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ESTIMATION OF NON-INTEGRAL AND INTEGRAL

QUADRATIC FUNCTIONS IN LINEAR STOCHASTIC

DIFFERENTIAL SYSTEMS

IL Young Song, Vladimir Shin, and Won Choi∗†

Abstract. This paper focuses on estimation of an non-integral
quadratic function (NIQF) and integral quadratic function (IQF) of
a random signal in dynamic system described by a linear stochastic
differential equation. The quadratic form of an unobservable signal
indicates useful information of a signal for control. The optimal (in
mean square sense) and suboptimal estimates of NIQF and IQF rep-
resent a function of the Kalman estimate and its error covariance.
The proposed estimation algorithms have a closed-form estimation
procedure. The obtained estimates are studied in detail, including
derivation of the exact formulas and differential equations for mean
square errors. The results we demonstrate on practical example of
a power of signal , and comparison analysis between optimal and
suboptimal estimators is presented.
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1. Introduction

The Kalman filtering and its variations are well-known signal estima-
tion techniques in wide use in a variety of applications such as navigation,
target tracking, vehicle state estimation, communications engineering,
air traffic control, biomedical and chemical processing and many other
areas [1-8].

However, some applications require the estimation of not only a signal
but also an nonlinear functions of the signal, which express practical and
worthwhile information for control systems. For instance, in a mechan-
ical application, such functions include displacement, energy or work
which can be interpreted as a quadratic form of a random signal. Aside
from the aforementioned papers, most authors have not focused on es-
timation of nonlinear functions of a signal but have considered signal
estimation or filtering only. To the best of our knowledge, there are no
methods for estimation of an nonlinear functions in a linear stochastic
differential systems in the literature.

Therefore, the aim of this paper is to develop estimators for an ar-
bitrary non-integral quadratic function (NIQF) and integral quadratic
function (IQF) in linear systems described by stochastic differential
equations. We propose an optimal (in the mean square error sense)
and suboptimal estimates for NIQF and IQF, and demonstrate their
theoretical and practical effectiveness.

This paper is organized as follows. Section 2 presents a statement
of the estimation problem for NIQF and IQF within the continuous-
time Kalman filtering framework. In Section 3, the optimal estimates
for NIQF and IQF are derived. The simple suboptimal estimates for
the functions are also considered. In Section 4, we study an unbiased
property of the obtained estimates. In Section 5, we derive the exact
formulas and differential equations for the mean square errors. In Section
6, the numerical efficiency of the proposed estimators is studied. Finally,
we conclude the paper in Section 7.

2. Problem Statement

Let consider a linear dynamic system described by the Ito stochastic
differential equation

(1) dxt = Ftxtdt + Gtdvt, t ≥ 0
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where xt ∈ <n is an unobservable random process (signal), and vt ∈ <r
is a Wiener process with the intensity Qt , i.e., E

(
dvtdv

T
t

)
= Qtdt, and

Ft ∈ <n×n, Gt ∈ <n×r, and Qt ∈ <r×r.
Suppose that an observable process yt ∈ <m is determined by the Ito

stochastic differential equation

(2) dyt = Htxtdt + dwt,

where wt ∈ <m represents a Wiener process (observation error) with
intensity Rt i.e., E

(
dwtdw

T
t

)
= Rtdt, and Ht ∈ <m×n.

We assume that the initial condition x0 ∼ N (x̄0, P0), and Wiener
processes are independent.

Let consider the non-integral quadratic function (NIQF) and integral
quadratic function (IQF) of the unobservable random process,

(3) NIQF : zt = xTt Ωtxt + dTt xt,

and

(4) IQF : ut =
∫ t

0

(
xTs Ωsxs + dTs xs

)
ds,

respectively.
Here Ωt = ΩT

t ≥ 0, and dt are an arbitrary matrix and vector, respec-
tively, and AT denotes the transposition of a matrix A.

A problem associated with the partially observable process (xt, yt) is
that of estimation of an NIQF and IQF from the overall noisy observa-
tions yt0 = {ys : 0 ≤ s ≤ t}.

Simple examples of such a quadratic functions may be the Euclidean
square distance (norm) zt = ‖xt − x̃t‖2 between two vector processes xt
and x̃t, or the integral ut =

∫ t
0
xTs xsds representing an accumulated

energy-like function of an object.
We propose an optimal and suboptimal estimation algorithms for an

NIQF and IQF, and investigate their statistical properties in the subse-
quent Sections 3 and 4.

3. Optimal and Suboptimal Estimates for NIQF and IQF

In this section, the best optimal (in the mean square sense) estimation
algorithms for an NIQF and IQF are derived. A simple suboptimal
estimates for the functions are also proposed.

The optimal estimation algorithms include two stages: the optimal
Kalman estimate of the unobservable random process x̂t computed at
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the first stage is used at the second stage for the best estimation of an
NIQF or IQF.

3.1. First stage – Kalman estimate for the unobservable
random process

The optimal mean square estimate x̂t = E (xt|yt0) of the process
xt based on the overall observations yt0, and its error covariance Pt =
E
(
ete

T
t

)
, et = xt − x̂t are given by the continuous Kalman filter (KF)

equations [5,8]:

(5)

dx̂t = Ftx̂tdt + Kt (dyt −Htx̂tdt) , t ≥ 0, x̂t=0 = x̄0,

dPt =
(
FtPt + PtF

T
t − PtHT

t R
−1
t HtPt + G̃t

)
dt, Pt=0 = P0,

Kt = PtH
T
t R
−1
t , G̃t = GtQtG

T
t .

3.2. Second stage for NIQF – Formula for the optimal estimate
The optimal mean square estimate of the NIQF (3) based on the

overall observations yt0 also represents a conditional mean,

(6) ẑoptt = E (zt|yt0) .

The conditional mean (6) can be explicitly calculated in terms of the
Kalman estimate x̂t and its error covariance Pt. We have

Theorem 3.1. The optimal mean square estimate ẑoptt is given by

(7) ẑoptt = tr
[
Ωt

(
Pt + x̂tx̂

T
t

)]
+ dTt x̂t,

where tr(A) is the trace of a matrix A, and the Kalman estimate x̂t and
error covariance Pt satisfy (5).

Proof. Using the formula for a second-order vector moment E
(
xTx

)
=

µTµ + tr(C), where µ = E(x), C = Cov(x, x) = E
[
(x− µ)(x− µ)T

]
, it

is easy to derive that

(8) E
(
xTΩx

)
= tr

[
Ω
(
C + µµT

)]
.

Using the fact (8) we obtain the optimal mean square estimate (6) for
the NIQF,

(9)
ẑoptt = E

(
xTt Ωtxt + dTt xt|yt0

)
= E

(
xTt Ωtxt|yt0

)
+ dTt E (xt|yt0)

= tr
{

Ωt

[
Pt + E (xt|yt0) E

(
xTt |yt0

)]}
+ dTt x̂

T
t

= tr
[
Ωt

(
Pt + x̂tx̂

T
t

)]
+ dTt x̂t.

This completes the derivation of (7).
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3.3. Second stage for IQF – Differential equation for the
optimal estimate

The integral function (4) is described by the differential equation

(10) u̇t = xTt Ωtxt + dTt xt, t ≥ 0, u0 = 0.

Theorem 3.2. The optimal mean square estimate ûoptt is given by

(11) ˙̂uoptt = x̂Tt Ωtx̂t + tr (ΩtPt) + dTt x̂t, û0 = 0,

where the Kalman estimate x̂t and its error covariance Pt satisfy (5).

Proof. Taking the conditional expectation of both parts of the equa-
tion (10) and using the formula (8) we obtain,

˙̂uoptt = E (u̇t|yt0) = E
(
xTt Ωtxt + dTt xt|yt0

)
= E

(
xTt Ωtxt|yt0

)
+ dTt E (xt|yt0)

= tr
{

Ωt

[
Pt + E (xt|yt0) E

(
xTt |yt0

)]}
+ dTt x̂

T
t

= tr
[
Ωt

(
Pt + x̂tx̂

T
t

)]
+ dTt x̂t

= tr (ΩtPt) + tr
(
Ωtx̂tx̂

T
t

)
+ dTt x̂t

= x̂Tt Ωtx̂t + tr (ΩtPt) + dTt x̂t.

This completes the derivation of (11).

In parallel to the optimal estimates (7) and (11) we propose a simple
suboptimal estimates for the NIQF and IQF,

(12) ẑsubt = x̂Tt Ωtx̂t + dTt x̂t,
˙̂usubt = x̂Tt Ωtx̂t + dTt x̂t,

respectively.

4. Unbiased and Biased Estimates

Here we study the unbiased property of the optimal and suboptimal
estimates for the NIQF and IQF.

Theorem 4.1. The optimal mean square estimate ẑoptt is unbiased.

Proof. Using the unbiased and orthogonality properties of the Kalman
estimate [5,8],

(13)
E (x̂t) = E (xt) , E

[
(xt − x̂t) x̂Tt

]
= 0,

Pt = E
(
xtx

T
t

)
− E

(
x̂tx̂

T
t

)
,
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and the formula xTt Ωtxt = tr
(
Ωtxtx

T
t

)
, we obtain

E
(
ẑoptt

)
= tr (ΩtPt) + tr

[
ΩtE

(
x̂tx̂

T
t

)]
+ dTt E (x̂t) = tr (ΩtPt)

+tr
{

Ωt

[
E
(
xtx

T
t

)
− Pt

]}
+ dTt E (xt) = tr

[
ΩtE

(
xtx

T
t

)]
+ dTt E (xt) ,

and
E (zt) = E

(
xTt Ωtxt

)
+ dTt E (xt) = tr

[
ΩtE

(
xtx

T
t

)]
+ dTt E (xt) .

So, E
(
ẑoptt

)
= E (zt) This completes the proof.

Theorem 4.2. The optimal mean square estimate ûoptt is unbiased.

Proof. Note that ut =
∫ t

0
zsds and ûoptt =

∫ t
0
ẑopts ds. Then using the

unbiased property of the estimate ẑoptt we obtain,

E
(
ûoptt

)
=
∫ t

0
E (ẑopts ) ds =

∫ t
0

E (zs) ds = E
(∫ t

0
zs

)
ds = E (ut) .

Corollary 4.1. The suboptimal estimates ẑsubt and ûsubt are biased.

5. Calculation of Mean Square Errors

Here we study the estimation accuracy of the optimal and suboptimal
estimates of the NIQF and IQF.

The following result completely define the actual mean square errors
(MSEs)

(14) P opt
z,t = E (ε2

t ) , P sub
z,t = E (ε̃2

t ) , εt = zt − ẑoptt , ε̃t = zt − ẑsubt

for the non-integral optimal and suboptimal estimates ẑoptt and ẑsubt ,
respectively.

Theorem 5.1. The actual mean square errors P opt
z,t and P sub

z,t for the
NIQF are given by

(15)
P opt
z,t = 4tr (ΩtPtΩtCt)− 2tr (ΩtPtΩtPt) + 4µtΩtPtΩtµt

+ dTt Ptdt + 4µTt ΩtPtdt,

and

(16)
P sub
z,t = 4tr (ΩtPtΩtCt)− 2tr (ΩtPtΩtPt) + tr2 (ΩtPt)

+ 4µtΩtPtΩtµt + dTt Ptdt + 4µTt ΩtPtdt,
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respectively. Here the unconditional mean µt = E (xt) and covariance
Ct = Cov (xt, xt) of the unobservable process xt are determined by the
Lyapunov equations [5-7],

(17) µ̇t = Ftµt, µ0 = x̄0, Ċt = FtCt + CtF
T
t +GtQtG

T
t , C0 = P0.

The derivation of the MSEs (15) and (16) is based on the following
Lemma.

Lemma 5.1. Let X ∈ <3n be a composite multivariate normal vector,

X ∼ N (µx, Sx) , XT =
[
UT V T W T

]
, U, V,W ∈ <n,

µx = E(X) =

µuµv
µw

 , Sx = Cov(X,X) =

Suu Suv Suw
Svu Svv Svw
Swu Swv Sww

 .
Then the third- and fourth-order vector moments of the composite ran-
dom vector X are given by

(18)

(i) E
(
UTVW T

)
= µTuµvµ

T
w + tr (Suv)µ

T
w + µTv Suw + µTuSvw,

(ii) E
(
UTUV TV

)
= µTuµuµ

T
v µv + 2tr (SuvSvu)

+tr (Suu) tr (Svv) + tr (Suu)µ
T
v µv

+tr (Svv)µ
T
uµu + 4µTuSuvµv,

(iii) E
(
UTV V TU

)
= µTuµvµ

T
v µu + tr (SuuSvv)

+tr (Suv) tr (Svu) + tr (S2
uv) + µTv Suuµv

+µTuSvvµu + 2tr (Suv)µ
T
uµv + µTv Suvµu

+µTuSvuµv,
(iv) E

(
UTVW TU

)
= µTuµvµ

T
wµu + tr (Suv) tr (Suw)

+tr (SuuSwv) + tr (SuwSuv) + tr (Suv)µ
T
uµw

+tr (Cuw)µTuµv + µTv Suuµw + µTv Suwµu
+µTuSvuµw + µTuSvwµu.

The derivation of the vector formulas (18) for calculating the high-
order moments is based on their scalar versions [9, 10],

(19)

E (xixjxk) = µiµjµk + µiSjk + µjSik + µkSij,
E (xixjxkxl) = µiµjµkµl + SijSkl + SikSlj + SilSjk

+µiµjSkl + µiµkSjl + µiµlSjk
+µjµkSil + µjµlSik + µkµlSij,

where
µh = E (xh) , Spq = E [(xp − µq) (xq − µq)] ,

and standard matrix manipulations.



52 IL Young Song, Vladimir Shin, and Won Choi

Proof of Theorem 5.1. We are now is a position to derive the first MSE
(15). For simplicity we omit time index, i.e., xt → x, x̂t → x̂, Pt → P ,
. . . . Then using (3) and (7), the estimation error can be written as

ε = z − ẑopt = xTΩx+ dTx− tr
[
Ω
(
P + x̂x̂T

)]
− dT x̂

= xTΩx− x̂TΩx̂− tr (ΩP ) + dT e = (e+ x̂)T Ω (e+ x̂)− x̂TΩx̂
−tr (ΩP ) + dT e = eTΩe+ 2eTΩx̂+ dT e− tr (ΩP ) ,

where
e = x− x̂, tr =

(
Ωx̂x̂T

)
= x̂TΩx̂, x̂TΩe = eTΩx̂.

Next, using the unbiased and orthogonality properties of the Kalman
estimate (13) we obtain the optimal MSE

(20)
P opt
z = E (ε2) = E

(
eTΩeeTΩe

)
+ 4E

(
eTΩx̂x̂TΩe

)
+ dTPd

+ tr2 (ΩP ) + 4E
(
eTΩeeTΩx̂

)
+ 2E

(
eTΩeeT

)
d

− 2tr2 (ΩP ) + 4E
(
eTΩx̂eT

)
d.

Using Lemma 5.1 we can calculate high-order moments in (20). We have

(21)

(a) E
(
eTΩeeTΩe

)
= 2tr (ΩPΩP ) + tr2 (ΩP ) ,

U = e, V = Ωe.
(b) E

(
eTΩx̂x̂TΩe

)
= tr (PΩPx̂x̂Ω) + µTΩPΩµ

= tr (PΩCP )− tr (ΩPΩP ) + µTΩPΩµ,
U = e, V = Ωx̂.

(c) E
(
eTΩeeTΩx̂

)
= E

(
eTΩex̂TΩe

)
= 0,

U = e, V = Ωe, W = Ωx̂.
(d) E

(
eTΩeeT

)
= 0, U = e, V = Ωe, W = e.

(e) E
(
eTΩx̂eT

)
= µTΩP, U = e, V = Ωx̂, W = e.

where
µ = E(x) = E (x̂) , C = Cov(x, x), P = Cov(e, e), E(e) = 0,
E (Ωx̂) = Ωµ, Px̂x̂ = Cov (x̂, x̂) = C − P, Cov = (e,Ωe) = PΩ,
Cov = (Ωe,Ωe) = ΩPΩ.

Substituting (21) to (20), and after some manipulations, we get the
optimal MSE (15).

The unknown mean µ = E (xt) and covariance Cov (xt, xt) of random
process (1) satisfy the Lyapunov equations (17).
This completes the derivation (15).

In the case of the suboptimal estimate ẑsubt , the derivation of the MSE
(16) is similar.

Thus, (15) and (16) completely define the true MSEs of the optimal
and suboptimal estimates ẑoptt and ẑsubt for the NIQF, respectively.
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Corollary 5.1. Comparison of the MSEs P opt
z,t and P sub

z,t shows that
the difference between them is equal

P sub
z,t − P

opt
z,t = tr2 (Ωt, Pt) ,

where Pt is error covariance determined by the KF equations (5).

Corollary 5.2. In particular case with Ωt = 1 and dt = 0, the
NIQF, optimal and suboptimal estimates, and MSEs take the form

zt = ‖xt‖2 = xTt xt, ẑ
opt
t = ‖x̂t‖2 + tr (Pt) , ẑ

sub
t = ‖x̂t‖2 ,

P opt
z,t = 4tr (PtCt)− 2tr (P 2

t ) + 4µTt Ptµt,
P sub
z,t = 4tr (PtCt)− 2tr (P 2

t ) + 4µTt Ptµt + tr2 (Pt) .

Next we derive the actual MSEs for the integral function (4),

(22) P opt
u,t = E (δ2

t ) , P
sub
u,t = E

(
δ̃2
t

)
, δt = u− ûoptt , δ̃t = u− ûsubt .

Theorem 5.2. The actual mean square error P opt
u,t for the IQF is

described by the differential equation

(23) Ṗ opt
u,t = 2E

(
δte

T
t Ωtet

)
+ 4E

(
δte

T
t Ωtx̂t

)
+ 2E

(
δtd

T
t et
)
, P opt

u,0 = 0.

Here

(24)

E
(
δtd

T
t et
)

=
n∑
i=1

di,tmi,t, E
(
δte

T
t Ωtet

)
=

n∑
i,j=1

Ωij,tαij,t,

E
(
δte

T
t Ωtx̂t

)
=

n∑
i,j=1

Ωij,tβij,t, mi,t = E (δtei,t) ,

αij,t = E (δtei,tej,t) , βij,t = E (δtei,tx̂j,t) ,
Pt, Ft, At,Ωt, Ct ∈ <n×n, Kt ∈ <n×m,
Ht ∈ <m×n, dt, µt ∈ <n,
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and the moments mi,t, αi,t, βi,t (i, j = 1, . . . , n) are determined by

(25)

ṁi,t = 2
n∑

k,h=1

Ωkh,tµh,tPik,t +
n∑
k=1

dk,tPik,t

+
n∑
k=1

Aik,tmi,t, mi,0 = 0,

α̇ij,t =
n∑

k,h=1

Ωkh,t (Pij,tPkh,t + Pik,tPjh,t + Pih,tPjk,t)

−tr (ΩtPt)Pij,t +
n∑
k=1

(Aik,tαjk,t + Akj,tαik,t) ,

αij,0 = 0, At = Ft −KtHt,

β̇ij,t = 2
n∑

k,h=1

Ωkh,tPik,t (Cjh,t − Pjh,t + µj,tµh,t)

+
n∑
k=1

dk,tµj,tPik,t +
n∑
k=1

(Aik,tβkj,t + Fjk,tβik,t)

+
m∑
l=1

n∑
h=1

KjlHlhαih,t, βij,0 = 0.

Proof. For simplicity we omit time index. Then using (1), (2), (5),
and (10), (11), the Kalman estimate x̂, and estimation errors e = x− x̂
and δ = u− û are determined by the equations

(26)
dx̂ = (Fx̂+KHe) dt+Kdw,
de = Aedt−Kdw, A = F −KH,
dδ =

[
eTΩe+ 2eTΩx̂+ dT e− tr(ΩP )

]
dt,

respectively. Using the Ito formula of a function δ2
t by virtue on the third

equation of (26) we get the equation (23) for the MSE P opt
u,t = E (δ2

t ). The
expectations (24) represent linear functions of the elements (moments)
mi,t, αij,t, βij,t. Using the Ito formula and equation (26) we obtain the
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differential equations for the moments

(27)

ṁi = d
dt

E (δei) =
n∑

k,h=1

ΩkhE (eiekeh) +
n∑

k,h=1

ΩkhE (eiekx̂h)

+
n∑
k=1

dkE (eiek)− E (ei) tr (ΩP ) +
n∑
k=1

AikE (δek) ,

α̇ij = d
dt

E (δeiej) =
n∑

k,h=1

ΩkhE (eiejekeh)

+2
n∑

k,h=1

ΩkhE (eiejekx̂h)

+
n∑
k=1

dkE (eiejek)− tr (ΩP ) E (eiej)

+
n∑
k=1

[AikE (δejek) + AkjE (δeiek)] ,

β̇ij = d
dt

E (δeix̂j) =
n∑

k,h=1

ΩkhE (eiekehx̂j)

+2
n∑

k,h=1

ΩkhE (eiekx̂jx̂h)

+
n∑
k=1

dkE (eiekx̂j)− tr (ΩP ) E (eix̂j)

+
n∑
k=1

(Aikβkj + Fjkβik) +
m∑
l=1

n∑
h=1

KjlHlhαih.

Then the third- and fourth-order expectations in the right-hand sides of
(27) are calculated by using the formulas (19) and orthogonality prop-
erties (13). After some manipulations, we get the equations (25).

This completes the derivation (23)-(25).

In the case of the suboptimal estimate ûsubt , the derivation of the MSE

P sub
u,t = E

(
δ̃2
t

)
is similar. We have

Theorem 5.3. The actual mean square error P sub
u,t for the IQF is

described by the differential equation

(28)
Ṗ sub
u,t = 2E

(
δ̃te

T
t Ωtet

)
+ 4E

(
δ̃te

T
t Ωtx̂t

)
+ 2E

(
δ̃td

T
t et

)
,

P sub
u,0 = 0.
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Here

(29)

E
(
δ̃td

T
t et

)
=

n∑
i=1

di,tm̃i,t, E
(
δ̃te

T
t Ωtet

)
=

n∑
i,j=1

Ωij,tα̃ij,t,

E
(
δ̃te

T
t Ωtx̂t

)
=

n∑
i,j=1

Ωij,tβ̃ij,t,

m̃i,t = E
(
δ̃tei,t

)
, α̃ij,t = E

(
δ̃tei,tej,t

)
, β̃ij,t = E

(
δ̃tei,tx̂j,t

)
,

and the moments m̃i,t, α̃ij,t, β̃ij,t (i, j = 1, . . . , n) are determined by

(30)

˙̃mi,t = 2
n∑

k,h=1

Ωkh,tµh,tPik,t +
n∑
k=1

dk,tPik,t +
n∑
k=1

Aik,tm̃i,t,

m̃i,0 = 0,

˙̃αij,t =
n∑

k,h=1

Ωkh,t (Pij,tPkh,t + Pik,tPjh,t + Pih,tPjk,t)

+
n∑
k=1

(Aij,tα̃jk,t + Akj,tα̃ik,t) , α̃ij,0 = 0,

˙̃βij,t = 2
n∑

k,h=1

Ωkh,tPik,t (Cjh,t − Pjh,t + µj,tµh,t) +
n∑
k=1

dk,tµj,tPik,t

+
n∑
k=1

(
Aij,tβ̃kj,t + Fjk,tβ̃ik,t

)
+

m∑
l=1

n∑
h=1

KjlHlhα̃ij,t, β̃ij,0 = 0.

In next Section we consider practical example of using the NIQF and
IQF.

6. Application of NIQF and IQF. Estimation of Power of
Signal

If xt is a scalar random signal measured in additive white noise then
the signal and observation equations (1) and (2) are

(31)
dxt = axtdt+ dvt, a < 0, x0 ∼ N (x̄0, σ

2
0) ,

dyt = xtdt+ dwt, t ≥ 0,

where vt and wt are independent scalar Wiener processes (noises) with
intensities q and r, respectively, a = const.

The KF equation (5) gives the following

(32)
dx̂t = ax̂tdt+Kt (dyt − x̂tdt) , x̂0 = x̄0, Kt = Pt/r,

dPt = (2aPt − P 2
t /r + q) dt, P0 = σ2

0, Pt = E
[
(xt − x̂t)2] .
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Analytical solution of the Riccati equation takes the form

(33)
Pt = k2 + k1+k2

[(σ2
0+k1)/(σ2

0−k2)]e2bt−1
,

k1 = r(b− a), k2 = r(b+ a), b =
√
a2 + q/r.

6.1. Example of NIQF – Estimation of a current power of
signal

Further, we consider a specific NIQF which represents a current power
of a signal, i.e.,

(34) zt = x2
t .

Using (7) and (12) we obtain the best optimal and suboptimal esti-
mates of a power of a signal,

(35) ẑoptt = x̂2
t + Pt, ẑ

sub
t = x̂2

t ,

where x̂t and Pt are determined by (32) and (33), respectively.
Let compare estimation accuracy of the optimal and suboptimal esti-

mates (35).
Using Theorem 5.1 we obtain precise formulas for the actual MSEs of

these estimates,

(36)
P opt
z,t = E

[
(x2

t − x̂2
t − Pt)

2
]

= 4PtCt − 2P 2
t + 4µ2

tPt,

P sub
z,t = E

[
(x2

t − x̂2
t )

2
]

= 4PtCt − P 2
t + 4µ2

tPt,

where the mean µt and covariance Ct of the signal xt are determined by
Lyapunov equations

(37) µ̇t = aµt, µ0 = x̄0, Ċt = 2aCt + q, C0 = σ2
0,

with solutions

(38) µt = x̄0e
at, Ct = (σ2

0 + q/2a) e2at − q/2a.
Thus, the analytical solutions (33) and (37) with formulas (36) com-
pletely establish the actual MSEs for the optimal and suboptimal esti-
mates (35).

According to Corollary 5.1 the difference between the MSEs is equal
P sub
z,t − P

opt
z,t = P 2

t . Figure 1 shows the numerical values of the MSEs for

the values a = −1, q = 0.5, x̄0 = 0, σ2
0 = 4, and r = 0.1.

From Figure 1 we observe that the relative error ∆t(%) =
∣∣∣(P sub

z,t − P
opt
z,t

)
/P opt

z,t

∣∣∣100% varies from 3% to 6% within the time zone t ∈ [0.1; 1.1],
and then it increases. In steady-state zone t > 4 the relative error is
reached the value ∆∞ = 20.4% and at the same time zone the absolute
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Figure 1. Optimal and suboptimal MSEs for power of signal

values of the MSEs are equal P opt
z,∞ = 0.1029 and P sub

z,∞ = 0.1239. Thus

the numerical results show that the suboptimal estimate ẑsubt = x̂2
t may

be seriously worse than the optimal one ẑoptt = x̂2
t + Pt.

6.2. Example of IQF – Estimation of an accumulated power
of signal

Here we consider an accumulated power of a signal, then an IQF is
represented as

(39) ut =
∫ t

0
x2
sds.

Using (11) and (12) the best optimal and suboptimal estimates of an
accumulated power satisfy the differential equations

(40) ˙̂uoptt = x̂2
t + Pt, ˙̂usubt = x̂2

t , û
opt
0 = ûsub0 = 0.

Using Theorems 5.2 and 5.3 we obtain the differential equations for the

actual MSEs of these estimates, P opt
u,t = E

[(
ut − ûoptt

)2
]

and P sub
u,t =

E
[(
ut − ûsubt

)2
]
, respectively,

(41)
Ṗ opt
u,t = 2α11,t + 4β11,t, P

opt
u,0 = 0,

α̇11,t = 2P 2
t + 2 (a−Kt)α11,t, α11,0 = 0, Kt = Pt/r

β̇11,t = 2Pt (Ct − Pt + µ2
t ) + (2a−Kt) β11,t +Ktα11,t, β11,0 = 0,
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and

(42)
Ṗ sub
u,t = 2α̃11,t + 4β̃11,t, P

sub
u,0 = 0,

˙̃α11,t = 3P 2
t + 2 (a−Kt) α̃11,t, α̃11,0 = 0,

β11,t = 2Pt (Ct − Pt + µ2
t ) + (2a−Kt) β̃11,t +Ktα̃11,t, β̃11,0 = 0,

where Pt, Kt, Ct and µt are determined by (32), (33) and (37), respec-
tively. Thus, the equations (41) and (42) completely establish the actual
MSEs for the optimal and suboptimal estimates (40).

7. Conclusion

In many application problems, a quadratic function of signal brings
useful information of the signal for control. In order to estimate an
arbitrary NIQF and IQF, an optimal and suboptimal algorithms are
proposed. The estimates are a comprehensively investigated, includ-
ing derivation of compact matrix forms for an optimal and suboptimal
estimates and their MSEs. In a view of importance of a quadratic func-
tions for practice, the obtained algorithms are illustrated on example of
estimation of a power of random signal which shows that the optimal
estimate yields a reasonably good estimation accuracy.
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