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THE EXISTENCE OF RANDOM ATTRACTORS FOR

PLATE EQUATIONS WITH MEMORY AND ADDITIVE

WHITE NOISE

Xiaoying Shen and Qiaozhen Ma∗

Abstract. We prove the existence of random attractors for the
continuous random dynamical systems generated by stochastic damped
plate equations with linear memory and additive white noise when
the nonlinearity has a critically growing exponent.

1. Introduction

Let (Ω,F ,P) be a probability space, where

Ω = {ω = (ω1, ω2, · · · , ωm) ∈ C(R,Rm) : ω(0) = 0},

is endowed with compact open topology, F is the P-completion of Borel
σ-algebra on Ω, and P is the corresponding Wiener measure. Define the
time shift via

θtω(·) = ω(·+ t)− ω(t), t ∈ R, ω ∈ Ω.

Thus, (Ω,F ,P, (θt)t∈R) is an ergodic metric dynamical system.
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In this paper, we are devoted to consider the existence of random
attractors for the following plate equations with linear memory and ad-
ditive white noise:

utt + αut + ∆2u+
∫∞

0
µ(s)∆2(u(t)− u(t− s))ds+g(u)

= f(x) +
∑m

j=1 hjẆj, x ∈ U, t ≥ τ,
u(x, τ) = u0(x), ut(x, τ) = u1(x), x ∈ U, t ≤ τ,
u|∂U = ∂u

∂n
|∂U = 0, t ≥ τ, τ ∈ R.

(1.1)
Where U is a bounded open set of R5 with a smooth boundary ∂U , u =
u(x, t) is a real-valued function on U × [τ,+∞), f(x) ∈ H1

0 (U)∩H2(U)
is a given external force. hj(x) ∈ H2

0 (U) ∩H4(U), (j = 1, 2, 3, · · · ,m),
{Wj}mj=1 are independent two-sided real-valued Wiener processes on (Ω,F ,P).
Then we identify ω(t) with (W1(t),W2(t), · · · ,Wm(t)), i.e.,

ω(t) = (W1(t),W2(t), · · · ,Wm(t)), t ∈ R.
The memory kernel function µ(s) and the nonlinear term g(u) satisfy
the following conditions:

(H1) : µ(s) ∈ C1(R+) ∩ L1(R+), µ(s) ≥ 0, µ′(s) + δµ(s) ≤ 0, ∀s ∈
R+ and some δ > 0.

(H2) : Let G(s) =
∫ s

0
g(τ)dτ, and there exists constants C0, C1, C2 >

0, such that

|g′(s)| ≤ C0(1 + |s|4), g(0) = 0, ∀s ∈ R, (1.2)

G(s) ≥ C1(|s|6 − 1), ∀s ∈ R, (1.3)

lim inf
|s|→∞

sg(s)− C2G(s)

s2
≥ 0, ∀s ∈ R. (1.4)

Following Dafermos [1], we introduce a Hilbert ”history” space Rµ,2 =
L2
µ(R+, H2

0 (U)) with the inner product

(η1, η2)µ,2 =

∫ ∞
0

µ(s) (∆η1(s),∆η2(s)) ds, ∀η1, η2 ∈ Rµ,2,

and new variables

η(t, x, s) = u(t, x)− u(t− s, x).

Set E = H2
0 (U)×L2(U)×Rµ,2, Z = (u, ut, η)T , then the system (1.1) is

equivalent to the following initial value problem in the Hilbert space E :{
Zt = L(Z) +N(Z, t,W (t)), x ∈ U, t ≥ τ, s ∈ R+,
Z(τ) = Zτ = (u0(x), u1(x), η0(x, s)), (x, s) ∈ U × R+,

(1.5)
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where u(t, x) = η(t, x, s) = η(t, x, 0) = 0, x ∈ ∂U, t ≥ τ, s ∈ R+,
u(τ, x) = u0(x), ut(τ, x) = u1(x), x ∈ U,
η(τ, x, s) = η0(x, s) = u(τ, x)− u(τ − s, x), (x, s) ∈ U × R+,

(1.6)

L(Z) =

 ut
−∆2u− αut −

∫∞
0
µ(s)∆2η(s)ds

ut − ηs

 , (1.7)

N(Z, t,W (t)) =

 0

−g(u) + f(x) +
∑m

j=1 hjẆj

0

 , (1.8)

D(L) =

{
Z ∈ E | u+

∫∞
0
µ(s)η(s)ds ∈ H4(U) ∩H2

0 (U),
ut ∈ H2

0 (U), η(s) ∈ H1
µ(R+, H2

0 (U)), η(τ) = 0

}
,

(1.9)
here H1

µ(R+, H2
0 (U)) = {η : η(s), ∂sη(s) ∈ L2

µ(R+, H2
0 (U))}.

Problem (1.1) models transversal vibrations of thin extensible elastic
plate in a history space, which is established based on the framework of
elastic vibration by Woinowsky-Krieger([2]) and Berger([3]). It can also
be regarded as an elastoplastic flow equation with some kind of memory
effect([1]).

When hj = 0 (1 ≤ j ≤ m) and µ = 0, (1.1) reduces to a deter-
mined autonomous damped plate equation. There were a lot of publica-
tions concerning the existence of their global attractors, uniform attrac-
tors, pullback attractors and exponential attractors, for instance [4,5] for
the linear damping and see [6-10] for the nonlinear damping.

When hj 6= 0 (1 ≤ j ≤ m) and µ = 0, that is the case of without
memory kernel, then (1.1) reduces to a stochastic damped plate equation
with additive white noise. The existence of random attractors for such
system in a bounded domain have been studied in [11,12].

For our problem, to the best of our knowledge, there were no results
on the random attractors for the stochastic system(1.1), moreover, we
know that there need some different techniques. To prove the existence
of random attractors for a RDS(random dynamical system), the key step
is to establish the compactness of the system. For our system (1.5), there
are two essential difficulties in proving the compactness. One difficulty
was caused by the critical growth condition (1.2) of g, which can be
overcome by using the decomposition of solutions and the more accurate
calculation. Another difficulty was caused by the memory kernel itself,
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because there is no compact embedding in the history space; moreover,
we can’t use the finite rank method, that is, we can’t use the (I−Pm)η to
deal with our problem. For our purpose, we introduce a new variable and
define a extend Hilbert space, as well as combine with the compactness
transform theorem.

This paper is organized as follows. In Section 2, we recall some ba-
sic concepts and properties for general random dynamical systems. In
Section 3, we first show that the existence and uniqueness of solutions
for the random differential equation, which generates a RDS. In Section
4, we consider the dissipativeness of solutions of the random differential
equation and obtain the existence of the uniformally absorbing set. In
Section 5, we decompose the solution of the random differential equa-
tion into two parts: one part decays exponentially and another part is
bounded in a higher regular space by using technique in [13] and careful
computation. In Section 6, we construct a compact measurable attract-
ing set and prove the existence of random attractor in E.

2. Random dynamical systems

In this section, we recall some basic concepts related to RDS and a
random attractors for RDS in [14], which are important for getting our
main results.

Let (X, ‖ · ‖X) be a separable Hilbert space with Borel σ-algebra
B(X) and (Ω,F ,P, (θt)t∈R) be a metric dynamical system.

Definition 2.1. Let (Ω,F ,P, (θt)t∈R) be a metric dynamical sys-
tem. Suppose that the mapping φ : R+×Ω×X → X is (B(R+)×F ×
B(X),B(X))-measurable and satisfies the following properties:
(i) φ(0, ω)x = x;
(ii) φ(s, θtω) ◦ φ(t, ω)x = φ(s+ t, ω)x;
for all s, t ∈ R+, x ∈ X and ω ∈ Ω. Then φ is called a RDS. More-
over, φ is called a continuous RDS if φ is continuous with respect to
x for t > 0 and ω ∈ Ω.

To study the asymptotic behavior of the RDS determined by Eq.(1.1),
we first need to recall some concepts and properties.

A set-valued mapping B : Ω → 2X is called a random closed set
if B(ω) is closed, nonempty, and ω 7→ d(x,B(ω)) is measurable for all x ∈
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X, ω ∈ Ω. A random set B := {B(ω)}ω∈Ω is said to tempered if

lim
t→∞

e−ηtdiam(B(θ−tω)) = 0,

for a.e. ω ∈ Ω and all η > 0, where diam(B) := sup
x,y∈B

d(x, y).

Let D be the collection of all tempered random sets in X. We will
only deal with the system D of tempered random sets in this paper.

Definition 2.2. A random set A := {A(ω)}ω∈Ω ∈ X is called a
random attractor for the RDS φ if P − a.s.
(i) A is a random compact set, i.e. A(ω) is nonempty and compact for
a.e. ω ∈ Ω and ω 7→ d(x,A(ω))
is measurable for every x ∈ X;
(ii) A is φ-invariant, i.e. φ(t, ω, A(ω)) = A(θtω), for all t > 0 and
a.e. ω ∈ Ω;
(iii) A attracts every set inX, i.e. for all bounded(and non-random)B ⊂
X,

lim
t→∞

dist(φ(t, θ−tω,B(θ−tω)), A(ω)) = 0, a.e. ω ∈ Ω.

Theorem 2.3 Let φ be a continuous random dynamical system on
E over (Ω,F ,P, (θt)t∈R). Suppose that there exists a random compact
set {K(ω)}ω∈Ω which absorbs every bounded non-random set B ∈ D . Then,
the set

A = {A(ω)}ω∈Ω = ∪B⊂XΛB(ω),

is a global attractors for φ, where the union is taken over all bounded B ⊂
X, and ΛB(ω) is the ω-limits set of B given by

ΛB(ω) =
⋂
τ>0

⋃
t>τ

φ(t, θ−tω,B(θ−tω)), ω ∈ Ω.

3. Existence and uniqueness of solutions

From now on, assume that conditions (H1)− (H2) hold, the space E,
(Ω,F ,P, (θt)t∈R) are defined as in Section 1. With the usual notation, we
denote A = 42, and D(A) = H4(U) ∩ H2

0 (U). We can define the pow-
ers Aν of A for ν ∈ R. The space V2ν = D(A

ν
2 ) is a Hilbert space with

the following inner product and norm

(u, v)2ν = (A
ν
2u,A

ν
2 v), ‖u‖2

2ν = (A
ν
2u,A

ν
2u).
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The injection Vν1 ↪→ Vν2 is compact if ν1 > ν2. In particular, V0 =
L2(U), V1 = H1

0 (U), V2 = H2
0 (U), respectively, the inner product and

norm in L2(U) is denoted by (·, ·), ‖ · ‖, and in H2
0 (U) is denoted

by ((·, ·)), ‖ · ‖2. By (H1), the space Rµ,2ν = L2
µ(R+, V2ν) is a Hilbert

space of V2ν-valued functions on R+ with the inner product and norm,
respectively

(η1, η2)µ,2ν =

∫ ∞
0

µ(s)
(
A

ν
2 η1(s), A

ν
2 η2(s)

)
ds, ∀η1, η2 ∈ V2ν ,

‖η(s)‖2
µ,2ν = (η, η)µ,2ν =

∫ ∞
0

µ(s)‖A
ν
2 η(s)‖2ds,

and on Rµ,2ν , the linear operator −∂s has domain

D(−∂s) = {η ∈ H1
µ(R+, V2ν) : η(0) = 0},

where H1
µ(R+, V2ν) = {η : η(s), ∂sη(s) ∈ L2

µ(R+, V2ν)},

which generates a right-translation semigroup. The symbol C and Ci(i =
1, 2, · · · ) are used for a general positive number which may change from
line to line.

In this section, we show the existence, uniqueness and continuous de-
pendence of (mild) solutions of initial problem (1.5) in E which generates
a continuous RDS on E over R and (Ω,F ,P, (θt)t∈R). For our purpose, it
is convenient to convert the problem (1.5) into a deterministic system
with a random parameter, and then show that it generates a RDS. Con-
sider Ornstein-Uhlenbeck equations

dzj + zjdt = dWj(t), j = {1, 2, · · · ,m}, (3.1)

and Ornstein-Uhlenbeck processes

zj(θtωj) = −
∫ 0

−∞
es(θtωj)(s)ds, t ∈ R.

From [12,13], it is known that the random variable |zj(ωj)| is tem-

pered, and for every ω ∈ Ω, there is a θt-invariant set Ω̃ ⊂ Ω of full P mea-
sure such that t 7→ zj(θtωj), j = 1, 2, · · · ,m, is continuous in t. Put

z(θtω) = z(x, θtω) =
m∑
j=1

hjzj(θtωj), (3.2)
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which is a solution to

dz + zdt =
m∑
j=1

hjdWj.

Let

v(t, ω, x) = ut(t, ω, x) + εu(t, ω, x), t ≥ τ, ψ(t, ω, x) = (u, v, η)T ,

here

ε =
2α

3 + κα+ α2/λ1 +
√

(3 + κα+ α2/λ1)2 − 12κα
> 0, κ =

2‖µ‖L1(R+)

δ
> 0,

where λ1(> 0) is the smallest eigenvalue of operator A with the Neu-
mann boundary condition on U. The initial problem (1.5) can be written
as the following equivalent system in E :

ψ̇ +H(ψ) = N(Z, t,W (t)), ψτ (ω) = (u0, u1 + εu0, η0)T , t ≥ τ, τ ∈ R,
(3.3)

where

H(ψ) =

 εu− v
Au+ (α− ε)v − ε(α− ε)u+

∫∞
0
µ(s)Aη(s)ds

εu− v + ηs

 = −TεLTε(ψ),

Tε =

 1 0 0
ε 1 0
0 0 1

 .

(3.4)
Let

w(t, ω, x) = ut(t, ω, x) + εu(t, ω, x)− z(θtω), ϕ = (u,w, η)T ,

then the problem (3.3) is equivalent to the following determined system
with random parameters in E :

ϕ̇+H(ϕ) = F (ϕ, θtω, t), ϕτ (ω) = (u0, u1+εu0−z(ω), η0)T , t ≥ τ, τ ∈ R,
(3.5)

where

F (ϕ, θtω, t) =

 z(θtω)
−g(u) + f(x)− (α− ε− 1)z(θtω)

z(θtω)

 . (3.6)

We know from [17] that the operator L in (1.5) is the infinitesimal gen-
erator of a C0 semigroup {eLt} of contractions on the spaceE. Since−H =
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TεLT−ε, and Tε is an isomorphism of E, the operator −H also generates
a C0 -semigroup {e−Ht} of contractions on E .

By (H2) and the embedding relationH2
0 ↪→ L10, the function F (ϕ, θtω, t)

is locally Lipschitz with respect to ϕ from E into E for t in bounded in-
terval and ω ∈ Ω, and F (ϕ, θtω, t) is continuous in (ϕ, t) and measurable
in ω w.r.t. F . By the standard theory of operators semigroup concerning
the existence and uniqueness of solutions of evolution equations [17], we
have the following theorem.

Theorem 3.1. If (H1)−(H2) and (1.2)−(1.4) hold. Then for each ω ∈
Ω and ϕτ ∈ E, there exists T > 0, such that (3.5) has a unique mild
solution ϕ(·, ω, ψτ ) ∈ C([τ, τ + T );E) with ϕ(τ, ω, ϕτ ) = ϕτ , and

ϕ(t, ω, ϕτ ) = e−H(t−τ)ϕτ (ω) +

∫ t

τ

e−H(t−s)F (s, θsω, ϕ(s, ω, ϕτ ))ds. (3.7)

Furthermore, ϕ(t, ω, ϕτ ) is jointly continuous in ϕτ , and measurable in ω.

From Theorem 3.1 and Lemma 4.1 below, the solution ϕ(·, ω, ϕτ ) ex-
ists globally for t ∈ [τ,∞). Then the solution ϕ(·, ω, ϕτ ) ∈ C([τ,+∞);E),
which can define a continuous random dynamical system over R and
(Ω,F ,P, (θt)t∈R) :

Φ(t, ω) : ϕτ 7→ ϕ(t, ω, ϕτ ). (3.8)

It is easy to see that

Υ(t, ω, Zτ ) = R−1
ε,θtω

Φ(t, ω)Rε,θtω : Zτ → Z(t, ω, Zτ ) (3.9)

and

Ψ(t, ω, ψτ ) = TεΥT−ε : ψτ → ψ(t, ω, ψτ ) (3.10)

are continuous random dynamical systems over R and (Ω,F ,P, (θt)t∈R)
associated with systems (1.5) and (3.3), respectively, where

ψ(t, ω, ψτ ) = ϕ(t, ω, ψτ ) + (0, z(θtω), 0)T , (3.11)

and Rε,θtω : (a, b, c)T 7→ (a, b + εa − z(θtω), c)T is an isomorphism
of E . Therefore, Φ, Υ, and Ψ are equivalent to each other in dynam-
ics. In this article, we will study the existence of a random attractor for
RDS Φ based on Theorem 2.3.
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4. Random absorbing set

Theorem 4.1. Assume that (H1)−(H2) and (1.2)−(1.4) hold. There
exists a random variable r1(ω) > 0 and a bounded ball B0 ⊂ E, centered
at 0 with random radius r0(ω) > 0 such that for any bounded non-
random set B ⊂ E, there exists a deterministic T (B) ≤ −1, such that
the solution ϕ(t, ω;ϕτ (ω)) of (3.5)
with initial value (u0, u1 + εu0, η0)T ∈ B satisfies, for P-a.s.ω ∈ Ω,

‖ϕ(−1, ω;ϕ(τ, ω))‖E ≤ r0(ω), τ ≤ T (B),

and for all τ ≤ t ≤ 0,

‖ϕ(t, ω;ϕ(τ, ω))‖2
E ≤2e−β1(t−τ)

(
‖u0‖2

2 + ‖u1 + εu0‖2 + ‖η0‖µ,2 + ‖z(ω)‖

+

∫
U

G(u0)dx

)
+ r2

1(ω)

.
=r2(ω).

(4.1)

Proof. Taking the inner product (·, ·)E of (3.5) with ϕ(r) = (u(r),
w(r), η(r))T , we have

1

2

d

dt
‖ϕ‖2

E + (H(ϕ), ϕ)E = ((z(θtω), u))− (g(u), w)

+ (f(x)− (α− ε− 1)z(θtω), w) + (z(θtω), η)µ,2.
(4.2)

Similar to the estimates of Lemma 2 in [16],

(H(ϕ), ϕ)E ≥
ε

2
(‖u‖2

2 + ‖w‖2) +
δ

4
‖η‖2

µ,2 +
α

2
‖w‖2. (4.3)

We estimate each term of the right-hand side of (4.2) as follows,

((z(θtω), u)) ≤ ε

8
‖u‖2

2 +
2

ε
‖z(θtω)‖2

2, (4.4)

|(f(x)−(α−ε−1)z(θtω), w)| ≤ α

2
‖w‖2 +α‖z(θtω)‖2 +

1

α
‖f(x)‖2, (4.5)

(z(θtω), η)µ,2 ≤
1

δ
‖z(θtω)‖2

2 +
δ

8
‖η‖2

µ,2. (4.6)
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Using (1.2) and (1.3), we have

(g(u), z(θtω)) ≤C0

∫
U

(1 + |u|5)|z(θtω)|dx

≤C0

∫
U

|z(θtω)|dx+ C0

(∫
U

|u|6dx
) 5

6

‖z(θtω)‖6

≤C0

∫
U

|z(θtω)|dx+ C0C
− 5

6
1

(∫
U

(G(u) + C1)dx

) 5
6

‖z(θtω)‖6

≤C0|z(θtω)|+ εC2

2

∫
U

G(u)dx+
εC1C2|U |

2
+ C0‖z(θtω)‖6

6,

(4.7)
and by condition (1.4), there exists a constant M1 > 0, such that

(g(u), u)− C2

∫
U

G(u)dx+
λ1

8
‖u‖2

2 ≥ −M1, (4.8)

then by (4.7)− (4.8) and Poincaré inequality, it derives

−(g(u), w) =− (g(u), ut + εu− z(θtω))

≤− d

dt

∫
U

G(u)dx− εC2

∫
U

G(u)dx+
ελ1

8
‖u‖2 + εM1

+C0|z(θtω)|+ εC2

2

∫
U

G(u)dx+
εC1C2|U |

2
+ C0‖z(θtω)‖6

6

≤− d

dt

∫
U

G(u)dx− εC2

2

∫
U

G(u)dx+
ε

8
‖u‖2

2 + εM1

+C0|z(θtω)|+ εC1C2|U |
2

+ C0‖z(θtω)‖6
6.

(4.9)
Collecting all above (4.3)− (4.9), it yields

d

dt

(
‖ϕ‖2

E + 2

∫
U

G(u)dx

)
≤− ε

2
‖u‖2

2 − ε‖w‖2 − δ

4
‖η‖2

µ,2 − εC2

∫
U

G(u)dx+

(
4

ε
+

2

δ

)
‖z(θtω)‖2

2

+ 2εM1 + 2α‖z(θtω)‖2 + 2C0|z(θtω)|+ εC1C2|U |+
2

α
‖f(x)‖2

+ 2C0‖z(θtω)‖6
6.

(4.10)
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Let R0(θtω) = 1+‖z(θtω)‖2
2 +‖z(θtω)‖2 + |z(θtω)|+‖z(θtω)‖6

6, it follows
that

d

dt

(
‖ϕ‖2

E + 2

∫
U

G(u)dx

)
+ β1

(
‖ϕ‖2

E + 2

∫
U

G(u)dx

)
≤ 2CR0(θtω),

where C = max{2
ε
+1
δ
, α, εM1+ εC1C2|U |

2
+ 1
α
‖f(x)‖2, C0}, β1 = min{ ε

2
, δ

4
, εC2

2
}.

Applying Gronwall’s inequality

‖ϕ(t, ω, ϕ(τ, ω))‖2
E

≤e−β1t
(
eβ1τ

(
‖ϕ(τ, ω)‖2

E + 2

∫
U

G(u0)dx

))
+ 2C

∫ t

τ

R0(θsω)e−β1(t−s)ds

≤2Ce−β1(t−τ)

(
‖u0‖2

2 + ‖u1 + εu0‖2 + ‖η0‖2
µ,2 + ‖z(ω)‖2 +

∫
U

G(u0)dx

)
+ 2C

∫ t

τ

R0(θsω)e−β1(t−s)ds,

(4.11)
by Lemma 3.1 of [12],∫ t

τ

R0(θsω)e−β1(t−s)ds ≤
∫ t

τ

R1(s, ω)e−β1(t−s)ds ≤
∫ 0

−∞
R1(s, ω)e−β1(t−s)ds

< +∞,
where

R1(t, ω) =1 + (e−σtr(ω))2 +
(e−σtr(ω))2

λ1

+
e−σtr(ω)√

λ1

+ (e−σtr(ω))6

=1 +
λ1 + 1

λ1

(e−σtr(ω))2 +
e−σtr(ω)√

λ1

+ (e−σtr(ω))6.

Put

r2
0(ω) = 2Ceβ1

(
1 + sup

τ≤−1
eβ1τ‖z(ω)‖2 +

∫ −1

−∞
R1(s, ω)eβ1(s)ds

)
,

r2
1(ω) =

∫ 0

−∞
eβ1sR1(s, ω)ds.

Obviously, the quantities r2
0(ω) and r2

1(ω) are finite P-a.s. as s→∞, for
any bounded set B ⊂ E, choose T (B) ≤ −1, such that for all (u0, u1 +
εu0, η0)T ∈ B, one concludes

eβ1(−1−τ)

(
‖u0‖2

2 + ‖u1 + εu0‖2 + ‖η0‖2
µ,2 +

∫
U

G(u0)dx

)
≤ 1, τ ≤ T (B),
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and

−τeβ1τ
(
‖u0‖2

2 + ‖u1 + εu0‖2 + ‖η0‖2
µ,2 +

∫
U

G(u0)dx

)
≤ 1, τ ≤ T (B),

the proof is completed.

5. Decomposition of solutions

In order to obtain the regularity estimates later, as in [13], we decom-
pose the nonlinear term g(u) as

g(u) = g1(u) + g2(u),

where g1(u), g2(u) satisfy

g
′

1(0) = 0, g1(u)u ≥ 0, |g′′1 (u)| ≤ C3(1 + |u|3), (5.1)

g2(0) = 0, |g′2(u)| ≤ C4(1 + |u|γ), 0 ≤ γ < 4. (5.2)

C5|u|6−C6 ≤ Gi(u) ≤ C7ugi(u) +C8, Gi(u) =

∫ u

0

gi(r)dr ≥ 0, i = 1, 2.

(5.3)
And we decompose ϕ = (u,w, η)T of the system (3.5) into ϕ = ϕL +
ϕN , where ϕL = (uL, vL, ηL)T and ϕN = (uN , wN , ηN)T solve respectively
the following equatins,

ϕ̇L +H(ϕL) + F1(ϕL) = 0, ϕL(τ, ω) = (u0, u1 + εu0, η0)T , t ≥ τ, τ ∈ R,
(5.4)

and

ϕ̇N+H(ϕN)+F2(ϕ, ϕL) = F̃2(ω), ϕN(τ, ω) = (0,−z(ω), 0)T , t ≥ τ, τ ∈ R,
(5.5)

where

F1(ϕL) =

 0
g1(uL)

0

 , F2(ϕ, ϕL) =

 0
g(u)− g1(uL)

0

 ,

F̃2(ω) =

 z(θtω)
f(x)− (α− ε− 1)z(θt(ω))

z(θtω)

 .

(5.6)

For the solutions of equations (5.4) and (5.5), we have the following
estimates and regularity results, respectively.
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Theorem 5.1. Let B be a bounded non-random subset of E, for any
ϕL(τ, ω) = (u0, u1 + εu0, η0)T ∈ B, there holds

‖ϕL(0, ω;ϕL(τ, ω))‖2
E ≤ r2

3(ω), (5.7)

where ϕL = (uL, vL, ηL)T satisfies (5.4).

Proof. Taking the inner (·, ·)E of (5.4) with ϕL = (uL, vL, ηL)T , in
which vL = uLt + εuL, whose initial value is (u0, u1 + εu0, η0)T ,

1

2

d

dt

(
‖ϕL‖2

E + 2

∫
U

G1(uL)dx

)
+ (H(ϕL), ϕL)E + ε (g1(uL), uL) = 0,

(5.8)
by simple computation there holds

(H(ϕL), ϕL)E ≥
ε

2

(
‖uL‖2

2 + ‖vL‖2
)

+
δ

4
‖ηL‖2

µ,2 +
α

2
‖vL‖2. (5.9)

By (5.1) and (5.3), we have

G1(uL) ≥ 0, (g1(uL), uL) ≥ 1

C7

∫
U

(G1(uL)− C8)dx. (5.10)

Thus, by (5, 9)− (5.10), we have

d

dt

(
‖ϕL‖2

E + 2

∫
U

G1(uL)dx

)
+ ε(‖uL‖2

2 + ‖vL‖2) +
δ

2
‖ηL‖2

µ,2

+ α‖vL‖2 +
2ε

C7

∫
U

G1(uL)dx ≤ C9,

(5.11)
that is,

d

dt
‖yL‖2

E + β2‖yL‖2
E ≤ C9, (5.12)

where β2 = min{ε, δ
2
, ε
C7
}, and

yL = ‖ϕL‖2
E + 2

∫
U

G1(uL)dx ≥ ‖ϕL‖2
E ≥ 0.

Since ϕ(0, ω;ϕ(τ, ω)) = ϕL(0, ω;ϕL(τ, ω)) + (0, z(ω), 0) ∈ B0(ω), by def-
inition of B0(ω), it follows that

‖ϕL(0, ω, ϕL(τ, ω))‖E ≤ r2(ω) + |z(ω)| = M1(ω).
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By Gronwall’s inequality to (5.12), we have

‖ϕL(0, ω, ϕL(τ, ω))‖2
E ≤ yL(0, ω, ϕL(τ, ω))

≤ yL(τ, ω, ϕL(τ, ω))eβ2τ +
C9

β2

≤
(
‖ϕL(τ, ω)‖2

E + C10(|U |+ ‖uL‖5)
)
eβ2τ +

C9

β2

≤
(
M2

1 (ω) + C10

(
|U |+M5

1 (ω)
))
eβ2τ +

C9

β2

= r2
3(ω),

(5.13)
the proof is completed.

Theorem 5.2. Let B be a bounded non-random subset of E, for
any ϕL(τ, ω) = (u0, u1 + εu0, η0)T ∈ B, we have

‖ϕL(0, ω, ϕL(τ, ω))‖2
E ≤ r2

4(ω)e2σ1(ω)τ , τ ≤ 0, (5.14)

where ϕL = (uL, vL, ηL)T satisfies (5.4).

Proof. Consider (5.8). By (5.1), (g1(uL), uL) ≥ 0, g1(0) = 0 and |g1(uL)| ≤
C11(|uL|5 + |uL|). By Sobolev embedding H2

0 ⊂ L6 ⊂ L2 and (5.7), there
exists M2(ω) such that

0 ≤
∫
U

G1(uL) ≤ C11(|uL|6L6 + |uL|2) ≤M2(ω)‖uL‖2, (5.15)

i.e.,

‖uL‖2 ≥ 1

M2(ω)

∫
U

G1(uL)dx. (5.16)

By (5.8), (5.9) and (5.16), we have

d

dt

(
‖ϕL‖2

E + 2

∫
U

G1(uL)dx

)
+
ε

2
(‖uL‖2 + |vL|2)

+
δ

2
‖ηL‖2

µ,2 +
ε

2M2(ω)

∫
U

G1(uL)dx ≤ 0.

(5.17)

Thus,

d

dt

(
‖ϕL‖2

E + 2

∫
U

G1(uL)dx

)
+ 2σ1(ω)

(
‖ϕL‖2

E + 2

∫
U

G1(uL)dx

)
≤ 0,

(5.18)
where

σ1(ω) = min{ε
4
,
δ

4
,

ε

8M2(ω)
} > 0. (5.19)
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By (5.18), it yields

‖ϕL(0, ω;ϕL(τ, ω))‖2
E ≤

(
‖ϕL(τ, ω)‖2

E + 2

∫
U

G1 (uL(τ)) dx

)
e2σ1(ω)τ

≤
(
M2

1 (ω) + C(|U |+M2
1 (ω))

)
e2σ1(ω)τ

≤r2
4(ω)e2σ1(ω)τ .

(5.20)

Theorem 5.3. Assume that (5.1)− (5.3) hold, there exists a random
radius r5(ω), such that for P-a.e.ω ∈ Ω,

‖A
ν
2uN‖2

2 + ‖A
ν
2uNt‖2 + ‖A

ν
2 ηN‖2

µ,2 ≤ r5(ω). (5.21)

Proof. By (5.7), (4.1) and ϕN = ϕ − ϕL, there exists a random vari-
ables r(ω) > 0, such that

max{‖ϕ(0, ω, ϕ(τ, ω))‖E, ‖ϕN(0, ω, ϕN(τ, ω))‖E} ≤ r(ω).

Taking the inner of (·, ·)E of (5.5) withAνϕN = (AνuN , A
νwN , A

νηN)T , ν =
min{1

4
, 4−γ

4
}, we find

1

2

d

dt

(
‖A

ν
2uN‖2

2 + ‖A
ν
2wN‖2 + ‖A

ν
2 ηN‖2

µ,2 + 2

∫
U

(g(u)− g1(uL))AνuNdx

)
+ (H(ϕN), AνϕN)E + ε

∫
U

(g(u)− g1(uL))AνuNdx

−
∫
U

((
g
′

1(u)− g′1(uL)
)
ut + g

′

2(u)ut + g
′

1(uL)uNt

)
AνuNdx

= ((z(θtω), AνuN)) + (f(x)− (α− ε)z(θtω), AνwN) + (z(θtω), AνηN)µ,2

+ (g(u)− g1(uL), Aνz(θtω)).
(5.22)

Now, we deal with the right terms in (5.22) one by one as follows

(H(ϕN), AνϕN)E ≥
ε

2

(
‖A

ν
2uN‖2

2 + ‖A
ν
2wN‖2

)
+
δ

4
‖A

ν
2 ηN‖2

2µ,2+
α

2
‖A

ν
2wN‖2,

(5.23)

((z(θtω), AνuN)) ≤ ε

4
‖A

ν
2uN‖2

2 +
1

ε
‖A

ν
2 z(θtω)‖2

2, (5.24)

| (f(x)− (α− ε− 1)z(θtω) , AνwN )| ≤ α

2
‖A

ν
2wN‖2+

1

α
‖A

ν
2 z(θtω)‖2+α‖f(x)‖2,

(5.25)
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(z(θtω), AνηN)µ,2 ≤
1

δ
‖A

ν
2 z(θtω)‖2

2 +
δ

4
‖A

ν
2 ηN‖2

µ,2, (5.26)

(g(u)− g1(uL), Aνz(θtω)) ≤ε
4
‖g(u)− g1(uL)‖2 +

1

ε
‖Aνz(θtω)‖2

≤C3(1 + ‖u‖5
2 + 1 + ‖uL‖5

2) +
1

ε
‖Aνz(θtω)‖2

≤C12(ω) +
1

ε
‖A

ν
2 z(θtω)‖2

2

(5.27)∫
U

g
′

1(uL)uNtA
νuNdx ≤C3

(∫
U

(1 + |uL|4)
5
2

) 2
5

·
(∫

U

|uNt|
10

5−4ν

) 5−4ν
10

·
(∫

U

|AνuN |
10

1+4ν

) 1+4ν
10

≤C3(1 + ‖uL‖4
2) · ‖A

ν
2uNt‖ · ‖A

ν
2uN‖2

≤C13(ω)‖A
ν
2uN‖2(‖A

ν
2wN‖+ ε),

(5.28)∫
U

g
′

2(u)utA
νuNdx ≤C4

∫
U

|ut|(1 + |u|γ)|AνuN |dx

≤C4

(∫
U

|ut|2dx
) 1

2

·
(∫

U

(1 + |u|γ)
10

4−4ν

) 4−4ν
10

·
(∫

U

|AνuN |
10

1+4ν

) 1+4ν
10

≤C4|ut| · (1 + ‖u‖γ2) · ‖A
ν
2uN‖2 ≤ C14(ω)‖A

ν
2uN‖2,

(5.29)∫
U

[g
′

1(u)− g′1(uL)]utA
νuNdx ≤C3

∫
U

|ut|(1 + |uL|3 + |uN |3|)|uN |AνuN |dx

≤ C3

(∫
U

|ut|2dx
) 1

2

·
(∫

U

(1 + |uL|3 + |uN |3)
10
3

) 3
10

×
(∫

U

|uN |
10

1−4ν

) 1−4ν
10

·
(∫

U

|AνuN |
10

1+4ν

) 1+4ν
10

≤ C15(ω)‖A
ν
2uN‖2.

(5.30)
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Let

y = ‖A
ν
2uN‖2

2 + ‖A
ν
2wN‖2 + ‖A

ν
2 ηN‖2

µ,2 + 2

∫
U

[g(u)− g1(uL)]AνuNdx,

(5.31)
and by putting (5.23)-(5.31) into (5.22), yields

d

dt
y + C16(ω)y ≤ C17(ω) +

(
2

ε
+

1

α
+

1

δ

)
‖A

ν
2 z(θtω)‖2

2

≤ C17(ω) + C18‖A
ν
2 z(θtω)‖2

2,

(5.32)

by Gronwall’s lemma and Lemma 3.1 in [12], it follows that

y(0, ω, ϕ(τ, ω)) ≤eC16(ω)τy(τ, ω, ϕ(τ, ω))

+

∫ 0

τ

(
C17(ω)eC16(ω)s + C18e

C16(ω)
2

sr(3)(ω)
)
ds

≤eC16(ω)τy(τ, ω, ϕ(τ, ω)) + C19(ω)

+ C18

∫ 0

τ

e
C16(ω)

2
sr(3)(ω)ds.

(5.33)

Note that∫
U

(g(u)− g1(uL))AνuNdx =

∫
U

[g2(u)+g1(u)−g1(uL)]AνuNdx, (5.34)

where∣∣∣∣∫
U

g2(u)AνuNdx

∣∣∣∣ ≤C4

∫
U

(1 + |u|γ+1)|AνuN |dx

≤ C4

(∫
U

(1 + |u|γ+1)
10

9−4ν dx

) 9−4ν
10

·
(∫

U

|AνuN |
10

1+4ν dx

) 1+4ν
10

≤ C20(ω)‖A
ν
2uN‖2 ≤ C2

20(ω) +
1

4
‖A

ν
2uN‖2

2,

(5.35)
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and∫
U

(g1(u)− g1(uL))AνuNdx ≤C3

∫
U

(1 + |uL|4 + |uN |4|)|uN ||AνuN |dx

≤ C3

(∫
U

(1 + |uL|4 + |uN |4)
5
2dx

) 2
5

×
(∫

U

|uN |
10

5−4ν dx

) 5−4ν
10

·
(∫

U

|AνuN |
10

1+4ν dx

) 1+4ν
10

≤ C21(ω)‖A
ν
2uN‖2

2 ≤ C2
21(ω) +

1

4
‖A

ν
2uN‖2.

(5.36)
Therefore, by (5.31), (5.33)− (5.36), we conclude

‖A
ν
2uN‖2

2 + ‖A
ν
2uNt‖2 + ‖A

ν
2 ηN‖2

µ,2

≤2y + 4
(
C2

20(ω) + C2
21(ω)

)
≤2

(
eC16(ω)τy(τ, ω, ϕ(τ, ω)) + C19(ω) + C18

∫ 0

τ

e
C16(ω)

2
sr(3)(ω)ds

)
+ 2

(
C2

20(ω) + C2
21(ω)

) .
= r5(ω),

(5.37)
the proof is completed.

6. Existence of random attractor
Lemma 6.1. [13, 18] Let X0, X,X1 be three Banach spaces such

that X0 ↪→ X ↪→ X1, ,the first injection being compact. Let Y ⊂
L2
µ(R+, X) satisfy the following hypotheses:

(i) Y is bounded in L2
µ(R+, X0) ∩H1

µ(R+, X1),

(ii) supη∈Y ‖η(s)‖2
X ≤ K0,∀s ∈ R+, for some K0 > 0 .

Then Y is relatively compact in L2
µ(R+, X).

Note that for any ∀τ ∈ R, ω ∈ Ω, t ≥ 0

ηN(t, ω, ϕ(τ, ω), s) =

{
uN(t, ω, ϕ(τ, ω))− uN(t− s, ω, ϕ(τ, ω)), s ≤ t,
ηN(t, ω, ϕ(τ, ω)), s ≥ t,

(6.1)

ηNs(t, ω, ϕ(τ, ω), s) =

{
uNt(t− s, ω, ϕ(τ, ω)), s ≤ t,
0, s ≥ t.

(6.2)
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Define a set

B̃(τ, ω) = ∪ϕ(τ,ω)∈B0(r0(ω)) ∪t≥0 ηN(t, ω, ϕ(τ, ω), s),

where ϕ = (u,w, η)T is the solution of (3.5), then from Lemma 5.3 and
(6.1)-(6.2), it follows that

max{‖ηNs(t, ω, ϕ(τ, ω), s)‖2µ,2ν , ‖ηN (t, ω, ϕ(τ, ω), s)‖2µ,2ν+2} ≤ 2r5(ω), ∀s ≥ 0,
(6.3)

which imply B̃(τ, ω) is bounded in L2
µ(R+, V2ν+2)∩H1

µ(R+, V2ν). Again,
by Lemma 4.1, Lemma 5.3 and (6.2), there holds

sup
η∈B̃(τ,ω),s≥0

‖η(s)‖2 = sup
t≥0

sup
ϕ(τ,ω)∈B0(r0(ω))

‖ηN(t, ω, ϕ(τ, ω), s)‖2 ≤ 2r2(ω).

(6.4)
Thus, by (H1), it follows that for any η ∈ B̃(τ, ω)

‖η(s)‖2
µ,2 =

∫ ∞
0

µ(s)‖η(s)‖2ds ≤ 2r2(ω)

∫ ∞
0

µ(s)e−δsds ≤ 2r2(ω)

δ
,

(6.5)
which shows that B̃(τ, ω) ⊂ L2

µ(R+, H2
0 (U)) is bounded. By Lemma

6.1,we know that the set B̃(τ, ω) is compact in L2
µ(R+, H2

0 (U)). we prove
our result about the existence of a random attractor for the RDS Φ as
follows.

Theorem 6.2. Suppose (1.2) − (1.4) and (H1) − (H2) hold, then
for any τ ∈ R,ω ∈ Ω, the RDS Φ associated with (3.5) possesses a
uniformally attracting set Λ(τ, ω) ⊂ E, and possesses a random attrac-
tor A(τ, ω) ⊆ Λ(τ, ω) ∩B0(ω).

Proof. For any τ ∈ R, ω ∈ Ω, in view of Lemma 5.3, let Bν(τ, ω) be
the closed ball in H2ν+2 ×H2ν , which radius is r5(ω). Set

Λ(τ, ω) = Bν(τ, ω)× B̃(τ, ω), (6.6)

then Λ(τ, ω) ∈ D(E). Since H2ν+2×H2ν ↪→ H2
0 (U)×L2(U), Bν(τ, ω) ↪→

H2
0 (U)×L2(U). Again, B̃(τ, ω) is compact in Rµ,2, thus Λ(τ, ω) is com-

pact in E. Now we show the following attraction property of Λ(τ, ω) :
for every B(τ, ω) ∈ D(E),

lim
t→∞

dH(Φ(t, τ − t, θ−tω,B(τ − t, θ−tω)),Λ(τ, ω)) = 0. (6.7)

From Lemma 5.2, we have

ϕN(0, ω, ϕ(τ, ω)) =ϕ(0, ω, ϕ(τ, ω))− ϕL(0, ω, ϕL(τ, ω)) ∈ Λ(τ, ω).
(6.8)
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Thus, by Lemma 5.2, yields

inf
ψ∈Λ(τ,ω)

‖ϕ(0, ω, ϕ(τ, ω))− ψ‖2
E ≤ ‖ϕL(0, ω, ϕL(τ, ω))‖2

E ≤ r2
4(ω)e2σ1(ω)τ ,

τ ≤ 0.
(6.9)

Furthermore, for all t > 0

dist (Φ(t, τ − t, θ−tω,B(τ − t, θ−tω)),Λ(τ, ω)) ≤ r2
4(ω)e−2σ1(ω)t. (6.10)

Finally, from the relation between Φ and Ψ, one can easily obtain that
for any non-random bounded B ⊂ E P-a.s.

dist(Ψ(t, τ − t, θ−tω,B(τ − t, θ−tω)),Λ(τ, ω))→ 0, t→ +∞. (6.11)

Hence, the RDS Φ associated with (3.12) possesses a random attrac-
tor A(τ, ω) ⊆ Λ(τ, ω) ∩B0(ω).
The proof is completed.

References

[1] C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Ration. Mech.
Anal. 37 (1970), 297–308.

[2] S. Woinowsky-Krieger, The effect of axial force on the vibration of hinged bars,
J. Appl. Mech. 17 (1950), 35–36.

[3] H. M. Berger, A new approach to the analysis of largede flections of plates, J.
Appl. Mech. 22 (1955), 465–472.

[4] A. Kh. Khanmamedov, Existence of a global attractor for the plate equation with
the critical exponent in an unbounded domain, Appl. Math. Lett. 18 (2005), 827–
832.

[5] G. C. Yue and C. K. Zhong, Global attractors for plate equations with critical
exponent in locally uniform spaces, Nonlinear Anal. 71 (2009), 4105–4114.

[6] A. Kh. Khanmamedov, Global attractors for the plate equation with a localized
damping and a critical exponent in an unbounded domain, J. Diff. Equ. 225
(2006), 528–548.

[7] V. Carbone, M. Nascimento, K. Silva and R. Silva, Pullback attractors for a
singularly nonautonomous plate equation, Electron. J. Differ. Equ. 77 (2011),
1–13.

[8] L. Yang and C. K. Zhong, Global attractors for plate equations with nonlinear
damping, Nonlinear Anal. 69 (2008), 3802–3810.

[9] L. Yang and C. K. Zhong, Uniform attractor for non-autonomous plate equations
with a localized damping and a critical nonlinearity, Nonlinear Anal. 338 (2008),
1243–1254.

[10] A. Kh. Khanmamedov, A global attractor for the plate equation with
displacement-dependent damping, Nonlinear Anal. 74 (2011), 1607–1615.



The existence of random attractors for plate equations 467

[11] Q. Z. Ma and W. J. Ma, Asymptotic behavior of solutions for stochastic plate
equations with strongly damped and white noise, J. Northwest Norm. Univ. Nat.
Sci. 50 (2014), 6–17.

[12] W. J. Ma and Q. Z. Ma, Attractors for stochastic strongly damped plate equations
with additive noise, Electron. J. Differ. Equ. 111 (2013), 1–12.

[13] S. F. Zhou and M. Zhao, Random attractors for damped non-autonomous wave
equations with memory and white noise, Nonlinear Anal. 120 (2015), 202–226.

[14] H. Crauel and F. Flandoli, Attractors for random dynamical system, Probab.
Theory Relat. Fields. 100 (1994), 365–393.

[15] L. Arnold, Random Dynamical Systems, Spring-verlag, New York, 1998.
[16] S. Zhou. Kernel sections for damped non-autonomous wave equations with linear

memory and critical exponent, Quart.Appl. Math. 61 (2003), 731–757.
[17] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential

Equation, Appl. Math. Sci. vol. 44, Springer-verlag, New York, 1983.
[18] V. Pata and A. Zucchi, Attractors for a damped hyperbolic equation with linear

memory, Adv. Math. Sci. Appl. 11 (2001), 505–529.

Xiaoying Shen
School of Mathematics and Statistics
Northwest Normal University
Lanzhou, Gansu 730070, China
E-mail : Sxy920301@163.com

Ma Qiaozhen
School of Mathematics and Statistics
Northwest Normal University
Lanzhou, Gansu 730070, China
E-mail : maqzh@nwnu.edu.cn


	1. Introduction
	2. Random dynamical systems
	3. Existence and uniqueness of solutions
	4. Random absorbing set
	5. Decomposition of solutions
	6. Existence of random attractor
	References

