

k− DENTING POINTS AND k− SMOOTHNESS OF BANACH SPACES

Suylatu Wulede*, Shaoqiang Shang, and Wurina Bao

Abstract. In this paper, the concepts of k−smoothness, k−very smoothness and k−strongly smoothness of Banach spaces are dealt with together briefly by introducing three types k−denting point regarding different topology of conjugate spaces of Banach spaces. In addition, the characterization of first type $w^*−k$ denting point is described by using the slice of closed unit ball of conjugate spaces.

1. Introduction

Throughout this paper, $(X, \| \cdot \|)$ will denote a real Banach space and X^* will denote its conjugate space. Set

$U(X) = \{x : x \in X, \| x \| \leq 1\}$, $U(x_0, \delta) = \{x : x \in X, \| x - x_0 \| \leq \delta\}$,

$S(X) = \{x : x \in X, \| x \| = 1\}$, $S_x = \{f : f \in S(X^*), f(x) = 1 = \| x \|\}$.

For $f \in X^*$ and $\delta > 0$, set $F(f, \delta)$ will denote the slice $\{x \in U(X) : f(x) > 1 - \delta\}$. The symbol $x_n \overset{w^*}{\longrightarrow} x$ (resp. $x_n \overset{w}{\longrightarrow} x$, $x_n \rightarrow x$) will denote the sequence $\{x_n\}$ of X which w^* (resp. w, strong) convergence to x in X. $\sigma(X, w)$ will denote the weak topology of X and the open (resp. compact, closed) set regarding weak topology $\sigma(X, w)$ is said

Received May 12, 2016. Revised July 19, 2016. Accepted August 21, 2016.

2010 Mathematics Subject Classification: 46B09; 46B20.

Key words and phrases: k denting points, k smooth spaces, k very smooth spaces, k strongly smooth spaces, Banach spaces.

* Corresponding author.

This work was supported by the National Natural Science Foundation of China (Grant no.11561053) and Foundation of Inner Mongolia Normal University RCPY-2-2012-K-034.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.
to be \(w \) open (resp. \(w \) compact, \(w \) closed) set. The symbol \(\sigma(X^*, w^*) \) will denote the weak* topology of \(X^* \) and the open (resp. compact, closed) set regarding weak* topology \(\sigma(X^*, w^*) \) is said to be \(w^* \) open (resp. \(w^* \) compact, \(w^* \) closed) set. The neighborhood regarding weak (weak*) topology is said to be \(w \) (\(w^* \)) neighborhood. The accumulation point regarding weak* topology is said to be \(w^* \) accumulation point. The symbol co\(M\) will denote the convex hull of set \(M \) and the symbol \(\overline{H}^w \) (resp. \(\overline{H}^{w^*} \)) will denote the \(w \) (resp. \(w^* \)) closure of set \(H \), where \(H \subset X^* \).

Definition 1.1. A point \(x^* \in S(X^*) \) is said to be first (resp. second) type weak* \(- k \) (in short \(w^* - k \)) denting point of \(U(X^*) \) if there is a \(x \in S(X) \) with \(x^*(x) = 1 \), \(\dim S_x \leq k \) such that for every norm (resp. \(w^* \)) open set \(V_{S_x} \), which includes set \(S_x \), we have \(S_x \cap \sigma^{w^*}(U(X^*) \setminus V_{S_x}) = \emptyset \).

Definition 1.2. A point \(x^* \in S(X^*) \) is said to be weak \(- k \) (in short \(w - k \)) denting point of \(U(X^*) \) if there is a \(x \in S(X) \) with \(x^*(x) = 1 \), \(\dim S_x \leq k \) such that for every \(w \) open set \(V_{S_x} \), which includes set \(S_x \), we have \(S_x \cap \sigma^w(U(X^*) \setminus V_{S_x}) = \emptyset \).

Definition 1.3. [4] Let \(X \) be a Banach space. A point \(x \in S(X) \) is said to be \(k \)-smooth point of \(X \) if the inequality \(\dim S_x \leq k \) holds for \(x \in S(X) \), where \(\dim S_x \) denote the linear dimension of \(S_x \). \(X \) is said to be \(k \)-smooth space if every point of \(S(X) \) is \(k \)-smooth point of \(X \).

Definition 1.4. [4, 9] Let \(X \) be a Banach space. \(X \) is said to be \(k \)-strongly (resp. \(k \)-very) smooth space if and only if \(X \) is \(k \)-smooth space and for any sequence \(\{f_n\} \subset S(X^*) \), \(x \in S(X) \) and \(f_n(x) \to 1 \) imply that \(\{f_n\} \) is relatively compact (resp. relatively \(w \) compact).

Let us recall the concepts of denting point and property \((G)\).

Let \(M \) be a subset of \(X \). A point \(x \in M \) is said to be denting point of \(M \) if \(x \not\in \sigma(M \setminus N(0, \epsilon)) \) holds for any \(\epsilon > 0 \). \(M \) is said to be dentable set if for any \(\epsilon > 0 \) there is a \(x_\epsilon \in M \) such that \(x_\epsilon \not\in \sigma(M \setminus N(x_\epsilon, \epsilon)) \), where \(N(x_\epsilon, \epsilon) = \{x \in X : \|x - x_\epsilon\| < \epsilon \} \). The concept of dentable set was first introduced by Rieffel in 1966 and the following important result has been given in [5]. That is, \(X \) has the Radon-Nikodym property whenever every bounded subset of \(X \) is dentable. This important result, later improved by Maynard [3] in 1973, is very simply. That is, \(X \) has the Radon-Nikodym property if and only if \(X \) is dentable.
The property (G) is given by Fan and Glicksberg [1] in 1955. Banach space X has the property (G) if and only if for all $x \in S(X)$ and $\epsilon > 0$, we have $x \notin \overline{co}(H(x, \epsilon))$, where $H(x, \epsilon) = \{y : y \in X, \|y - x\| \geq \epsilon\}$. In 1993, the concept of strongly convex Banach spaces were introduced by Wu and Li, and the another important result connected to property (G) has been given in [7]. That is, X is strongly convex space if and only if X has the property (G), where X is reflexive Banach space. Noticing that the connection with dentable set and property (G), the above important result can be motivated by the following restatement of property (G). That is, X is strongly convex space if and only if every point of $S(X)$ is denting point of $U(X)$, where X is reflexive Banach space. Up to now, this result is only a result has being known about describing the straight relations between dentability and convexity.

The concept of w^* denting point of $U(X^*)$ was given in [1]. A point $x^* \in S(X^*)$ is said to be denting point of $U(X^*)$ if $x^* \notin \overline{co}(U(X^*) \setminus N(x^*, \epsilon))$ holds for each $\epsilon > 0$, where $N(x^*, \epsilon) = \{y^* : y^* \in X^*, \|y^* - x^*\| < \epsilon\}$. About the strongly smooth space which is the dual concept of strongly convex space, Shang, Cui and Fu [6] are greatly inspired to obtain the following important result: X is strongly smooth spaces if and only if the point of $S(X^*)$ which attains its norm is the w^* denting point of $U(X^*)$. Up to now, this important result is only a result has being known about describing the straight relations between dentability and smoothness also.

In this paper, the concepts of k--smoothness, k--very smoothness and k--strongly smoothness of Banach spaces are dealt with together by introducing three types k--denting point regarding different topology of conjugate spaces of Banach spaces. In fact, by using the skill of Banach spaces theory, we show that X is k--smooth (resp. k--strongly smooth) spaces if and only if each point of $S(X^*)$ which attains its norm is the second (resp. first) type $w^* - k$ denting point of $U(X^*)$; X is k--very smooth spaces if and only if each point of $S(X^*)$ which attains its norm is the $w - k$ denting point of $U(X^*)$. Specially, as a simple consequence of these results, we obtain the main result of ref [6]. In fact, the first type weak$^* - 1$ denting point coincide with weak* denting point. Also, the characterization of first type $w^* - k$ denting point is described by using the slice of closed unit ball of conjugate spaces.
2. Main results

Theorem 2.1. X is k–very smooth spaces if and only if each point of $S(X^*)$ which attains its norm is the $w – k$ denting point of $U(X^*)$.

Proof. Proof of necessity. Firstly, we will prove that if for all $x^* \in S(X^*)$, there exists $x \in S(X)$ such that $x^*(x) = 1$, $\dim S_x \leq k$, and $\{x^*_n\}_{n=1}^\infty \subset S(X^*)$ satisfying $x^*_n(x) \to 1(n \to \infty)$, then
\[
\{x^*_n\}_{n=1}^\infty \wedge S_x \neq \emptyset.
\]
In fact, by the k–very smoothness of X, we know that $\dim S_x \leq k$ and there exists a subsequence $\{x^*_n\}_{k=1}^\infty$ of $\{x^*_n\}_{n=1}^\infty$ such that $x^*_n \overset{w}{\to} y^*(k \to \infty)$. It follows that $x^*_n(x) \to y^*(x) = 1$, hence $\|y^*\| \geq 1$.

On the other hand, noticing that $U(X^*)$ is w^* closed set, we know that $\|y^*\| \leq 1$. Moreover, we have $y^* \in S_x$. This shows that
\[
\{x^*_n\}_{n=1}^\infty \wedge S_x \neq \emptyset.
\]
Secondly, we will prove that for all $x^* \in S(X^*)$, there exists $x \in S(X)$ such that $x^*(x) = 1$, and for each w open set V_{S_x} which includes S_x there exists a scalar $m > 0$ such that
\[
x^*(x) \geq z^*(x) + m, \text{ if } z^* \in U(X^*) \setminus V_{S_x}.
\]
If it is not true, then there exists $z^*_n \in U(X^*) \setminus V_{S_x}$ such that $z^*_n(x) \to x^*(x) = 1(n \to \infty)$, so we have
\[
\{z^*_n\}_{n=1}^\infty \wedge S_x \neq \emptyset, \{z^*_n\}_{n=1}^\infty \cap V_{S_x} = \emptyset,
\]
which is a contradiction.

Moreover, we have
\[
x^*(x) - m \geq \sup\{z^*(x) : z^* \in U(X^*) \setminus V_{S_x}\} = \sup\{z^*(x) : z^* \in \text{co}(U(X^*) \setminus V_{S_x})\} = \sup\{z^*(x) : z^* \in \overline{\text{co}}(U(X^*) \setminus V_{S_x})\}.
\]
This shows that $x^* \not\in \overline{\text{co}}(U(X^*) \setminus V_{S_x})$, hence $S_x \cap \overline{\text{co}}(U(X^*) \setminus V_{S_x}) = \emptyset$.

By Definition 2.1 we know that each point of $S(X^*)$ which attains its norm is the $w – k$ denting point of $U(X^*)$.

Proof of sufficiency.

Firstly, we will prove that X is k–smooth spaces.

For all $x \in S(X)$, by Hahn-Banach theorem, there exists $x^* \in S(X^*)$ such that $x^*(x) = 1$, hence x^* is a point of $S(X^*)$ which attains its norm. By the assumption of Theorem 2.1, we know that x^* is $w – k$ denting point of $U(X^*)$. It follows that $\dim S_x \leq k$, this shows that X is k–smooth spaces.
Secondly, we will prove that if
\[x \in S(X), \{x_n^*\}_{n=1}^\infty \subset S(X^*), \quad x_n^*(x) \to 1(n \to \infty), \]
then \(\{x_n^*\}_{n=1}^\infty \) is relatively \(w \) compact set and there exist
\[x^* \in S, \text{ net } \{x_\alpha^*\}_{\alpha \in \Delta} \subset \{x_n^*\}_{n=1}^\infty \]
such that \(x_n^* \overset{w^*}{\to} x^* \) (here, we may assume that \(x_n^* \neq x_m^* \) for all \(m \neq n \)).

Because \(U(X^*) \) is \(w^* \) compact set, so there exists \(x^* \in U(X^*) \) such that \(x^* \) become \(w^* \) accumulation point of \(\{x_n^*\}_{n=1}^\infty \).

Let \(\Delta = \{R_{x^*}: R_{x^*} \) is \(w^* \) neighborhood of point \(x^* \}\)
and define a order by inclusive relation, i.e., \(R_{x^*} \subset Q_{x^*} \) if and only if \(R_{x^*} \supset Q_{x^*} \). Then
\[\{R_{x^*} \cap \{x_n^*\}_{n=1}^\infty : R_{x^*} \) is \(w^* \) neighborhood of point \(x^* \}\]
is a semi-ordered set. By Zermelo principle, there is a mapping \(f \) such that
\[f(R_{x^*} \cap \{x_n^*\}_{n=1}^\infty) \in R_{x^*} \cap \{x_n^*\}_{n=1}^\infty. \]

Put \(x_\alpha^* = f(R_{x^*} \cap \{x_n^*\}_{n=1}^\infty) \), then \(\{x_\alpha^*\}_{\alpha \in \Delta} \subset \{x_n^*\}_{n=1}^\infty \) is a net. From \(x_n^*(x) \to 1(n \to \infty) \) and the structure of this net, we know that \(x_n^* \overset{w^*}{\to} x^* \) and \(x^* \in S. \)

It remains to prove that \(\{x_n^*\}_{n=1}^\infty \) is relatively \(w \) compact set.

Case 1°: If \(\{x_n^*\}_{n=1}^\infty \cap S = \emptyset \), then \(\{x_n^*\}_{n=1}^\infty \) must be a relatively \(w \) compact set. If it is not true, then any point of \(S \) is not \(w \) accumulation point of \(\{x_n^*\}_{n=1}^\infty \), i.e., for all \(x^* \in S \) there exists a \(w \) neighborhood \(V_{x^*} \)
of point 0 such that \(x^* + V_{x^*} \) does not contain any point of \(\{x_n^*\}_{n=1}^\infty \). We construct a \(w \) open set
\[V_S = \cup_{x^* \in S} \{y^*: y^* \in x^* + V_{x^*}\}. \]
Obviously, \(V_S \) includes \(S \) and \(\{x_n^*\}_{n=1}^\infty \cap V_S = \emptyset \). Because \(U(X^*) \) is \(w^* \) compact set, so \(\overline{co}^{w^*}(U(X^*) \setminus V_S) \) is \(w^* \) compact set also. Noticing that \(S \) is \(w^* \) closed set, by separating theorem, we know that there exists \(y \in X \) such that
\[y(S) > \sup y(\overline{co}^{w^*}(U(X^*) \setminus V_S)). \]
Moreover, we choose a scalar \(r > 0 \) such that
\[y(S) - y(\overline{co}^{w^*}(U(X^*) \setminus V_S)) > r. \]
Obviously,
\[\{x_n^*\}_{n=1}^\infty \subset \overline{co}^{w^*}(U(X^*) \setminus V_S). \]
On the other hand, by we have proved above, we know that there exists net \(\{x^*_\alpha\}_{\alpha \in \Delta} \subset \{x^*_n\}_{n=1}^\infty \), such that \(x^*_\alpha \overset{w^*}{\to} x^* \) and \(x^* \in S_x \). This contradicts that
\[
y(S_x) - y(\overline{co}^w(U(X^*) \setminus V_{S_x})) > r.
\]
Hence, we obtain the desired result that \(\{x^*_n\}_{n=1}^\infty \) is a relatively \(w \) compact set.

Case 2°: If \(\{x^*_n\}_{n=1}^\infty \cap S_x \neq \emptyset \), then by case 1° we know that \(\{x^*_n\}_{n=1}^\infty \cap S_x \) is a relatively \(w \) compact set. Because \(S_x \) is a bounded closed set of finite dimensional spaces, so \(\{x^*_n\}_{n=1}^\infty \cap S_x \) is a relatively \(w \) compact set. Noticing that
\[
\{x^*_n\}_{n=1}^\infty = (\{x^*_n\}_{n=1}^\infty \cap S_x) \cup (\{x^*_n\}_{n=1}^\infty \setminus S_x),
\]
we have
\[
\{x^*_n\}_{n=1}^\infty \overset{w^*}{\to} (\{x^*_n\}_{n=1}^\infty \cap S_x) \cup (\{x^*_n\}_{n=1}^\infty \setminus S_x).\]
Thus \(\{x^*_n\}_{n=1}^\infty \) is a relatively \(w \) compact set.

Theorem 2.2. \(X \) is \(k \)-strongly smooth spaces if and only if each point of \(S(X^*) \) which attains its norm is the first type \(w^* - k \) denting point of \(U(X^*) \).

Proof. Proof of necessity. Firstly, we will prove that if for all \(x^* \in S(X^*) \), there exists \(x \in S(X) \) such that \(x^*(x) = 1 \), \(\dim S_x \leq k \), and each norm open set \(V_{S_x} \) which includes \(S_x \) there exists a scalar \(r > 0 \) such that the inequality \(\text{dist}(z^*, S_x) \geq r \) holds for \(z^* \notin V_{S_x} \).

In fact, by the \(k \)-strongly smoothness of \(X \), we know that \(\dim S_x \leq k \). Because \(V_{S_x} \) is a norm open set which includes \(S_x \), so there exists \(\delta' > 0 \) such that \(U(x^*, \delta') \subset V_{S_x} \) holds for \(x^* \in S_x \) and such \(\delta' \) exists a minimum value \(\delta \). Obviously, \(\bigcup_{x^* \in S_x} U(x^*, \delta) \subset V_{S_x} \). Let \(r = \frac{\delta}{2} \), then we have \(\text{dist}(z^*, S_x) \geq r \). Otherwise, there exists \(x^* \in S_x \) such that \(\|z^* - x^*\| < r < \delta \), hence \(z^* \in \bigcup_{x^* \in S_x} U(x^*, \delta) \subset V_{S_x} \). This contradicts that \(z^* \notin V_{S_x} \).

Secondly, we will prove that for all \(x^* \in S(X^*) \), there exists \(x \in S(X) \) such that \(x^*(x) = 1 \), and for each norm open set \(V_{S_x} \) which includes \(S_x \) there exists a scalar \(m > 0 \) such that
\[
x^*(x) \geq z^*(x) + m, \text{ if } z^* \in U(X^*) \setminus V_{S_x}.
\]
If it is not true, then there exists \(z^*_n \in U(X^*) \setminus V_{S_x} \) such that \(z^*_n(x) \to x^*(x) = 1(n \to \infty) \). By the \(k \)-strongly smoothness of \(X \), we can deduce that \(\text{dist}(z^*_n, S_x) \to 0(n \to \infty) \). Otherwise, we may find a \(\epsilon_0 > 0 \) such that for every \(n_0 > 0 \), there exists \(n_k > n_0, k = 1, 2, \cdots \), satisfying
dist\((z^*_{n_k}, S_x) > \epsilon_0\). On the other hand, \(z^*_n(x) \to 1\) implies that \(z^*_{n_k}(x) \to 1\). Hence, by the \(k\)-strongly smoothness of \(X\) we know that \(\{z^*_{n_k}\}\) is a relatively compact set. It follows that there exists subsequence \(\{z^*_{n_{k_l}}\} \subset \{z^*_{n_k}\}\) such that \(z^*_{n_{k_l}} \to z^*_0\). Hence \(z^*_{n_{k_l}}(x) \to z^*_0(x) = 1\) and \(z^*_0 \in S_x\). Which leads to that \(dist(z^*_{n_{k_l}}, S_x) \to 0\). This contradicts that \(dist(z^*_{n_{k_l}}, S_x) > \epsilon_0\).

Moreover, we have
\[
x^*(x) - m \geq \sup\{z^*(x) : z^* \in U(X^*) \setminus V_{S_x}\}
\]
\[
= \sup\{z^*(x) : z^* \in co(U(X^*) \setminus V_{S_x})\}
\]
\[
= \sup\{z^*(x) : z^* \in co^w(U(X^*) \setminus V_{S_x})\}.
\]
This shows that \(x^* \notin co^w(U(X^*) \setminus V_{S_x})\), it follows that \(S_x \cap co^w(U(X^*) \setminus V_{S_x}) = \emptyset\). Hence, we obtain the desired result that each point of \(S(X^*)\) which attains its norm is the first type \(w^* - k\) denting point of \(U(X^*)\).

Proof of sufficiency. Suppose that \(x \in S(X)\), \(\{x^*_n\}_{n=1}^{\infty} \subset S(X^*)\), \(x^*_n(x) \to 1(n \to \infty)\). Greatly similarly to the proof of Theorem 2.1, by using the given conditions in Theorem 2.2, we can prove that there exists a net \(x^* \in S_x\{x^*_n\}_{n=1}^{\infty} \subset \{x^*_n\}_{n \in \Delta}\) such that \(x^*_n \xrightarrow{w^*} x^*\) and \(X\) is \(k\)-smooth spaces. Now we prove that \(\{x^*_n\}_{n=1}^{\infty}\) is a relatively compact set.

Case 1°: If \(\{x^*_n\}_{n=1}^{\infty} \cap S_x = \emptyset\), then \(\{x^*_n\}_{n=1}^{\infty}\) must be a relatively compact set. If it is not true, then any point of \(S_x\) is not accumulation point of \(\{x^*_n\}_{n=1}^{\infty}\). Hence, for all \(x^* \in S_x\) there is a \(\epsilon > 0\) such that the set \(\{y^* : \|y^* - x^*\| < \epsilon\}\) does not contain any point of \(\{x^*_n\}_{n=1}^{\infty}\). We construct a norm open set
\[
V_{S_x} = \cup_{x^* \in S_x} \{y^* : \|y^* - x^*\| < \epsilon\}.
\]
Obviously, \(V_{S_x}\) includes \(S_x\) and \(\cup_{x^* \in S_x} \{y^* : \|y^* - x^*\| < \epsilon\} \cap \{x^*_n\}_{n=1}^{\infty} = \emptyset\). Greatly similarly to the proof of Theorem 2.1, we can deduce that \(\{x^*_n\}_{n=1}^{\infty}\) is a relatively compact set.

Case 2°: If \(\{x^*_n\}_{n=1}^{\infty} \cap S_x \neq \emptyset\), then by case 1° we know that \(\{x^*_n\}_{n=1}^{\infty} \setminus S_x\) is a relatively compact set. Because \(S_x\) is a bounded closed set of finite dimensional spaces, so \(\{x^*_n\}_{n=1}^{\infty} \cap S_x\) is a relatively compact set. Noticing that
\[
\{x^*_n\}_{n=1}^{\infty} = (\{x^*_n\}_{n=1}^{\infty} \cap S_x) \cup (\{x^*_n\}_{n=1}^{\infty} \setminus S_x),
\]
we have
\[
\{x^*_n\}_{n=1}^{\infty} = (\{x^*_n\}_{n=1}^{\infty} \cap S_x) \cup (\{x^*_n\}_{n=1}^{\infty} \setminus S_x),
\]
Thus \(\{x^*_n\}_{n=1}^{\infty}\) is a relatively compact set.

When \(k = 1\), the first type \(w^* - 1\) denting point coincide with \(w^*\) denting point. It is well known that 1–strongly smooth space coincide
with usual strongly smooth spaces [8]. Hence we obtained the following corollary.

Corollary 2.1. [6] \(X \) is strongly smooth spaces if and only if each point of \(S(X^*) \) which attains its norm is the \(w^* \)-denting point of \(U(X^*) \).

In what follows, using the slice of closed unit ball of conjugate spaces \(X^* \), we will describe the characterization of first type \(w^* - k \) denting point.

Theorem 2.3. \(x^* \in S(X^*) \) is first \(w^* - k \) denting point of \(U(X^*) \) if and only if there exists \(x \in S(X) \) such that \(x^* \in S_x \), \(\dim S_x \leq k \) and for \(\forall \epsilon > 0 \), there exists slice

\[
F(x, \delta) = \{ z^* : z^* \in U(X^*), z^*(x) > 1 - \delta \}
\]

satisfying the inclusive relation

\[
F(x, \delta) \subset \{ y^* : y^* \in U(X^*), d(y^*, S_x) < \epsilon \}.
\]

Proof. Proof of necessity. Suppose that \(x^* \in S(X^*) \) is first \(w^* - k \) denting point of \(U(X^*) \), then there exists \(x \in S(X) \) such that \(x^* \in S_x \), \(\dim S_x \leq k \). Let

\[
H_{S_x} = \{ y^* : y^* \in U(X^*), d(y^*, S_x) < \epsilon \},
\]

then \(H_{S_x} \) is norm open set which includes \(S_x \), hence \(S_x \cap \text{co}w^*(U(X^*) \setminus H_{S_x}) = \emptyset \). Moreover, we can deduce that

\[
\sup x(\text{co}w^*(U(X^*) \setminus H_{S_x})) < 1.
\]

Otherwise, there exists sequence \(y^*_n \in \text{co}w^*(U(X^*) \setminus H_{S_x}) \) such that \(y^*_n(x) \to 1 \) \((n \to \infty)\). Let \(x^*_n = \frac{y^*_n}{\|y^*_n\|} \), then \(x^*_n(x) \to 1 \) \((n \to \infty)\). From the proof of Theorem 2.2, we know that \(x \) is \(k \)-smooth point of \(X \) and \(\{x^*_n\}_{n=1}^\infty \) is relatively compact set. Therefore, sequence \(\{x^*_n\}_{n=1}^\infty \) has the convergent subsequence, without loss of generality, let the convergent subsequence be \(\{x^*_n\}_{n=1}^\infty \) itself and suppose that \(x^*_n \to x^*_0 \) \((n \to \infty)\).

Clearly,

\[
x^*_n(x) \to 1 = x^*_0(x) \quad (n \to \infty), \quad x^*_0 \in S_x.
\]

On the other hand,

\[
\|y^*_n - x^*_0\| \leq \|\frac{y^*_n}{\|y^*_n\|} - y^*_n\| + \|\frac{y^*_n}{\|y^*_n\|} - x^*_0\| \to 0 \quad (n \to \infty),
\]

it follows that \(x^*_0 \) belong to the norm closure of set \(\text{co}w^*(U(X^*) \setminus H_{S_x}) \).

Noticing that this set is closed set regarding norm topology, we know that \(x^*_0 \in \text{co}w^*(U(X^*) \setminus H_{S_x}) \), hence \(x^*_0 \notin H_{S_x} \). It is impossible.

Let \(1 - \delta = \sup x(\text{co}w^*(U(X^*) \setminus H_{S_x})) \). It is easy to see that if

\[
z^* \in F(x, \delta) = \{ z^* : z^* \in U(X^*), z^*(x) > 1 - \delta \},
\]

then \(z^* \notin \text{co}w^*(U(X^*) \setminus H_{S_x}) \). Hence \(z^* \in H_{S_x} \), this shows that \(F(x, \delta) \subset H_{S_x} \).
Proof of sufficiency. Suppose that there exists \(x \in S(X) \) such that \(x^* \in S_x \), \(\dim S_x \leq k \) and for \(\forall \epsilon > 0 \), there exists slice \(F(x, \delta) = \{ z^* : z^* \in U(X^*), z^*(x) > 1 - \delta \} \) satisfying the inclusive relation
\[
F(x, \delta) \subset \{ y^* : y^* \in U(X^*), d(y^*, S_x) < \epsilon \}.
\]
For the convenient, we denote \(\{ y^* : y^* \in U(X^*), d(y^*, S_x) < \epsilon \} \) by \(H_{S_x} \), then
\[
1 - \delta \geq \sup\{ z^*(x) : z^* \in \text{co}(U(X^*) \setminus H_{S_x}) \} = \sup\{ z^*(x) : z^* \in \overline{co}^w(U(X^*) \setminus H_{S_x}) \}.
\]
Moreover, we can deduce that \(S_x \cap \overline{co}^w(U(X^*) \setminus H_{S_x}) = \emptyset \) from the structure of \(S_x \). Hence \(x^* \in S(X^*) \) is first \(w^* - k \) denting point of \(U(X^*) \). \(\square \)

Theorem 2.4. \(X \) is \(k \)-smooth spaces if and only if each point of \(S(X^*) \) which attains its norm is the second type \(w^* - k \) denting point of \(U(X^*) \).

Proof. The sufficiency is immediate from the definition of \(k \)-smooth spaces. It remains to prove the necessity.

Firstly, we will prove that for all \(x^* \in S(X^*) \), there exists \(x \in S(X) \) such that \(x^*(x) = 1 \), and \(\{ x^*_n \}_{n=1}^\infty \subset S(X^*) \) satisfying \(x^*_n(x) \to 1(n \to \infty) \), then \(\{ x^*_n \}_{n=1}^\infty \cap S_x \neq \emptyset \).

If it is not true, then there exists \(w^* \) neighborhood \(V_{S_x} \) which includes \(S_x \) such that \(\{ x^*_n \}_{n=1}^\infty \cap S_x = \emptyset \). From the proof of sufficient of Theorem 2.2, we know that there exists net \(\{ x^*_\alpha \}_{\alpha \in \Delta} \subset \{ x^*_n \}_{n=1}^\infty \) satisfying \(x^*_\alpha \xrightarrow{w^*} x^* \), \(x^* \in S_x \). Hence \(\{ x^*_n \}_{n=1}^\infty \cap S_x \neq \emptyset \). This contradicts that \(\{ x^*_n \}_{n=1}^\infty \cap S_x = \emptyset \).

Secondly, we will prove that if for all \(x^* \in S(X^*) \), there exists \(x \in S(X) \) such that \(x^*(x) = 1 \), and each \(w^* \) open set \(V_{S_x} \) which includes \(S_x \) there exists a scalar \(m > 0 \) such that \(x^*(x) \geq z^*(x) + m \) holds for \(z^* \in U(X^*) \setminus V_{S_x} \).

If it is not true, then there exists \(z^*_n \in U(X^*) \setminus V_{S_x} \) such that \(z^*_n(x) \to x^*(x) = 1(n \to \infty) \). Hence we have \(\{ z^*_n \}_{n=1}^\infty \cap S_x \neq \emptyset \). On the other hand, for \(z^*_n \in U(X^*) \setminus V_{S_x} \), we have \(\{ z^*_n \}_{n=1}^\infty \cap V_{S_x} = \emptyset \). This contradicts that \(\{ z^*_n \}_{n=1}^\infty \cap S_x \neq \emptyset \).

Moreover, we have
\[
x^*(x) - m \geq \sup\{ z^*(x) : z^* \in U(X^*) \setminus V_{S_x} \} = \sup\{ z^*(x) : z^* \in \text{co}(U(X^*) \setminus V_{S_x}) \} = \sup\{ z^*(x) : z^* \in \overline{co}^w(U(X^*) \setminus V_{S_x}) \}.
\]
This shows that $x^* \not\in \overline{w^*}(U(X^*)\setminus V_{S_x})$, it follows that $S_x \cap \overline{w^*}(U(X^*)\setminus V_{S_x}) = \emptyset$. By the definition of $k-$ smooth spaces, we know that $\text{dim} S_x \leq k$. Hence, we obtain the desired result that each point of $S(X^*)$ which attains its norm is the second type $w^* - k$ denting point of $U(X^*)$. □

References

Suyalatu Wulede
College of Mathematics Science
Inner Mongolia Normal University
Hohhot 010022, P.R.China
E-mail: Suyila@imnu.edu.cn

Shaoqiang Shang
School of Science
Northeast Forestry University
Harbin 150040, P.R.China
E-mail: yizhitu@163.com

Wurina Bao
Xilingol Vacation College
Xilinhot 026000, P.R.China
E-mail: baowurina@sohu.com