
Korean J. Math. 24 (2016), No. 3, pp. 469–487
http://dx.doi.org/10.11568/kjm.2016.24.3.469

GENERALIZATION OF THE SCHENSTED ALGORITHM

FOR RIM HOOK TABLEAUX

Jaejin Lee

Abstract. In [6] Schensted constructed the Schensted algorithm,
which gives a bijection between permutations and pairs of standard
tableaux of the same shape. Stanton and White [8] gave analog of
the Schensted algorithm for rim hook tableaux. In this paper we give
a generalization of Stanton and White’s Schensted algorithm for rim
hook tableaux. If k is a fixed positive integer, it shows a one-to-one
correspondence between all generalized hook permutations H of size
k and all pairs (P,Q), where P and Q are semistandard k-rim hook
tableaux and k-rim hook tableaux of the same shape, respectively.

1. Introduction

In [6] Schensted constructed the Schensted algorithm, which gives a
bijection between permutations π and pairs (P,Q) of standard tableaux
of the same shape(see also [2]). After Knuth generalized it to semistan-
dard tableaux in [3], various analogs of the Schensted algorithm came:
versions for rim hook tableaux ([8,9]), shifted tableaux ([5,10]), shifted
rim hook tableaux [4], oscillating tableaux [1], and skew tableaux [7].

Let k be a fixed positive integer. Stanton and White [8] gave the
Schensted algorithm for k-rim hook tableaux, which identifies hook per-
mutations of size k with pairs of k-rim hook tableaux of the same shape.
In this paper we give a generalization of Stanton and White’s Schensted

Received July 4, 2016. Revised September 1, 2016. Accepted September 1, 2016.
2010 Mathematics Subject Classification: 05E10.
Key words and phrases: partition, hook, rim hook, generalized hook permutation,

rim hook tableau, semistandard rim hook tableau, Schensted algorithm.
c© The Kangwon-Kyungki Mathematical Society, 2016.
This is an Open Access article distributed under the terms of the Creative com-

mons Attribution Non-Commercial License (http://creativecommons.org/licenses/by
-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduc-
tion in any medium, provided the original work is properly cited.

470 Jaejin Lee

algorithm for k-rim hook tableaux. It shows a one-to-one correspon-
dence between all generalized hook permutations H of size k and all
pairs (P,Q), where P and Q are semistandard k-rim hook tableaux and
k-rim hook tableaux of the same shape, respectively. In particular, if
all the hooks of H were of size 1 then this algorithm reduces to the
Schensted algorithm for semistandard tableaux given by Knuth [3], and
if H were a hook permutation of size k then this algorithm becomes
the Schensted algorithm for rim hook tableaux given by Stanton and
White [8].

In Section 2 we provide the definitions used in this paper. Section 3
describes the “bumping” algorithm which is the basic building block of
the subsequent algorithms. It is an analog to Schensted “bumping.” In
Section 4 the “insertion” and “deletion” algorithms are given. In Section
5 we give the “encode” and “decode” algorithms and state the theorems
which follow from these algorithms.

2. Preliminaries

We use the standard notation N for the set of all positive integers.

Definition 2.1. A partition λ of a nonnegative integer n is a sequence
of nonnegative integers λ = (λ1, λ2, . . . , λ`) such that

(1) λ1 ≥ λ2 ≥ · · · ≥ λ` > 0,

(2)
∑`

i=1 λi = n.

We write λ ` n, or |λ| = n. We say each term λi is a part of λ. The
number of nonzero parts is called the length of λ and is written ` = `(λ).

We sometimes abbreviate the partition λ with 1j12j23j3 . . . , where ji
is the number of parts of size i. Sizes which do not appear are omitted
and if ji = 1, then it is not written. Thus a partition (5, 3, 2, 2, 2, 1) ` 15
can be written 12335.

Definition 2.2. Let λ = (λ1, . . . , λ`) be a partition. The Ferrers
diagram (shape) Dλ of λ is the array of cells or boxes arranged in rows
and columns, λ1 in the first row, λ2 in the second row, etc., with each
row left-justified. That is,

Dλ = {(i, j) ∈ N2 | 1 ≤ i ≤ `(λ), 1 ≤ j ≤ λi},

Generalization of the Schensted algorithm for rim hook tableaux 471

where we regard the elements of Dλ as a collection of boxes in the plane
with matrix-style coordinates. Sometimes we identify a partition with
its diagram, so that x ∈ λ should be interpreted as x ∈ Dλ. See Figure
2.1 for a Ferrers diagram of λ = (6, 5, 5, 3, 2) ` 21.

Dλ/µ
θ

Figure 2.1 Figure 2.2 Figure 2.3

Definition 2.3. Let λ, µ be partitions with Dµ ⊆ Dλ. A skew shape
Dλ/µ is defined as the set-theoretic difference Dλ \Dµ. Figure 2.2 shows
the skew shape Dλ/µ when λ = (6, 5, 5, 3, 2) and µ = (4, 3, 1).

Definition 2.4. A tableau (skew tableau) is the shape λ (skew shape
λ/µ), each cell of which contains a positive integer. We say that the
tableau (skew tableau) T of shape λ (skew shape λ/µ) has content(T) =
ρ = (ρ1, ρ2, · · · , ρm) if T contains ρ1 1’s, ρ2 2’s, · · · , ρm m’s.

A hook is a shape λ = 1ij and a hook tableau is a tableau of shape
λ = 1ij all of whose entries are the same.

Definition 2.5. A skew shape θ is called a rim hook if θ is connected
and contains no 2× 2 block of cells. If θ is a rim hook, then its head is
the upper rightmost cell in θ and its tail is the lower leftmost cell in θ.
See Figure 2.3.

Definition 2.6. Suppose λ is a shape.

(1) The outer rim of λ is the set of cells in λ with no cells in λ
immediately below and to the right.

(2) An outer rim hook of λ is a contiguous set of cells in the outer
rim whose removal from λ leaves a shape.

(3) The outside border of λ is the collection of cells not in λ but
immediately below and to the right of the cells in λ; or in the first
row and to the right of λ; or in the first column and below λ.

(4) We call a contiguous set of cells in the outside border of λ a snake.

Figure 2.4 shows the outer rim and the outside border of λ. Here the
set of cells marked with x forms an outer rim hook of λ.

472 Jaejin Lee

outer rim

x x
xλ λ

outside border

Figure 2.4

outside rim hook

λ

illegal head

λ

illegal tail

λ

Figure 2.5

Suppose σ is a snake outside λ. Its head is the upper rightmost cell
in σ and its tail is the lower leftmost cell. Either σ is an outside rim
hook of λ, i.e., λ ∪ σ is a shape, or σ has an illegal head, an illegal tail,
or both. See Figure 2.5. Similarly we define the inner rim, inner rim
hook, inside border and inside rim hook of a skew shape α.

If σ is a snake or hook or rim hook, let |σ| denote the number of cells
in σ. We define a k-hook (k-rim hook) to be hook (rim hook) α with
|α| = k.

Let k be a fixed positive integer. From now on, unless we explicitly
specify to contrary, all hooks and rim hooks in the tableau are k-hooks
and k-rim hooks, respectively.

Definition 2.7. A k-rim hook tableau P of shape λ and content
ρ = (ρ1, · · · , ρm) with ρi = k or 0 for each i and ρm 6= 0 is a tableau of
shape λ such that

(1) If ρ1 = k and ρ2 = · · · = ρm = 0, a k-rim hook with all 1’s and
shape λ is a k-rim hook tableau.

(2) the set of τ containing m is a rim hook outside λ− τ , and
(3) λ− τ is also a k-rim hook tableau.

We simliarly define a skew k-rim hook tableau.

Definition 2.8. A semistandard k-rim hook tableau P of shape λ
and content ρ(k) = (ρ1k, ρ2k . . . , ρmk) is defined recursively as follows. If
ρ1 = 1 and ρ2 = · · · = ρm = 0, a k-rim hook with all 1’s and shape λ is a
semistandard k-rim hook tableau. Let ρm 6= 0. If there is a k-rim hook

Generalization of the Schensted algorithm for rim hook tableaux 473

τ containing the m’s in P such that the removal of τ from P leaves a
semistandard k-rim hook tableau, then P is a semistandard k-rim hook
tableau. We define a skew semistandard k-rim hook tableau in a similar
way.

Figure 2.6 shows examples of a 4-rim hook tableau P and a semistan-
dard 4-rim hook tableau Q of shape (8, 7, 5, 4, 4, 3, 1), respectively. Here
content(P) = (4, 4, 4, 4, 4, 4, 0, 4, 4) and content(Q) = (12, 4, 4, 4, 0, 8).

1

1

2

2

4

6

6

1

2

2

4

4

6

1

3

3

4

5

6

3

3

5

5

5

8

8

8

8

9

9

9

9

P =

1

1

1

1

2

4

4

1

1

1

2

2

4

1

1

1

2

3

4

1

1

3

3

3

6

6

6

6

6

6

6

6

Q =

Figure 2.6

If P is a k-rim hook tableau, we write κP 〈r〉 (or just κ〈r〉) for a rim
hook of P containing r.

Definition 2.9. Let λ be a shape and σ be a k-snake outside λ.
Slideup (λ, σ) is the k-snake outside λ whose tail is adjacent to the head
of σ. Note that neither σ nor Slideup (λ, σ) need not be a rim hook
outside λ. In fact, σ will have a legal head on λ if and only if Slideup
(λ, σ) will have an illegal tail on λ. Similarly we define Slidedown (λ, σ).
See Figure 2.7 for Slideup (λ, σ) and Slidedown (λ, σ).

σ

λ

Slideup(λ, σ)

λ

Slidedown(λ, σ)

σ

Figure 2.7

Before we describe the Schensted algorithm, we need the Bump algo-
rithm. It will fix a snake outside λ with an illegal head or tail so that

474 Jaejin Lee

the resulting new set is an outside rim hook of a certain shape λ̂. Let τ
be a rim hook of skew shape and x = (i, j) ∈ τ .

Algorithm Bump (Input: τ, x, direction; Output: x̂)
begin

if direction is outward then
x̂← (i+ 1, j + 1)

else (∗ direction is inward ∗) then
x̂← (i− 1, j − 1)

end.

x

x

x x

y

y

y y
@@
τ

x

x

x x

z

z

z z

@@
τ

Figure 2.8

Definition 2.10. Let us write Bump(τ, x, direction) to mean the
resulting cell x̂ in Bump(τ, x, direction; x̂). If τ is a rim hook of skew
shape and ψ ⊆ τ , then we write

Bumpτ (ψ, direction) = {Bump (τ, x, direction) | x ∈ ψ}.

If ψ is the set of cells marked with x’s in Figure 2.8, the set of cells
marked with y’s shows Bumpτ (ψ, out) while the set of cells indicated
with z’s shows Bumpτ (ψ, in).

Suppose H is a hook tableau of size k. Thus H consists of k cells
with a fixed entry. Let cont(H) denote the content of H.

Definition 2.11. The array H =

(
H(1) H(2) . . . H(m)
H1 H2 . . . Hm

)
of k-

hook tableaux is called a generalized hook permutation of length m if the
following conditions hold:

(1) H(i) has the same shape as Hi for 1 ≤ i ≤ m,
(2) cont(H(i)) = ik for 1 ≤ i ≤ m.

Generalization of the Schensted algorithm for rim hook tableaux 475

Let Ht and Hb stand for the top and bottom row of H, respectively, and
define

cont(Ht) = cont(H(1)) ∪ cont(H(2)) ∪ · · · ∪ cont(H(m)),

cont(Hb) = cont(H1) ∪ cont(H2) ∪ · · · ∪ cont(Hm).

Note that cont(Ht) = (k, k, · · · , k) = 1k2k · · ·mk. Figure 2.9 shows a
generalized hook permutation of lengh 7. Here cont(Hb) = (4, 4, 8, 4, 8)
and cont(Ht) = (4, 4, 4, 4, 4, 4, 4).

H =

1

1

1 1 2 2 2 2

3

3

3

3

4

4

4 4 5 5 5 5

6

6 6 6

7

7

7

7

3

3

3 3 4 4 4 4

2

2

2

2

3

3

3 3 5 5 5 5

5

5 5 5

1

1

1

1

Figure 2.9

3. Bumping algorithms

Now we describe a procedure called the “bumping algorithm” which
is the basic building block of the subsequent algorithms. The bumping
algorithm shows us how an area within a shape, called the bumping
hook, changes two tableaux, one a semistandard rim hook tableau and
the other a skew semistandard rim hook tableau. The result of this
procedure is a new bumping hook and two new semistandard tableaux.

We describe two such algorithms, BumpOut and BumpIn. The move-
ment of BumpOut is outward while the movement of BumpIn is inward.
However, we will analyze only BumpOut in detail because these two
algorithms are “mirror images”of one another.

The input to this algorithm is a pair of tableaux (T, S), whose overlap
is called the bumping hook, satisfying Conditions C1–C4. The result is a
new pair of tableaux (T̂ , Ŝ) which also satisfy these four conditions:

C1: T is a semistandard rim hook tableau of shape λ with entries ≤ i.

476 Jaejin Lee

C2: S is a skew semistandard rim hook tableau of shape α with entries
≥ i. We assume j is the smallest entry in S.

C3: σ = λ ∩ α is an outer rim hook of λ.
C4: σ = λ ∩ α an inner rim hook of α and |σ| = k.

We call σ the bumping hook. It is convenient, specially for the termi-
nation, to assume from now on that any (skew)semistandard rim hook
tableau has ∞ in every cell in its outside border and 0 in every cell in
its left and top borders.

Associated with the pair (T, S) the entry of the bumping hook σ is a
value j which appears in S and is smallest in S. Let τ be the rightmost
k-rim hook containing the j’s in S such that the removal of τ from S
leaves a skew semistandard k-rim hook tableau. Since |σ| = |τ | = k, we
have the following three basic cases:

Case (1) σ and τ are disjoint (σ ∩ τ = ∅).
Case (2) σ and τ overlap (σ ∩ τ 6= ∅ and σ 6= τ).
Case (3) σ and τ coincide (σ = τ).

Algorithm BumpOut (Input: T ,S; Output: T̂ ,Ŝ)
begin

if σ ∩ τ = ∅ then
Ŝ ← S − τ(j)

T̂ ← T ∪ τ(j)
else if σ ∩ τ 6= ∅ and σ 6= τ then
τ ′ ← Bump τ (τ ∩ σ, out) ∪ (τ − (τ ∩ σ))

Ŝ ← S − τ(j)

T̂ ← T ∪ τ ′(j)
else (∗ σ = τ ∗)
τ ′ ← σ
repeat
τ ′ ← Slidedown(λ− σ, τ ′)

until τ ′ is legal on λ.
Ŝ ← S − τ(j)

T̂ ← T ∪ τ ′(j)
end.

In the above τ(i) denotes k-rim hook containing the i’s. See Figures
3.1. In each figure, the boundaries of λ and α will be indicated in heavy
line, so that it clearly shows σ enclosed in heavy outline. T, S are given

Generalization of the Schensted algorithm for rim hook tableaux 477

in the left figures. Right figures show the resulting T̂ , Ŝ from BumpOut.
Verification that in each case Conditions C1–C4 are maintained is easily
accomplished by careful analysis of the various cases. Since the basic
idea for this verification is similar to White’s in [9], details are omitted.

j

j j j

Case (1) σ ∩ τ = ∅

j

j j j

j j

j j

Case (2) σ ∩ τ 6= ∅ and σ 6= τ

j j

j

j

j

j

j j

Case (3) σ = τ

j

j j j

Figure 3.1

478 Jaejin Lee

We now describe the BumpIn algorithm. This algorithm can be ob-
tained from BumpOut by reversing the construction in BumpOut. But
Algorithm BumpIn differs significantly from BumpOut in Case (3). This
case provides for the only circumstances under which a hook can be
bumped out of the tableau. This occurs when τ ′ cannot be constructed
because Slideup encounters cells above the first row. See Figure 3.2.

j j j

j

j

j

j j

Figure 3.2

This special case will stop the Delete algorithm in Section 4 and a
hook of j’s will be removed from T .

BumpIn has two additional outputs: timetostop, which indicates when
the special circumstances described above happen, and j, the value in τ
at the time of this occurrence.

Algorithm BumpIn (Input:T ,S; Output:T̂ ,Ŝ, j,timetostop)
begin

if σ ∩ τ = ∅ then
Ŝ ← S ∪ τ(j)

T̂ ← T − τ(j)
else if σ ∩ τ 6= ∅ and σ 6= τ then
τ ′ ← Bump τ (τ ∩ σ, in) ∪ (τ − (τ ∩ σ))

Ŝ ← S ∪ τ ′(j)
T̂ ← T − τ(j)

else (∗ σ = τ ∗)
τ ′ ← σ
repeat

τ ′ ← Slideup(α− σ, τ ′)
until τ ′ is legal on α or τ ′ encounters cells above 1st row

Generalization of the Schensted algorithm for rim hook tableaux 479

if τ ′ encounters cells above 1st row then
timetostop ← true

else (∗ τ ′ is legal on α ∗)
Ŝ ← S ∪ τ ′(j)
T̂ ← T − τ(j)

end.

Since every construction in BumpOut is inverted in BumpIn, we have
the following crucial lemma:

Lemma 3.1. BumpOut and BumpIn are inverse algorithms. That is,
the procedure:
begin

BumpOut (T, S; T̂ , Ŝ)

BumpIn (T̂ , Ŝ;
ˆ̂
T,

ˆ̂
S, j, timetostop,)

end.

yields T =
ˆ̂
T, S =

ˆ̂
S and timetostop = false; and the procedure:

begin
BumpIn (T, S; T̂ , Ŝ, j, timetostop)
if not timetostop then

BumpOut (T̂ , Ŝ;
ˆ̂
T,

ˆ̂
S)

end.

also yields T =
ˆ̂
T, S =

ˆ̂
S.

4. Schensted insertion and deletion algorithms

Using the Bumping algorithms in Section 3 we now describe insertion
and deletion algorithms which are rim hook analogs of the ordinary
Schensted insertion and deletion algorithms for identifying permutations
with pairs of standard tableaux.

Algorithm Insert has as input a semistandard k-rim hook tableau,
and a hook tableau of size k. The hook tableau must first be positioned
so that we can apply Algorithm BumpOut in Section 3. Suppose λ is a
shape and τ is a hook of size k.

Algorithm Position (Input: λ, τ ; Output: τ̂)
begin

480 Jaejin Lee

τ̂ ← τ
repeat

τ̂ ← Slideup(∅, τ̂)
until λ ∩ τ̂ = ∅
repeat

τ̂ ← Slidedown(λ, τ̂)
until τ̂ is legal on λ

end.

If τ̂ has an illegal tail on λ, then Slidedown(λ, τ̂) has a legal head
on λ. Thus both loops in the above algorithm must terminate and the
resulting τ̂ is an outside rim hook of λ. See Figure 4.1.

λ τ

HH
τ̂

Figure 4.1

Let T be a semistandard rim hook tableau. We denote by Tj the
semistandard rim hook tableau obtained from T by removing all the rim
hooks whose entry is larger than j. Similarly, we denote by T j the skew
semistandard rim hook tableau obtained from T by removing all the rim
hooks whose entry is smaller than or equal to j. See Figure 4.2.

1

1

1

1

2

4

4

1

1

1

2

2

4

1

2

2

2

3

4

2

2

3

3

3

6

6

6

6

6

6

6

6

T

1

1

1

1

2

1

1

1

2

2

1

2

2

2

2

2

T2
4

4

4

3

4

3

3

3

6

6

6

6

6

6

6

6

T 2

Figure 4.2

Now suppose T has shape µ and content ρ(k) = (ρ1k, ρ2k, · · · , ρmk).
Let σ be a hook of size k with j’s in the cells. The output from Algorithm
Insert will be another semistandard rim hook tableau T̂ of content ρ̂(k) =

Generalization of the Schensted algorithm for rim hook tableaux 481

(ρ1k, ρ2k, · · · , (ρj + 1)k, · · · , ρmk) and shape µ̂ such that σ̂ = µ̂ − µ is
an outside rim hook of µ.

Algorithm Insert (Input: T, σ, j; Output: T̂ , σ̂)
begin

Position (λ, σ;σ1)
A← Tj ∪ σ1(j)
B ← T j

while B contains finite entries do
BumpOut (A,B; Â, B̂)

σÂB̂ ← bumping hook of Â and B̂

A← Â
B ← B̂

T̂ ← Â
σ̂ ← σÂB̂

end.
At the end, Â = T̂ , and B̂ contains infinite entries only. By the result

of Section 3, σÂB̂ is the intersection of T̂ and B̂, and σÂB̂ is an outside
rim hook of µ.

Figure 4.3, Figure 4.4 and Figure 4.5 give an example of the Insert
algorithm. A semistandard 4-rim hook tableau T and a hook σ of size
4 (with 3’s in the cells) are given in Figure 4.3. Then Figure 4.4 (a)–(e)
describe A and B (with cells in σAB indicated in heavy outline) at each
pass through the main loop. Figure 4.5 shows the new semistandard rim
hook tableau T̂ and rim hook σ̂ obtained from Algorithm Insert using
T and σ in Figure 4.3.

1

1

2

2

2

6

1

2

2

5

6

6

1

2

5

5

6

6

2

2

5

6

6

6

3

3

3

4

3

4

4

4

7 7 7 7

T =
3

3

3

3
σ =

Figure 4.3

We now describe Algorithm Delete which reverses the Insert algo-
rithm. In this algorithm we use the BumpIn algorithm in the previous
section.

482 Jaejin Lee

1

1

2

2

2

1

2

2

3

1

2

3

3

2

2

3

3

3

3 3

A

(a): case (1)

6

5

6

6

5

5

6

6

5

6

6

6

4 4

4

4

7 7 7 7

B

1

1

2

2

2

1

2

2

3

1

2

3

3

2

2

3

4

3

3 4

3 4

4

3

A

(b): case (3)

6

5

6

6

5

5

6

6

5

6

6

6

7 7 7 7

B

1

1

2

2

2

5

5

1

2

2

3

5

5

1

2

3

3

2

2

3

4

3

3 4

3 4

4

3

A

(c): case (2)

6

6

6

6

6

6

6

6

7 7 7 7

B

1

1

2

2

2

5

5

1

2

2

3

5

5

6

1

2

3

3

6

6

6

2

2

3

4

3

3 4

3 4

4

3

A

(d): case (2)

6

6

6

6

7 7 7 7

B

1

1

2

2

2

5

5

1

2

2

3

5

5

6

1

2

3

3

6

6

6

2

2

3

4

3

3 4

3 4

4

3

6

6

6

6
A

(e): case (3)

7 7 7 7

B

Figure 4.4

Generalization of the Schensted algorithm for rim hook tableaux 483

1

1

2

2

2

5

5

1

2

2

3

5

5

6

1

2

3

3

6

6

6

2

2

3

4

3

3 4

3 4

4

6

6

6

6

7 7 7 7

3

T̂ =

σ̂

Figure 4.5

First, we need Algorithm Hook to reverse the Position algorithm de-
scribed earlier. Suppose λ is a shape and τ (|τ | = k) is an outside rim
hook of λ. The output from the Hook algorithm will be a hook τ̂ of the
size k.

Algorithm Hook (Input: λ, τ ; Output: τ̂)
begin

τ̂ ← τ
repeat

τ̂ ← Slideup(λ, τ̂)
until τ̂ is contained in the first row
repeat

τ̂ ← Slidedown(∅, τ̂)
until τ̂ intersects the first column

end.

Certainly we have the following lemma.

Lemma 4.1. Position and Hook are inverses of one another. That is,
the procedure:
begin

Position (λ, τ ; τ̂)

Hook (λ, τ̂ ; ˆ̂τ)
end.
yields τ = ˆ̂τ ; and the procedure:
begin

Hook (λ, τ ; τ̂)

Position (λ, τ̂ ; ˆ̂τ)
end.
also yields τ = ˆ̂τ under the special circumstances that Hook will be used.

484 Jaejin Lee

The Delete algorithm has as input a semistandard rim hook tableau
T of shape µ and content ρ(k) = (ρ1k, ρ2k, · · · , ρmk) and an outer rim
hook σ (|σ| = k) of µ.

Algorithm Delete will produce the following: a semistandard rim hook
tableau T̂ of shape µ̂ and content ρ̂(k), a value j, and a hook σ̂ such that

(a) ρ̂(k) = (ρ1k, ρ2k, · · · , (ρj − 1)k, · · · , ρmk),
(b) |σ̂| = |σ| = k,
(c) µ̂ = µ− σ.

Algorithm Delete (Input: T, σ; Output: T̂ , σ̂, j)
begin

A← T
B ← σ(∞)
repeat

BumpIn (A,B; Â, B̂, j, timetostop)

σÂB̂ ← bumping hook of Â and B̂

A← Â
B ← B̂

until timetostop
T̂ ← Â ∪ B̂
λ← shape of Â
Hook (λ− σÂB̂, σÂB̂; σ̂)

end.

Figure 4.6 shows an example for Algorithm Delete. The input T and
σ (with cells of σ indicated in heavy outline) are given in Figure 4.6–(a).

Then Figure 4.6–(b) shows the output T̂ and σ̂ obtained from the Delete
algorithm.

1

1

1

1

2

2

2

1

5

4

2

1

5

4

3

1

5

4

3

1

5

4

3

3

5

5

5 5

(a) (T, σ)

1

1

1

1

2

2

2

2

5

4

4

3

5

5

4

3

5

4

3

5

3

5

5 5

(b) (T̂ , σ̂)

1

1

1

1

Figure 4.6

From Lemma 3.1 and Lemma 4.1 we have the following theorem.

Generalization of the Schensted algorithm for rim hook tableaux 485

Theorem 4.2. Insert and Delete are inverses of one other. That is,
the procedure:
begin

Insert (T, σ, j; T̂ , σ̂)

Delete (T̂ , σ̂;
ˆ̂
T, ˆ̂σ, j)

end.

yields T =
ˆ̂
T, σ = ˆ̂σ; and the procedure:

begin
Delete (T, σ; T̂ , σ̂, j)

Insert (T̂ , σ̂, j;
ˆ̂
T, ˆ̂σ)

end.

will yield T =
ˆ̂
T, σ = ˆ̂σ.

5. Schensted encoding and decoding algorithms

We now describe the Shensted algorithm which assigns to a general-
ized hook permutation H of shape (τ (1), τ (2), · · · , τ (m)) a pair (P,Q) of
tableaux, where P is a semistandard rim hook tableau of content Hb and
Q is a rim hook tableau of content Ht and the same shape as P .

Algorithm Encode (Input: H; Output: P,Q)
begin

P,Q← ∅
for i← 1 to m

j ← content of Hi

Insert (P, τ (i), j; P̂ , σ)

Q̂← Q ∪ σ(i)

Q← Q̂
P ← P̂

end.

Figure 5.1 shows the final semistandard 4-rim hook tableau P and 4-
rim hook tableauQ obtained from the Encode algorithm for a generalized
hook permutation H given in Figure 2.9 of the Section 2.

Now we construct Algorithm Decode which is the inverse of Encode.
Suppose P is a semistandard rim hook tableau of shape λ and content
ρ(k) = (ρ1k, ρ2k, · · · , ρmk) and Q is a rim hook tableau of shape λ and

486 Jaejin Lee

2

2

2

2

1

1

1

1

3

3

3

3

5

4

4

3

5

5

4

3

5

4

3

5

3

5

5 5

P =

7

7

7

7

3

1

1

1

3

3

2

1

6

3

2

2

6

6

4

2

6

4

4

5

4

5

5 5

Q =

Figure 5.1

content (k, k, · · · , k). Algorithm Decode has as input a pair (P,Q). The
result is a generalized hook permutation H.

Algorithm Decode (Input: P,Q; Output:H)
begin

σ ← κQ〈m〉
Delete (P, σ; P̃ , σ̃, j)

Q̃← Q− κQ〈m〉(m)

Decode (P̃ , Q̃; ˆ̃P, ˆ̃Q, H1 =

(
H(1) H(2) . . . H(m− 1)
H1 H2 . . . Hm−1

)
)

Hm ← σ̃(j)
H(m)← σ̃(m)

end.
Clearly we have the following theorem.

Theorem 5.1. Encode and Decode are inverses of one another. That
is, the procedure:
begin

Decode (P,Q; P̂ , Q̂,H)

Encode (H;
ˆ̂
P,

ˆ̂
Q)

end.

yields P =
ˆ̂
P and Q =

ˆ̂
Q, and the procedure:

begin
Encode (H;P,Q)

Decode (P,Q; Ĥ)
end.
yields H = Ĥ.

Generalization of the Schensted algorithm for rim hook tableaux 487

The algorithms and theorems of Section 3, 4 and 5 yield the following
theorem:

Theorem 5.2. Algorithms Encode and Decode construct a bijection
between all generalized hook permutations H and all pairs (P,Q), where
P is a semistandard k-rim hook tableau of shape λ and Q is a k-rim hook
tableau of shape λ. Furthermore cont(P) = cont(Hb) and cont(Q) =
cont(Ht) = (k, k, · · · , k) = 1k2k · · ·mk.

References

[1] A. Berele, A Schensted-type correspondence for the symplectic group, J. Combin.
Theory Ser. A 43 (1986), 320–328.

[2] D. E. Knuth, Sorting and Searching; The Art of Computer Programming, Vol.
3 (1973), Addison-Wesley, Mass.

[3] D. E. Knuth, Permutations, matrices, and generalized Young tableaux, Pacific
J. Math. 34 (1970), 709–727.

[4] J. Lee, A Schensted algorithm for shifted rim hook tableaux, J. Korean Math.
Soc. 31 (1994), 179–203.

[5] B. E. Sagan, Shifted tableaux, Schur Q-functions and a conjecture of R. Stanley,
J. Combin. Theory Ser. A 45 (1987), 62–103.

[6] C. Schensted, Longest increasing and decreasing subsequences, Canad. J. Math.
13 (1961), 179–191.

[7] B. Sagan and R. Stanley, Robinson-Schensted algorithms for skew tableaux, J.
Combin. Theory Ser. A 55 (1990), 161–193.

[8] D. W. Stanton and D. E. White, A Schensted algorithm for rim hook tableaux,
J. Combin. Theory Ser. A 40 (1985), 211–247.

[9] D. E. White, A bijection proving orthogonality of the characters of Sn, Advances
in Math. 50 (1983), 160–186.

[10] D. R. Worley, A Theory of Shifted Young Tableaux, Ph. D. thesis (1984), M.I.T.

Jaejin Lee
Department of Mathematics
Hallym University
Chunchon 24252, Korea
E-mail : jjlee@hallym.ac.kr

	1. Introduction
	2. Preliminaries
	3. Bumping algorithms
	4. Schensted insertion and deletion algorithms
	5. Schensted encoding and decoding algorithms
	References
	References

