QUADRATIC RESIDUE CODES OVER GALOIS RINGS

YOUNG HO PARK

Abstract. Quadratic residue codes are cyclic codes of prime length \(n\) defined over a finite field \(\mathbb{F}_{p^e}\), where \(p^e\) is a quadratic residue mod \(n\). They comprise a very important family of codes. In this article we introduce the generalization of quadratic residue codes defined over Galois rings using the Galois theory.

1. Introduction

Let \(R\) be a ring and \(n\) a positive integer. A (linear) code over \(R\) of length \(n\) is an \(R\)-submodule of \(R^n\). A code \(C\) is cyclic if \(a_0a_1\cdots a_{n-1} \in C\) implies \(a_{n-1}a_0\cdots a_{n-2} \in C\). A cyclic code is isomorphic to an ideal of \(R[x]/(x^n - 1)\) via \(a_0a_1\cdots a_{n-1} \mapsto a_0 + a_1x + \cdots + a_{n-1}x^{n-1}\).

Quadratic residue codes have been defined over finite fields. See [4] for generality of codes and quadratic residue codes over fields. Being cyclic codes, quadratic residue codes over the prime finite field \(\mathbb{F}_p = \mathbb{Z}_p\) can be lifted to codes over \(\mathbb{Z}_{p^e}\) and to the ring \(\mathcal{O}_p\) of \(p\)-adic integers using the Hensel lifting [1, 3, 8]. Quadratic residue codes can be also defined as duadic codes with idempotent generators and lifted to \(\mathbb{Z}_{p^e}\) [2,5,9–11]. However, we have found a better way of constructing quadratic residue codes for Galois rings.

Received August 9, 2016. Revised September 18, 2016. Accepted September 19, 2016.

2010 Mathematics Subject Classification: 94B05, 11T71.

Key words and phrases: quadratic residue code, Galois rings, code over rings.

This work was supported by 2014 Research Grant from Kangwon National University (No. 120141505).

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.
2. Galois Rings

\mathbb{Z}_{p^e} is a local ring with maximal ideal $p\mathbb{Z}_{p^e}$ and residue field \mathbb{Z}_p. Let r be a positive integer and let

$$GR(p^e, r) = \mathbb{Z}_{p^e}[X]/\langle h(X) \rangle \simeq \mathbb{Z}_p[X],$$

where $h(X)$ is a monic basic irreducible polynomial in $\mathbb{Z}_{p^e}[X]$ of degree r that divides $X^{p^e-1} - 1$. The polynomial $h(X)$ is chosen so that $\zeta = X + \langle h(X) \rangle$ is a primitive $(p^e - 1)$st root of unity. $GR(p^e, r)$ is the Galois extension of degree r over \mathbb{Z}_{p^e}, called a Galois ring. We refer [1, 7] for details. Galois extensions are unique up to isomorphism. $GR(p^e, r)$ is a finite chain rings with ideals of the form $\langle X \rangle$ that divides r.

The set $T_r = \{0, 1, \zeta, \ldots, \zeta^{p^e-2}\}$ is a complete set, known as Teichmüller set, of coset representatives of $GR(p^e, r)$ modulo $\langle p \rangle$. Any element of $GR(p^e, r)$ can be uniquely written as a p-adic sum $c_0 + c_1 p + c_2 p^2 + \cdots + c_{e-1} p^{e-1}$ with $c_i \in T_r$. It can also be written in the ζ-adic expansion $b_0 + b_1 \zeta + \cdots + b_{r-1} \zeta^{r-1}$ with $b_i \in \mathbb{Z}_{p^e}$.

The Galois group of isomorphisms of $GR(p^e, r)$ over \mathbb{Z}_{p^e} is a cyclic group of order r generated by the Frobenius automorphism Fr given by

$$Fr\left(\sum_{i=0}^{e-1} b_i \zeta^i\right) = \sum_{i=0}^{e-1} b_i \zeta^{ip} \text{ (} b_i \in \mathbb{Z}_{p^e}\text{)} \text{ in } \zeta\text{-adic expansion and}$$

$$Fr\left(\sum_{i=0}^{e-1} c_i p^i\right) = \sum_{i=0}^{e-1} c_i p^i \text{ (} c_i \in T_r\text{)} \text{ in } p\text{-adic expansion.}$$

We recall that $GR(p^e, l) \subset GR(p^e, m)$ if and only if $l \mid m$. Moreover, the Galois group of $GR(p^e, rs)$ over $GR(p^e, r)$ is generated by Fr^r and hence

$$GR(p^e, r) = \{a \in GR(p^e, rs) \mid Fr^r(a) = a\}.$$

Here the map Fr^r is explicitly given as

$$Fr^r(a_0 + a_1 p + \cdots + a_r p^r + \cdots) = a_0^{p^r} + a_1^{p^r} p + \cdots + a_r^{p^r} p^r + \cdots$$

where $a_i \in T_r$. In particular, if α is any nth of unity in the extension $GR(p^e, rs)$, where $n \mid p^{es} - 1$, then

$$Fr^r(\alpha) = \alpha^{p^r}.$$

3. Quadratic residue codes for Galois rings

Now we are going to define quadratic residue codes over the Galois ring $GR(p^e, r)$. We fix an odd prime (length) n, and another prime
power p^r which is a quadratic residue modulo n. Let α be a primitive nth root of unity in an extension $GR(p^r, rs)$ of $GR(p^r, r)$. Let Q be quadratic residues mod n, N quadratic nonresidues mod n. Define

$$q_e(X) = \prod_{i \in Q}(X - \alpha^i), \quad n_e(X) = \prod_{j \in N}(X - \alpha^j)$$

Theorem 3.1. We have the factorization in $GR(p^r, e)[X]$: $X^n - 1 = (X - 1)q_e(X)n_e(X)$

Proof. $Fr^r(q_e(X)) = \prod_{i \in Q}(X - \alpha^{ip^r}) = \prod_{i \in Q}(X - \alpha^i)$ by (2) and the fact that $p^rQ = Q$. Hence $q_e(X) \in GR(p^r, e)$ by (1).

Definition 3.2. The quadratic residue codes Q_e, Q_{e1}, N_e, N_{e1} (respectively) over the Galois ring $GR(p^r, r)$ are cyclic codes of length n with generator polynomials (respectively)

$$q_e(X), \quad (X - 1)q_e(X), \quad n_e(X), \quad (X - 1)n_e(X).$$

We now explain how to get the polynomials in the definition. First we define

$$\lambda = \sum_{i \in Q} \alpha^i, \quad \mu = \sum_{j \in N} \alpha^j.$$

Since λ and μ are invariant under the Frobenius map, they lie in the ring $GR(p^r, r)$. Notice that a different choice (for example α^j for $j \in N$) of the root α may interchange λ and μ. We have the following theorem [6,8].

Theorem 3.3. If $n = 4k \pm 1$ then λ and μ are roots of $x^2 + x = \pm k$ in the ring $GR(p^r, r)$.

The elementary symmetric polynomials $s_0, s_1, s_2, \ldots, s_t$ in the polynomial ring $S[X_1, X_2, \ldots, X_t]$ over a ring S are given by

$$s_i(X_1, X_2, \ldots, X_t) = \sum_{i_1 < i_2 < \ldots < i_t} X_{i_1}X_{i_2} \cdots X_{i_t}, \quad \text{for } i = 1, 2, \ldots, t.$$

We define $s_0(X_1, X_2, \ldots, X_t) = 1$. For all $i \geq 1$, the i-power symmetric polynomials are defined by

$$p_i(X_1, X_2, \ldots, X_t) = X_1^i + X_2^i + \cdots + X_t^i.$$

Theorem 3.4 (Newton’s identities). For each $1 \leq i \leq t$

$$p_i = p_{i-1}s_i - p_{i-2}s_2 + \cdots + (-1)^i p_{i-s_{i-1}} + (-1)^{i+1}i s_{i},$$

where $s_i = s_i(X_1, X_2, \ldots, X_t)$ and $p_i = p_i(X_1, X_2, \ldots, X_t)$.

Let $Q = \{q_1, q_2, \cdots, q_t\}$, $N = \{n_1, n_2, \cdots, n_t\}$. The followings hold:

(i) $p_i(\alpha^{q_1}, \alpha^{q_2}, \cdots, \alpha^{q_t}) = \begin{cases}
\lambda, & i \in Q, \\
\mu, & i \in N.
\end{cases}$

(ii) $p_i(\alpha^{n_1}, \alpha^{n_2}, \cdots, \alpha^{n_t}) = \begin{cases}
\mu, & i \in Q, \\
\lambda, & i \in N.
\end{cases}$

We use these identities together with Newton’s identity to get the formula for $q_e(X)$ and $n_e(X)$ [6,8].

Theorem 3.5. Let $t = (n - 1)/2$ and

$q_e(X) = a_0X^t + a_1X^{t-1} + \cdots + a_t.$

Then

1. $a_0 = 1$, $a_1 = -\lambda$.
2. a_i can be determined inductively by the formula

$$a_i = -\frac{p_ia_0 + p_{i-1}a_1 + p_{i-2}a_2 + \cdots + p_1a_{i-1}}{i},$$

where $p_i = p_i(\alpha^{q_1}, \alpha^{q_2}, \cdots, \alpha^{q_t})$.

Analogous statements hold for $n_e(X)$ with $a_1 = -\mu$.

Finally, we use this theorem to give some examples. We take the Galois ring $GR(3^2, 2)$ with $p = 3, r = 2$. Since 3^2 is a quadratic residue for every n, there are quadratic residue codes of any length $n \neq 2, 3$. Now $GR(9, 2) \cong \mathbb{Z}_9[\zeta]$ where ζ is the $p^r - 1 = 8$th root of unity satisfying $\zeta^2 = \zeta + 1$. We note that $\mathbb{F}_9 \cong \mathbb{Z}_9[\zeta]$ also. There exists an integer $s \leq n - 1$ such that $n \mid 9^s - 1$ by Fermat’s little theorem. Then the nth root α of unity exists in $GR(9, 2s)$.

Let $n = 4k \pm 1$. According to Theorem 3.3 we first need to solve $x^2 + x = \pm k$ in $GR(9, 2) = \{a + b\zeta \mid a, b \in \mathbb{Z}_9\}$. In fact, we obtain $x = \frac{1}{2}(-1 \pm \sqrt{\pm n})$ for λ and μ. Thus we need to solve $(a + b\zeta)^2 = \pm n$, equivalently, $a^2 + b^2 = \pm n$ and $b(2a + b) = 0$. Solving these for small values of $n < 40$, we obtain the following table.

<table>
<thead>
<tr>
<th>n</th>
<th>5</th>
<th>7</th>
<th>11</th>
<th>13</th>
<th>17</th>
<th>19</th>
<th>23</th>
<th>29</th>
<th>31</th>
<th>37</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
<td>8ζ</td>
<td>$5 + 7\zeta$</td>
<td>6</td>
<td>5</td>
<td>$6 + 5\zeta$</td>
<td>$6 + 5\zeta$</td>
<td>5</td>
<td>$5 + 7\zeta$</td>
<td>8ζ</td>
<td>0</td>
</tr>
</tbody>
</table>

We can compute the $q_e(X)$ and $n_e(X)$ by Theorem 3.5 for each n as follows. Replace r with λ and $\mu = -1 - \lambda$ to get $q_e(X)$ and $n_e(X)$ in the given polynomial in the Table 1.
Table 1. Generator polynomials of $q_e(X)$ and $n_e(X)$

<table>
<thead>
<tr>
<th>n</th>
<th>$q_e(X)$ or $n_e(X)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>$1 - rX + X^2$</td>
</tr>
<tr>
<td>7</td>
<td>$-1 + (-1 - r)X - rX^2 + X^3$</td>
</tr>
<tr>
<td>11</td>
<td>$1 - (-1 - r)X + X^2 - X^3 - rX^4 + X^5$</td>
</tr>
<tr>
<td>13</td>
<td>$1 - rX + 2X^2 + (-1 - r)X^3 + 2X^4 - rX^5 + X^6$</td>
</tr>
<tr>
<td>17</td>
<td>$1 - rX + (2 - r)X^2 + (3 - r)X^3 + (1 - 2r)X^4 + (3 - r)X^5 +$ $+ (2 - r)X^6 - rX^7 + X^8$</td>
</tr>
<tr>
<td>19</td>
<td>$-1 + (-1 - r)X + 2X^2 + (-1 + r)X^3 + (-3 - r)X^4 + (2 - r)X^5 +$ $+ (2 + r)X^6 - 2X^7 - rX^8 + X^9$</td>
</tr>
<tr>
<td>23</td>
<td>$-1 + (-1 - r)X + (2 - r)X^2 + 4X^3 + (4 + r)X^4 + (3 + 2r)X^5 +$ $+ (-1 + 2r)X^6 + (-3 + r)X^7 - 4X^8 + (-3 - r)X^9 - rX^{10} + X^{11}$</td>
</tr>
<tr>
<td>29</td>
<td>$1 - rX + 4X^2 + (-2 - r)X^3 + (1 + r)X^4 - X^5 + (1 - r)X^6 + (4 - r)X^7 +$ $+ (1 - r)X^8 - X^9 + (1 + r)X^{10} + (-2 - r)X^{11} + 4X^{12} - rX^{13} + X^{14}$</td>
</tr>
<tr>
<td>31</td>
<td>$-1 + (-1 - r)X + (3 - r)X^2 + (6 + r)X^3 + 2rX^4 - 4X^5 + (1 - r)X^6 +$ $+ (3 + r)X^7 + (-2 + r)X^8 + (-2 - r)X^9 + 4X^{10} + 2(1 + r)X^{11} +$ $+ (-5 + r)X^{12} + (-4 + r)X^{13} - rX^{14} + X^{15}$</td>
</tr>
<tr>
<td>37</td>
<td>$1 - rX + 5X^2 + (-3 - 2r)X^3 + (8 + r)X^4 + (-4 - 3r)X^5 + (9 + r)X^6 +$ $+ (-5 - 2r)X^7 + (6 + r)X^8 + (-3 - 2r)X^9 + (6 + r)X^{10} + (-5 - 2r)X^{11} +$ $+ (9 + r)X^{12} + (-4 - 3r)X^{13} + (8 + r)X^{14} + (-3 - 2r)X^{15} + 5X^{16} - rX^{17} + X^{18}$</td>
</tr>
</tbody>
</table>

References

Young Ho Park
Department of Mathematics
Kangwon National University
Chun Cheon 24341, Korea
E-mail: yhpark@kangwon.ac.kr