with a*(x) = g(x,n*), p*(z) = g(z,n*),
b*(x) = j(x,n*) and ¢*(z) = j(x,n").

Proof. From the system of equations (10), we have u* = 0,v* =
0,w* =0 and s* = 0. In order to show existence of n*, we define

['(n) :== C(y(n)) + k1 5(n) — K2ce(n).

['(n) = 0 is solvable with n* if I'(0) > 0,I'(c0) < 0 and I''(n) < 0 for al
n > 0. Since I'(00) < C(7(00))+ 1 (k1 — ko) and pkry < ko for all n, T'(co)
is negative if C'(y(00)) is negative. I(n) = C'(v(n))¥' (n) + k1Y (n) —
kod/(n) < C'(v(n)Y'(n) + (ur1 — Ko)e 7 is negative since pk; < Ka.
Hence n* exists if v(c0) < 3 — ap < 7(0) with pr; < ko.

The formula for Df(0,0,0,0,n*) follows from the relation C"(1/2) =
4, and the corresponding steady state (a*, p*, b*, ¢*, n*) for (6) is obtained
by using the transformation and Theorem 2.1 in [4]. H
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4. A Hopf bifurcation

In this section, we shall show that there exists a Hopf bifurcation from
the curve o — (0,0,0,0,7*) of the equilibrium solution. First, let us
introduce the following relevant definition.

DEFINITION 4.1. Under the assumptions of Theorem 3.1, define (for
1 >0 > 3/4) the linear operator B from X% to X by
B :=Df(0,0,0,0,n%).
We then define (0,0,0,0,1n*) to be a Hopf point for (8) if and only if
there exists an ¢y > 0 and a C'-curve
(—eo+ 7", 7" + €0) = (\(1),6(7)) € C x X
(Yc denotes the complexification of the real space Y) of eigendata for
—A + 7B with
(i) (=A+7B)(¢(7)) = M7)o(7), (—A+7B)(d(7)) = A7) &(7);
(ii) N(7%) =i with 8 > 0; N
(i7i) Re (X) # 0 for all \ in the spectrum of (—A + 7*B) \ {£if};
(iv) Re N'(7*) # 0 (transversality);

where T = 1/0.

Next, we check (8) for Hopf points. For this, we solve the eigenvalue
problem:
_g(u7 U? w? S? 77) + TB(“? U? w? 87 TI) = A‘[5(/“/7 U? w? 87 n)?
where [5 is an 5 X 5 identity matrix. This is equivalent to:
(11)
(A+XNu=Tp G n") (4un) +' (7)) + K1(v(n ) &
I

—ra(s(n")
(A+Nv ==L GCn*) (4u(n®) ++' (1)) + k(v ( *) +4 (77*)77)
—ra(s(n* (n*) )),
(Ao + Nw =7 J(,n") (4(u(n®) + 7' (%)) + K1 (v(n )+’V’( “)n)
—ra(s(n*) + & (n*)n)),

(Ao + A)s = =7 () (4(ulr™) + ' (7 )m) + k1 (0(0") + 4/ ("))
—ra(s(n*) + & (")),

A =7 (4(u(n*) + /(7)) + k(o) + 5 (1°)n) — Ka(s(n*) + & (n")n))-
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We shall show that an equilibrium solution is a Hopf point.

THEOREM 4.2. Suppose that m < % —ay < ﬁ and pky < Ko

for all n. Moreover, assume that k, satisfies that 4 > % Additionally,

suppose the operator —A+7*B has a unique pair {+if}, § > 0 of purely
imaginary eigenvalues for some 7" > 0. Then, (0,0,0,0,n*,7*) is a Hopf
point for (8).

Proof. We assume without loss of generality that 5 > 0, and ®* is the
(normalized) eigenfunction of —A +7* B with eigenvalue i. We have to
show that (®*,i/) can be extended to a C'-curve 7 — (®(7), A(7)) of

eigendata for —A + 7B with Re(N'(7*)) # 0.

For thiS, let ®* = <¢0, Vo, Wo, So, T]()) € D(A) X D(A) X D(Ao) XD(A(]) X
R. First, we note that ny # 0. Otherwise, by (11), (A + i)Yy =
pifnoG(n*) = 0 and (A+if)vo = =5 ifnG(,n") = 0, which
is not possible given A is symmetric. So, without loss of generality, let
no = 1. Then E(vy, vy, wo, So,i3,7*) = 0 by (11), where

E:D(A)cxD(A)cxD(Ag)cxD(Ap)c XCxR — Xex Xex XexXexC,

E(u,v,w,s,\,T) :=

(A+Nu—7uG(n) (4uln) +9'(0)) + s (o) +9'(0*))
(A+ Ao+ T,%@(', ) (4(u(n®) ++'(0%)) + K1 (o(n*) + 7' (%))

)
(Ao + Nw — 7J (%) (4(uln) ++'(n%)) + w1 (v(n*) + 7' (%))
—ka(s(n*) + & (n"))
(Ao +A)s + T#j(', ) (4(u(n®) + ' (%)) + k(o) + 7' (%))
—ra(s(n*) + &' (n7))
A= 7(4(u(m®) + 7' () + s(o(*) + 7' (")) — K2(s(n*) + &' (7))

The equation E(u,v,w, s, \,7) = 0 is equivalent to A being an eigenvalue
of —A+ 7B with eigenfunction (u,v,w, s, 1). We shall apply the implicit
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function theorem to E to check that E is of C'— class in [2] and that
(12)
D u..5,0) E (0, v, wo, S0, 1, T")
€ L(D(A)c x D(A)c x D(Ag)c x D(Ag)c x C x R, X¢ x C)

is an isomorphism. In addition, the mapping

D (u0,,5,0) E (Yo, vo, wo, 50,18, 7°) (1, 0
*)

(A+iB)a+ Mo — TG (-, ") (4a(n*) + k19(0*) — K28(n"))

(A+1iB)0 + M0 + T LG(,mt) (4a(n) + k1o (") — Kas(n*))

= | (Ao +iB)d + hwo — 7 J(,n*) (4a(") + Krd(n") — K28(7"))

(Ao +B)3 + Aso + 7T (") (4a(7") + m18(7) — k28(7"))
A—T* (4u(77 )+ K10 (*) — Ka3(n*))

is a compact perturbation of the mapping
(@1, 0,1, 8, A) — ((A+iB)i, (A+iB)o, (Ag + iB)ib, (Ag + )3, N)

which is invertible. Thus, Dy v.w,s,x) £ (%0, Vo, Wo, S0, 15, 7*) is a Fredholm
operator of index 0. Therefore, in order to verify (12), it suffices to show
that the system of equations

D(u,v,w,s,A)E(¢0; Vo, Wo, So, Zﬁy T*)(flw @7 UA}, §7 )‘) =0

which is equivalent to
(13)

(((A+if)a+ Mo = 7°pG (-, n*) (4a(n*) + w10(n") — Kad(n"))
(A+iB)d + A& LG () (40(7) + mad(n") — ra8(7"))
(Ao +B8) + Ago = 7 J (-, ") (4a(n*) + k10(*) — K23(n"))
(Ao +iB)3 + Asg = =" L J (") (40(7") + k1d(n") — ra8(7"))

(A =7 (4a(n*) + k19 (%) — r28(n"))

= 0and A = 0. If we
,p = wo— J(-,n") and

necessarily implies that © = 0, 0 =

0 =0,5
define ¢ := g — pG(-,n*), £ == vy + e (-, *)
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(=s0+ ni J(-,n*), then (13) becomes

(14) (A4 if)a+ Ao =0,
(15) (A+iB)0 + A =0,
(16) (Ao + if) + Ap = 0,
(17) (Ao + iB)5 + A =0,
A
(18) — = 4u(r") + ra0 (") — r28(7°).

Since E(1)g, vg, wo, So,15,7") = 0, ¢, &, p and ( are solutions to the equa-
tions, we have:

(19) (A+iB)p = —poy,
(20) (A+iB)E = %5,7*,
(21) (Ao +iB)p = —0,,
(22) (Ao +iB)( = %577*:
(23)

D =A0) + pG )+ (1) + mET) = & Gl ,n") + A (7))
—ra(Cl") — =T (7 m7) + & ().
Multiplying (15) and (20) by ¢, and (14) and (19) by £ and subtracting
one from the other, we now obtain
(24) a(n®) = =" o(n"), @(n*) = —n"3(n")
(25) (") = —=n" &), p(n") = —n" ().

Multiplying (14) by 4¢, (15) by —n*s1€, and (17) by un*se¢ and
adding the resultants to each, we obtain
(26)
—Apii(n*) — rapo(n*) + pr2d(n*) + AA[G11* — 0"k [I€]1 + pn*ro| [C]]?)

+2if [ (44 — n*k10€ + pn*K25¢C) = 0.
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Multiplying (19) by 4¢, (20) by —n*x:€ and (17) by pn*ks¢ and adding
the resultants to each, we obtain

AP = || A€ + g ol | A

F18(4l1011 el + a2

= —4pp(n*) — pri€(n*) + pn*ral(n*),
and from (23), we get

1z ‘ )
(27) — = 4IBIF =l [€IP + ™o ]

Thus (26) implies that
(28) / (406 — n* K1 0€ + pn*K25C) = 0.

Now, multiplying (14) by 44, (19) by —n*k10 and (17) by un*kes and
adding the resultants to each, we obtain

(4141202 — ey | AV20] 2 + g | Ag 5] 2)
i (4]l = o |01 + o a5
+A i (4(/55 — K€D + ,un*@(g> =0
and from (28), we have

(29) {“mwmv—wMWW%W+uw@ww%W=o
AlJa) > — n*wa][8])> + pn*ral 3% = 0.
Multiplying (19) by ¢ and (20) by &, we then get

1AV +iBlJol]F = —dl) and (A2 + dB€]P = L €

and applying (24) to the above equation, we have
(30) 1AY22 = (n)?|| A2 and [|g]]* = ()2 [I€]I*.

Now, multiplying (14) by 2i3a and (19) by A and subtracting the re-
sultants from each, we now obtain

206 (1| A" ?al [ —(y)? || AY20]1) =282 (11l ()2 (18] *) +A (1P~ (n*) €] ).
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Applying (30) to the above equation, we have
A4 = ()| AY20|P = 0 and [al]* = (n")?[[0]]* = 0
and thus (29) implies:
(4= DNl + o I8 = 0.

Since 4 — L > 0, we have @ = 0 and § = 0 and so, 0 = 0. By (13) and
(16), we have A = 0 and @& = 0. O

THEOREM 4.3. Under the same condition as in Theorem 4.2, (0,0, 0,

n*, ) satisfies the transversality condition. Hence, it is a Hopf point
for (8).

Proof. By implicit differentiation of E (1o (7),vo(7), wo(7T), so(7), A(T), T)
=0, we find
D(U,v,w,S,A)E(¢07U07w0’307i577*)<¢6(7*)7U6<T*)’w6(7*)736(7*)7)‘/(7*))
pG ) (Ao (n*) ++' (1)) + w1 (vo(n*) + 7' (0*))
—#z(so(11") + &' (” ))
— L& G () (4o (1) + 4/ (77)) + s (vo(7) +
—ka(so(n*) + & (
JCm*) (Ao (") +7' (7)) + k1 (vo(n*) +
—ra(so(n") + & (n *)
=k ) (Ao (1) + 7/ (77)) + ra (vo(* ) +
—ka(so(n") +

Ao(n*) +9' (")) + k1 (vo(n*) + 7' (%))
—rRa(so(n*) +a'(n")

/\\Q>
/\

3

*

~—

~—
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This means that the functions @ := ¢ (7*), 0 := v{(7%), @
so(7*) and A := X (7*) satisfy the equations

((A+iB)a+ Mo — TG (") (4a(n*) + 0 (n°) — ka3 (n"))
=pG(n")Z(n"),

(A+iB)0 + Ao + 75 G(-,n™) (4a () + k10(n") — m23(77))
=—5G(,n)Z(n")

(31) ¢ (Ao +iB)d + Apo — 7T (-, ) (4a(n*) + a0 (n*) — Ka3(1"))

=J(n")Z(n"),

(Ao +B)3 + Ao + 7= J (-, ™) (4a(") + miB(°) — K23(7))
=—5 I 20r)

| A= 7 (4a(n") + ma0(n") — Kad(n")) = Z(n"),

VY};@n;)Z( ) = AWo(r) + /(7)) + (v + 7' (1") — malso(n) +

a'(n)).

By letting ¢ := ¢g — pG(-, %), £ = vy + n%é(-,n*), p=wo— J(,n*)
and ¢ = so — J(-, ) as before, we obtain

S
I
g
o
—~
9
*
~
VAN
I

(32) (A+iB)a+ Ao =0,
(33) (A+iB)0+ X =0,
(34) (Ao +i8) + \p = 0,
(35)
(36)

35 (Ag+iB8)5+ X =0,

=

36

A—T1* (4@(7]*) + rk10(n*) — l€2§(7]*)) =

Multiplying (32) by 4¢, (33) by —n*k1€ and (34) by un* k¢ and adding

the resultants to each, we now obtain

* *

K

—dpa(n*) — kipB(*) + pp*rad () + M4 |12 — n*ra| €] + pn* s |C]]?)
+2if3 [ (4&5 — R D€ + Mn*fQQgZ) = 0.

From (27) and (36), the above equation implies that

(37) i + 2if3 / (4&5 — N K1 0E + m;*@gz) =0

!
(7%)2
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Multiplying (32) by 4, (33) by —n*k10 and (35) by un*kes and sum-
ming their resultants to each, we now obtain

A AY2@|2 — || AV 2+ gt | Ay 23] 2
i3 (4][a[2 = e 1212 + 1511
+A J (41]5 — R D€ + /177*/@52) =0.
From (37), we have
A||AY2a|2 — || AV 2+ o || Ay 252

i3 (41112 = e 18112 + |31 ) = kg N
The real part of the above is given by
(38)  AI|AV2aA|? — k| |AY25|2 + gt we| A 732 =

I

2<T*>2Re>\.

Now, multiplying (32) by 2i3@ and (33) by A% and subtracting resultants
from each other, we obtain
[AY2a][> = ()| AY20|P = 0 and [Jal]* = (n")?|[0]]* = 0
by (30). Thus (38) implies that
#RGS‘ =(4- %)||f‘11/2ﬂ||2 + || Ag 52
which is positive since 4 — % > 0. We have ReN(7*) > 0 for § > 0,

and thus, by the Hopf-bifurcation theorem in [4], there exists a family
of periodic solutions which bifurcates from the stationary solution as 7
passes 7*. L]

We shall now show that there exists a unique 7 > 0 such that
(0,0,0,n*,7*) is a Hopf point; thus 7 is the origin of a branch of non-
trivial periodic orbits.

LEMMA 4.4. Suppose that 4 — Z—l > 0. Let Gz and @5 be Green
functions of the differential operator A + if3 satisfying (19) and (20),
respectively. Then, the expression 4Re (Gg(n*, ")) — 1+Re (Gs(n", 7))

and Re(Js(n*,n*)) are strictly decreasing in 3 € R* with
Re Go(nr", ) = G, "), lim Re Gp(y”,7") = 0.
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Moreover, —4 ImGg(n*,n*) + = Im Ga(n*,n*) — Z—Elm(jlg(n*, n*)) > 0 for
g > 0.

Proof. First, we have (A+if)™! = (A—iB)(A%+ 3%)7, soif L(B) :=
Re (A +148)71, then L(B) = A(A% + 5%)~!. Moreover, L(3) — A™!
f — 0and L(8) — 0 as § — oo, which results from the corresponding
limiting behavior for Re (G(n*,n")).

Now to show that 8 — (4Re (Gs(n*,n*))— 2 Re (G5(n*, n*)) is strictly
decreasing, define h(B3)(x) = 4Gg(z,n") — 2 Ga(z,n*) — 4Gz, %) +
o G(z,n*). Then (in the weak sense initially)

(39) (A+ip)h(B) = —4iBG(-,n") + iBELG (", ).

As a result h(5) € D(A)c and h : RT — D(A)¢ is differentiable with
ih(B) + (A+iB)h (B) = —i G(-,n*), therefore

(A+ BN (8) = i(4Gs(-n") — 2 Gs()).

ok

Thus, we get
(40)
—i(4 =B 7)) = [(A+iB)* W (B)R(B)(r)dr

= [(A+ip)h'(B) - (A+iB)l'(B) dr
— [AR(B)|> — B2W(B)[2 dr + 2iB [ AR (B)K(B) dr .
From (40) it follows that
—(4 = 5)Re (W(B)(n7)) = 28 [ |AV2H(B)]> > 0

and thus Re (#'(8)(n")) < 0if4 > 7. In order to show 4 Im(Gs(n", n"))—
o Im( Gs(n*, %)) < 0 for > 0, we multiply (39) by 2(5)(r) and inte-
grate the resulting equation, then

~i5( ~ SRET) = [ A+ i) REIG) dr

_ /|Ah(5)]2+iﬁ/14\h(5) ’

which implies that —B(4 — =)Imh(8)(n*) = [|AR(B)[* > 0. Since
(4 — %) > 0, we have Imh(ﬁ)( *) < 0 for ﬁ > 0.
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Similarly, we define k(8)(r) := Js(r,n*) — J(r,n*). Then
{ Re (K'(8)(1) = 26]| A *K (B)|* > 0
Imk(B)(n*) = || Aok(B)[|* > 0.

We have Rek’(8)(n*) < 0 and Imk(3)(n*) < 0for 5 > 0. Thus 4 Re (Gs(n*,
n")) — +Re (Ga(n", n")) + (#Re(Ja(n", n")) is a strictly decreasing func-
tion of # > 0 and —4ImGg(n", n*)++ Im Ga(n*, n*)—%lm(jﬁ(n*, n*)) >
Of0r6>0if4—%>0. ]

THEOREM 4.5. Under the same condition as in Theorem 4.2, for a

unique critical point 7* > 0, there exists a unique, purely imaginary
eigenvalue A\ = if8 of (11) with 3 > 0.

Proof. We only need to show that the function (u,v,w,s,S,7)
E(u,v,w,s,i3,7) has a unique zero with 8 > 0 and 7 > 0. This means
solving the system of equations (11) with A = il u=a—pG(,n), v=
p+ LG ), w=b—J(n") and s = g+ = J (-, n"),

)+ pGr )+ (7)) + ka(p(n”) — LG, 0) + 4 ("))

\ —HQ(q(n*) — () + & ().

The real and imaginary parts of the above equation are given by

L = 4Im(—pGa(n', ") + B2 Im(Gy (", 7)) — Z2Im( s (0", 7))

0 = 4(Re(—puGs(n*,n")) + uG(n*,n*) ++' (7)) + k1 (Re(£Gs(n", n"))
— LG )+ (1) — wa(Re(EJs(n", 7))

(

Since 4Im(—pGs(n*,n")) + K1 Im(G(n*, ")) — 2Im(Js(n",n")) > 0
by Lemma 4.4, there is a critical point 7%, provided the existence of f3.
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We now define
T(B) = 4Re(=pGs(n*, ) + G, n°) +7' (1))
+r1(Re(£Gs(n",n")) — LG, n") +4' ("))
—ra(Re(E (", %) — (0", %) + & (n")).
Using Lemma 4.4, we have T'(8) > 0 for > 0 and T'(0) = 49/'(n*) +
k1Y (%) — kad' (n*) < 0 by assumption.

limg oo T(B) = 4(uG (0", 0") + (7)) + 1 (= &G, 7)) + 7' (n"))
—ra(—= (", ") + & ("))
= (A=) (G n*) + () + k17 (07) + 2 (T (", m%)
+a/(n")) — Rl (17)
is positive since 4 > % Hence, there exists a unique g > 0. [
The following theorem summarizes the results above.

THEOREM 4.6. Suppose that 2_(1+Lu) < % —ap < ﬁ and pk; < Ka.

Then (8) and (6) have at least one stationary solution (u*,v*, w*, s*, n*)
where u* = v* = w* = s* = 0 and (a*, p*, b*, ¢*,n*) for all T, respectively.
Moreover, assume that 4 > % Then there exists a unique 7" such that
the linearization —A + 7B has a purely imaginary pair of eigenvalues.
The point (0,0,0,0,n*, 7*) is then a Hopf point for (8), and there exists
a C-curve of nontrivial periodic orbits for (8) and (6), bifurcating from
(0,0,0,0,n*,7%) and (u*,v*, w*, s*,n*, 7*), respectively.
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