COMPUTATION OF λ-INVE\-ARIANT

JANGHEON OH

Abstract. We give an explicit formula for the computation of Iwasawa λ-invariants and an example of the computation using our method.

1. Introduction

Let K be an imaginary quadratic field and p be an odd prime. It is well-known (see [1] and [2]) that there exist non-negative integers $\lambda_p(K)$ and $\nu_p(K)$ such that the exact power of p dividing the class number $h(K_n)$ is equal to $\lambda_p(K)n + \nu_p(K)$ for all sufficiently large n. Here K_n is the n-th layer of the cyclotomic \mathbb{Z}_p-extension of K. Fukuda [3] computed $\lambda_p(K)$ using theorems of Gold and Iwasawa’s construction of p-adic L function attached to K. In a paper [6], we gave another method to compute $\lambda_p(K)$ using Sinnott’s construction of p-adic L function and Kida’s formula. Examples of computation of $\lambda_p(K)$ were given for $p = 3$ in the paper. In this paper, we compute $\lambda_p(K)$ for primes greater than 5 using our method in the paper [6].

2. Computation of λ-invariant

We briefly explain our method in the paper [6] for computing $\lambda_p(K)$. Let Λ be the ring of \mathbb{Z}_p-valued measures on \mathbb{Z}_p. Then Λ is isomorphic to
the ring $\mathbb{Z}_p[[T-1]]$; explicitly, if $\alpha \in \Lambda$, then the power series associated to α is defined by

$$F(T) = \sum_{n=0}^{\infty} \int_{\mathbb{Z}_p} \left(\frac{x}{n} \right) d\alpha(T-1)^n,$$

where $\left(\frac{x}{n} \right) = \frac{x(x-1)\cdots(x-n+1)}{n!}$.

Let $c > 1$ be an integer prime to p and the conductor of a nontrivial first kind character χ of K, and let $\varepsilon : \mathbb{Z} \to \mathbb{Z}_p$ be the function defined by $\varepsilon(a) = \chi(a)$, if a is not divisible by c, and $\varepsilon(a) = \chi(a)(1-c)$ if a is divisible by c. Define

$$F_\varepsilon(T) = \sum_{a=1}^{f} \varepsilon(a)T^a \frac{1}{1-T^f},$$

where f is any multiple of the minimal period of ε. It is known that $F_\varepsilon(T)$ lies in $\mathbb{Z}_p[[T-1]]$. Hence it corresponds to a measure in Λ. Let $G(T)$ be the power series in $\mathbb{Z}_p[[T-1]]$ corresponding to the measure $\left(\sum_{\eta \in V} \alpha \circ \eta | U \right) \circ \phi$,

where V is the group of $p-1$-th roots of unity in \mathbb{Z}_p, $U = 1 + p\mathbb{Z}_p$ and ϕ is the isomorphism $\phi : \mathbb{Z}_p \simeq U$ given by $\phi(y) = (1+p)^y$.

If $F(T)$ is an element of $\mathbb{Z}_p[[T-1]]$, write $F(T) = p^uF_0(T)$, $F_0(T) = \sum_{n \geq 0} a_n(T-1)^n$, where $a_n \not\equiv 0 \mod p$ for some n. Then the λ-invariant of $F(T)$ is defined by

$$\lambda(F(T)) = \min\{n : a_n \not\equiv 0 \mod p\}$$

Sinnott [7] proved that

$$\lambda_p(K) = \lambda(G(T))$$

when $p \geq 5$. Moreover we have Kida’s formula [5]:

$$p\lambda(G(T)) = \lambda(\sum_{\eta \in V} \alpha \circ \eta | U).$$

In the paper [6], we computed the power series $Q(T)$ corresponding to the measure $\sum_{\eta \in V} \alpha \circ \eta | U$.

Theorem 1.

$$Q(T) = \sum_{\eta \in V} \frac{\sum_{a \equiv \eta^{-1}} \varepsilon(a)T^{a\eta}}{1-T^{f\eta}},$$
where \(f \) is a multiple of the minimal period of \(\varepsilon \) and \(p \).

Proof. See the proof of Theorem 2 in [6]. \(\square \)

To compute \(\lambda(Q(T)) \) explicitly, we need to replace \(\eta \) by an integer \(i_\eta \).

Lemma 1. Let \(f(T) \) be in \(\mathbb{Z}_p[[T - 1]] \). Then
\[
\lambda(f(T)) = \lambda(f(T^\beta))
\]
for \(\beta \in 1 + p\mathbb{Z}_p \).

Proof. Note that if \(f(T) \) is the power series associated to a measure \(\alpha \), then \(f(T^\beta) \) is the power series associated to a measure \(\alpha \circ \beta^{-1} \). So \(f(T^\beta) \) is in \(\mathbb{Z}_p[[T - 1]] \). We may write \(f(T) = \sum_{n=0}^{\infty} a_n(T-1)^n \). By the definition of \(\lambda \) we see that \(a_n \equiv 0 \mod p \) for \(n < \lambda(f(T)) \) and \(a_{\lambda(f(T))} \not\equiv 0 \mod p \). Since
\[
T^\beta = \sum_{n=0}^{\infty} \binom{\beta}{n} (T - 1)^n \equiv 1 + \beta(T-1) + \text{higher terms}
\]
\(\equiv T + \text{higher terms}(\mod p) \), it is easy to check that \(\lambda(f(T)) = \lambda(f(T^\beta)) \). \(\square \)

For \(\eta \in V \), let \(1 \leq i_\eta, j_\eta \leq (p-1) \) be integers such that \(\eta \equiv i_\eta \mod p \) and \(i_\eta j_\eta \equiv 1 \mod p \). Now we give a formula to compute \(\lambda \)-invariants for imaginary quadratic fields.

Theorem 2. For primes \(p \geq 5 \), we have
\[
\lambda_p(K) = \frac{1}{p} \lambda(\sum_{\eta \in V} \sum_{a \equiv j_\eta} \varepsilon(a)T^{ai_\eta} \mathbb{Z}_p). \]

Proof.
\[
\lambda_p(K) = \lambda(G(T)) = \frac{1}{p} \lambda(\sum_{\eta \in V} \alpha \circ \eta|U) = \frac{1}{p} \lambda(Q(T) = \frac{1}{p} \lambda(\sum_{\eta \in V} \sum_{a \equiv j_\eta} \varepsilon(a)T^{ai_\eta} \mathbb{Z}_p). \]

The last equality comes from Lemma 1 with \(\beta = \eta^{-1}i_\eta \). \(\square \)

We give an example.
Example 1. For $K = \mathbb{Q}(\sqrt{-127})$ and $p = 5$, we can choose $c = 2, f = 1270$. Moreover, $\varepsilon(a) = \left(\frac{a}{127} \right)(-1)^{a+1}$, where $\left(\frac{\cdot}{\cdot} \right)$ is the Jacobi symbol. Hence we have

$$
\lambda_5(\mathbb{Q}(\sqrt{-127})) = \frac{1}{5} \lambda\left(\sum_{a \equiv 1(5)} 1270 \varepsilon(a)T^a T^{1270} \right) + \frac{\sum_{a \equiv 3(5)} 1270 \varepsilon(a)T^{2a}}{1 - T^{2+1270}}
$$

$$
+ \frac{\sum_{a \equiv 2(5)} 1270 \varepsilon(a)T^{3a}}{1 - T^{3+1270}} + \frac{\sum_{a \equiv 4(5)} 1270 \varepsilon(a)T^{4a}}{1 - T^{4+1270}}.
$$

$$
= \frac{1}{5} \lambda((T - 1)^{10} + (T - 1)^{11} + \text{higher terms } \text{mod } p) = 2,
$$

which agrees with the Table 1 of [4]. We used Maple for the second equality.

References

Jangheon Oh
Faculty of Mathematics and Statistics
Sejong University
Seoul 05006, Korea
E-mail: oh@sejong.ac.kr