# A FIXED POINT APPROACH TO THE STABILITY OF QUARTIC LIE *-DERIVATIONS 

Dongseung Kang and Heejeong Koh*


#### Abstract

We obtain the general solution of the functional equation $f(a x+y)-f(x-a y)+\frac{1}{2} a\left(a^{2}+1\right) f(x-y)+\left(a^{4}-1\right) f(y)=$ $\frac{1}{2} a\left(a^{2}+1\right) f(x+y)+\left(a^{4}-1\right) f(x)$ and prove the stability problem of the quartic Lie $*$-derivation by using a directed method and an alternative fixed point method.


## 1. Introduction

A mapping is said to be stable if a mapping is an almost-homomorphism, there exists a true homomorphism near the almost-homomorphism. Ulam introduced the stability problem for functional equations which concerned the stability of group homomorphisms, thai is, given two groups $G$ and $H$, is every almost-homomorphism $G \rightarrow H$ close to a true homomorphism $G \rightarrow H$ ?; see [17]. Hyers [7] investigated stability problems related to the question of Ulam on Banach spaces. Subsequently, the result of Hyers was generalized by a number of authors. In particular, Aoki [1] studied the stability problem for additive mapping and Rassias [14] proved the problem for linear mappings by considering a unbounded Cauchy difference operator. Afterwards, the result of Rassias has provided a lot of influence in the development of what we call Hyers-Ulam stability or Hyers-Ulam-Rassias stability. The stability problems of this

Received May 2, 2016. Revised October 31, 2016. Accepted September 1, 2016. 2010 Mathematics Subject Classification: 39B55, 39B72, 47B47, 47H10.
Key words and phrases: Hyers-Ulam stability; quartic mapping; Lie *-derivation; Banach $*$-algebra; fixed point alternative.

* Corresponding author.
(c) The Kangwon-Kyungki Mathematical Society, 2016.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.
topic have been investigated by a number of authors; see [10], [8], [2] and [3]. In fact, the stability problems have been extensively investigated to the various points of views such as various functional equations, various spaces and so on. Especially, Jang and Park [9] introduced the concepts of $*$-derivations and investigated the stability problems of quadratic *-derivations on Banach $C^{*}$-algebra. Also, Park and Bodaghi and Yang et al. studied the stability properties of $*$-derivations by using an alternative fixed point method; see [12] and [19]. Also, Fošner and Fošner introduced the basic concepts of cubic Lie derivations and investigated the stability problem of cubic Lie derivations; see [6].

Rassias introduced the quartic functional equation in [13] which was the oldest quartic functional equation and investigated the stability problems of the following functional equation:

$$
\begin{equation*}
f(x+2 y)+f(x-2 y)+6 f(x)=4 f(x+y)+4 f(x-y)+24 f(y) . \tag{1.1}
\end{equation*}
$$

Chung and Sahoo [4] obtained the general solution of (1.1) by using the properties of a certain mapping of the form $A(x, x, x, x)$, where the function $A: \mathbb{R}^{4} \rightarrow \mathbb{R}$ is symmetric and additive in each variable.

In this paper, we will consider the following functional equation which is generalized and different from the equation (1.1):

$$
\begin{gather*}
f(a x+y)-f(x-a y)+\frac{1}{2} a\left(a^{2}+1\right) f(x-y)+\left(a^{4}-1\right) f(y)  \tag{1.2}\\
=\frac{1}{2} a\left(a^{2}+1\right) f(x+y)+\left(a^{4}-1\right) f(x)
\end{gather*}
$$

for all $x, y \in X$ and an integer $a(a \neq 0, \pm 1)$. We will show that the equation (1.2) is a general solution of quartic functional equation and introduced a quartic Lie $*$-derivation. Finally, we will prove the HyersUlam stability problem of the quartic Lie *-derivations by using directed and fixed point methods.

## 2. A general solution of a quartic functional equation

Let $X$ and $Y$ be real vector spaces. In this section we will obtain the result that the functional equation (1.2) is a general solution of a quartic functional equation by using 4 -additive symmetric mapping. Before we proceed, we will introduce some basic concepts concerning 4 -additive symmetric mappings. A mapping $A_{4}: X^{4} \rightarrow Y$ is called 4-additive if it is additive in each variable. A mapping $A_{4}$ is said to
be symmetric if $A_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=A_{4}\left(x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)}, x_{\sigma(4)}\right)$ for every permutation $\{\sigma(1), \sigma(2), \sigma(3), \sigma(4)\}$ of $\{1,2,3,4\}$. If $A_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ is a 4 -additive symmetric mapping, then $A^{4}(x)$ will denote the diagonal $A_{4}(x, x, x, x)$ and $A^{4}(q x)=q^{4} A^{4}(x)$ for all $x \in X$ and all $q \in \mathbb{Q}$. A mapping $A^{4}(x)$ is called a monomial function of degree 4 (assuming $A^{4} \not \equiv$ $0)$. On taking $x_{1}=x_{2}=\cdots=x_{s}=x$ and $x_{s+1}=x_{s+2}=\cdots=x_{4}=y$ in $A_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$, it is denoted by $A^{s, 4-s}(x, y)$. We note that the generalized concepts of $n$-additive symmetric mappings are found in [16] and [18].

Theorem 2.1. Let $A^{4}(x)$ be the diagonal of the 4 -additive symmetric mapping $A_{4}: X^{4} \rightarrow Y$. A mapping $f: X \rightarrow Y$ is a solution of the functional equation (1.2) if and only if $f$ is of the form $f(x)=A^{4}(x)$ for all $x \in X$.

Proof. Assume that $f$ satisfies the functional equation (1.2). We will show that $f(x)=A^{4}(x)$ for all $x \in X$. On letting $y=0$ in the equation (1.2), we have

$$
\begin{equation*}
f(a x)=a^{4} f(x)-\left(a^{4}-1\right) f(0) \tag{2.1}
\end{equation*}
$$

for all $x \in X$ and an integer number $a \neq 0, \pm 1$. Also, we have

$$
\begin{aligned}
& f(y)-f(-a y)+\frac{1}{2} a\left(a^{2}+1\right) f(-y)+\left(a^{4}-1\right) f(y) \\
& =\frac{1}{2} a\left(a^{2}+1\right) f(y)+\left(a^{4}-1\right) f(0)
\end{aligned}
$$

by letting $x=0$ in the equation (1.2). Replacing $y$ by $x$ in the previous equation, we get

$$
\begin{aligned}
& f(x)-f(-a x)+\frac{1}{2} a\left(a^{2}+1\right) f(-x)+\left(a^{4}-1\right) f(x) \\
& =\frac{1}{2} a\left(a^{2}+1\right) f(x)+\left(a^{4}-1\right) f(0)
\end{aligned}
$$

for all $x \in X$ and $a \neq 0, \pm 1$. Hence the equation (2.1) implies that $f$ is an odd mapping. On taking $x=y$ in the equation (1.2) and using the equation (2.1), we have

$$
\begin{aligned}
& (a+1)^{4} f(x)-\left[(a+1)^{4}-1\right] f(0)-(a-1)^{4} f(x)+\left[(a-1)^{4}-1\right] f(0) \\
& +\frac{1}{2} a\left(a^{2}+1\right) f(0)=8 a\left(a^{2}+1\right) f(x)-\frac{15}{2} a\left(a^{2}+1\right) f(0)
\end{aligned}
$$

for all $x \in X$ and an integer $a(a \neq 0, \pm 1)$. Then we have $a\left(a^{2}-1\right) f(0)=$ 0 for an integer $a(a \neq 0, \pm 1)$. This means that $f(0)=0$. Also, the equation (2.1) implies that

$$
\begin{equation*}
f(a x)=a^{4} f(x) \tag{2.2}
\end{equation*}
$$

for all $x \in X$. We can rewrite the functional equation (1.2) in the following form

$$
\begin{aligned}
& f(x)-\frac{1}{a^{4}-1} f(a x+y)+\frac{1}{a^{4}-1} f(x-a y)-\frac{a}{2\left(a^{2}-1\right)} f(x-y) \\
& +\frac{a}{2\left(a^{2}-1\right)} f(x+y)-f(y)=0
\end{aligned}
$$

for all $x, y \in X$ and an integer $a(a \neq 0, \pm 1)$. By Theorems 3.5 and 3.6 in [18], $f$ is a generalized polynomial function of degree at most 4 , that is, $f$ is of the form

$$
\begin{equation*}
f(x)=A^{4}(x)+A^{3}(x)+A^{2}(x)+A^{1}(x)+A^{0}(x) \tag{2.3}
\end{equation*}
$$

for all $x \in X$, where $A^{0}(x)=A^{0}$ is an arbitrary element of $Y$ and $A^{i}(x)$ is the diagonal $i$-additive symmetric mapping $A_{i}: X^{i} \rightarrow Y(i=$ $1,2,3,4)$. Since $f(0)=0$ and $f(-x)=f(x)$ for all $x \in X, A^{0}(x)=$ $A^{0}=0$ and $A^{1}(x)=A^{3}(x)=0$. Hence we have

$$
f(x)=A^{4}(x)+A^{2}(x),
$$

for all $x \in X$. The equation (2.3) and $A^{n}(q x)=q^{n} A^{n}(x)$ for all $x \in X$ and all $q \in \mathbb{Q}$ imply that $a^{2}\left(a^{2}-1\right) A^{2}(x)=0$ for an integer $a(a \neq 0, \pm 1)$. Hence $A^{2}(x)=0$, that is, $f(x)=A^{4}(x)$ for all $x \in X$, as desired.

Conversely, suppose $f(x)=A^{4}(x)$ for all $x \in X$, where $A^{4}(x)$ is a diagonal 4-additive symmetric mapping $A_{4}: X^{4} \rightarrow Y$. Note that

$$
\begin{aligned}
& A^{4}(q x+p y) \\
& =q^{4} A^{4}(x)+4 q^{3} p A^{3,1}(x, y)+6 q^{2} p^{2} A^{2,2}(x, y)+4 q p^{3} A^{1,3}(x, y)+p^{4} A^{4}(y) \\
& r^{s} A^{s, t}(x, y)=A^{s, t}(r x, y), \quad r^{t} A^{s, t}(x, y)=A^{s, t}(x, r y)
\end{aligned}
$$

where $1 \leq s, t \leq 3$ and $p, q, r \in \mathbb{Q}$. Thus $f$ satisfies the equation (1.2).

For this reason, we call the mapping $f$ a generalized quartic mapping if $f$ satisfies the equation (1.2).

## 3. Quartic Lie *-Derivations

In this section, we will investigate the Hyers-Ulam stability of the qyartic Lie $*$-derivation by using directed method and a fixed point method. Let $A$ be a complex normed $*$-algebra and $M$ be a Banach $A$-bimodule. For convenience, we will use $\|\cdot\|$ as norms on a normed algebra $A$ and a normed $A$-bimodule $M$.

A mapping $f: A \rightarrow M$ is called a quartic homogeneous mapping if $f(\mu a)=\mu^{4} f(a)$, for all $a \in A$ and $\mu \in \mathbb{C}$. A quartic homogeneous mapping $f: A \rightarrow M$ is called a quartic derivation if

$$
f(x y)=f(x) y^{4}+x^{4} f(y)
$$

for all $x, y \in A$. A quartic homogeneous mapping $f$ is called a quartic Lie derivation if

$$
f([x, y])=\left[f(x), y^{4}\right]+\left[x^{4}, f(y)\right]
$$

for all $x, y \in A$, where $[x, y]=x y-y x$. A quartic Lie derivation $f$ is called a quartic Lie $*$-derivation if $f$ satisfies $f\left(x^{*}\right)=f(x)^{*}$ for all $x \in A$.

Example 3.1. Let $A=\mathbb{C}$ be a complex number field with the map $z \mapsto z^{*}=\bar{z}$ (where $\bar{z}$ is the complex conjugate of $z$ ). Suppose that $f: A \rightarrow A$ by $f(x)=x^{4}$ for all $x \in A$. Then $f$ is quartic and

$$
f([x, y])=\left[f(x), y^{4}\right]+\left[x^{4}, f(y)\right]=0
$$

for all $x, y \in A$. Also,

$$
f\left(x^{*}\right)=f(\bar{x})=\bar{x}^{4}=\overline{f(x)}=f(x)^{*}
$$

for all $x \in A$. Hence we know that $f$ is a quartic Lie $*$-derivation, as desired.

For this entire section,

$$
\mathbb{T}^{1}=\{\mu \in \mathbb{C}| | \mu \mid=1\}
$$

For the given mapping $f: A \rightarrow M$, we consider

$$
\begin{gather*}
\Delta_{\mu} f(a, b):=f(m \mu a+\mu b)-f(\mu a-m \mu b)+\frac{1}{2} \mu^{4} m\left(m^{2}+1\right) f(a-b)  \tag{3.1}\\
+\mu^{4}\left(m^{4}-1\right) f(b)-\frac{1}{2} \mu^{4} m\left(m^{2}+1\right) f(a+b)-\mu^{4}\left(m^{4}-1\right) f(a), \\
\Delta f(a, b):=f([a, b])-\left[f(a), b^{4}\right]-\left[a^{4}, f(b)\right]
\end{gather*}
$$

for all $a, b \in A, \mu \in \mathbb{C}$ and $m \in \mathbb{Z}(m \neq 0, \pm 1)$.

Theorem 3.2. Let $n_{0}$ be a positive integer. Suppose that there is a mapping $f: A \rightarrow M$ with $f(0)=0$ and there exists a function $\phi: A^{5} \rightarrow[0, \infty)$ such that

$$
\begin{gather*}
\widetilde{\phi}(a, b, x, y, z):=\sum_{j=0}^{\infty} \frac{1}{|m|^{4 j}} \phi\left(m^{j} a, m^{j} b, m^{j} x, m^{j} y, m^{j} z\right)<\infty  \tag{3.2}\\
\left\|\Delta_{\mu} f(a, b)\right\| \leq \phi(a, b, 0,0,0)  \tag{3.3}\\
\left\|\Delta f(x, y)+f\left(z^{*}\right)-f(z)^{*}\right\| \leq \phi(0,0, x, y, z) \tag{3.4}
\end{gather*}
$$

for all $\mu \in \mathbb{T}_{\frac{1}{n_{0}}}^{1}=\left\{e^{i \theta} \left\lvert\, 0 \leq \theta \leq \frac{2 \pi}{n_{0}}\right.\right\}$ and all $a, b, x, y, z \in A$. For each fixed $a \in A$, if the mapping $r \mapsto f(r a)$ from $\mathbb{R}$ to $M$ is continuous then there exists a unique quartic Lie $*$-derivation $L: A \rightarrow M$ such that

$$
\begin{equation*}
\|f(a)-L(a)\| \leq \frac{1}{|m|^{4}} \widetilde{\phi}(a, 0,0,0,0) \tag{3.5}
\end{equation*}
$$

for all $a \in A$.
Proof. On letting $b=0$ and $\mu=1$ in the inequality (3.3), we have

$$
\begin{equation*}
\left\|f(a)-\frac{1}{m^{4}} f(m a)\right\| \leq \frac{1}{|m|^{4}} \phi(a, 0,0,0,0) \tag{3.6}
\end{equation*}
$$

for all $a \in A$. By using the induction steps with (3.6), we have the following inequality

$$
\begin{equation*}
\left\|\frac{1}{m^{4 t}} f\left(m^{t} a\right)-\frac{1}{m^{4 k}} f\left(m^{k} a\right)\right\| \leq \frac{1}{|m|^{4}} \sum_{j=k}^{t-1} \frac{\phi\left(m^{j} a, 0,0,0,0\right)}{|m|^{4 j}} \tag{3.7}
\end{equation*}
$$

for $t>k \geq 0$ and $a \in A$. Both (3.2) and (3.7) imply that $\left\{\frac{1}{m^{4 n}} f\left(m^{n} a\right)\right\}_{n=0}^{\infty}$ is a Cauchy sequence. By the completeness of $M$, we know that the sequence is convergent. Hence we can define a mapping $L: A \rightarrow M$ as

$$
\begin{equation*}
L(a)=\lim _{n \rightarrow \infty} \frac{1}{m^{4 n}} f\left(m^{n} a\right) \tag{3.8}
\end{equation*}
$$

for $a \in A$. On taking $t=n$ and $k=0$ in the inequality (3.7), we get

$$
\begin{equation*}
\left\|\frac{1}{m^{4 n}} f\left(m^{n} a\right)-f(a)\right\| \leq \frac{1}{|m|^{4}} \sum_{j=0}^{n-1} \frac{\phi\left(m^{j} a, 0,0,0,0\right)}{|m|^{4 j}} \tag{3.9}
\end{equation*}
$$

for $n>0$ and $a \in A$. On taking $n \rightarrow \infty$ in the inequality (3.9), the inequality (3.2) implies that the inequality (3.5) holds.

We know that

$$
\begin{align*}
\left\|\Delta_{\mu} L(a, b)\right\| & =\lim _{n \rightarrow \infty} \frac{1}{|m|^{4 n}}\left\|\Delta_{\mu} f\left(m^{n} a, m^{n} b\right)\right\|  \tag{3.10}\\
& \leq \lim _{n \rightarrow \infty} \frac{\phi\left(m^{n} a, m^{n} b, 0,0,0\right)}{|m|^{4 n}}=0
\end{align*}
$$

for all $a, b \in A$ and $\mu \in \mathbb{T}_{\frac{1}{n_{0}}}^{1}$. On taking $\mu=1$ in the inequality (3.10), we may conclude that the mapping $L$ is a quartic mapping. Also, the inequality (3.10) implies that $\Delta_{\mu} L(a, 0)=0$. Then we have

$$
L(\mu a)=\mu^{4} L(a)
$$

for all $a \in A$ and $\mu \in \mathbb{T}_{\frac{1}{n_{0}}}^{1}$. Let $\nu \in \mathbb{T}^{1}$. Then we may let $\nu=e^{i \theta}$, where $0 \leq \theta \leq 2 \pi$, and let $\nu_{1}=\nu^{\frac{1}{n_{0}}}=e^{\frac{i \theta}{n_{0}}}$. Then $\nu_{1} \in \mathbb{T}_{\frac{1}{n_{0}}}^{1}$. Hence we have

$$
L(\nu a)=L\left(\nu_{1}^{n_{0}} a\right)=\nu_{1}^{4 n_{0}} L(a)=\nu^{4} L(a)
$$

for all $\nu \in \mathbb{T}^{1}$ and $a \in A$. Suppose that $\rho$ is any continuous linear functional on $A$ and $a$ is a fixed element in $A$. Then we may define a function $g: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
g(r)=\rho(L(r a))
$$

for all $r \in \mathbb{R}$. It is not hard to check that the mapping $g$ is quartic. For all $k \in \mathbb{N}$ and $r \in \mathbb{R}$, we may let

$$
g_{k}(r)=\rho\left(\frac{f\left(m^{k} r a\right)}{m^{4 k}}\right) .
$$

We note that $g$ is measurable because $g$ is the pointwise limit of the sequence of measurable functions $g_{k}$. In addition, the measurable quartic function $g$ is continuous (see [5]) and we have

$$
g(r)=r^{4} g(1)
$$

for all $r \in \mathbb{R}$. Thus

$$
\rho(L(r a))=g(r)=r^{4} g(1)=r^{4} \rho(L(a))=\rho\left(r^{4} L(a)\right)
$$

for all $r \in \mathbb{R}$. Since $\rho$ was an arbitrary continuous linear functional on A,

$$
L(r a)=r^{4} L(a)
$$

for all $r \in \mathbb{R}$. Let $\omega \in \mathbb{C}(\omega \neq 0)$. Then $\frac{\omega}{|\omega|} \in \mathbb{T}^{1}$. Hence

$$
L(\omega a)=L\left(\frac{\omega}{|\omega|}|\omega| a\right)=\left(\frac{\omega}{|\omega|}\right)^{4} L(|\omega| a)=\left(\frac{\omega}{|\omega|}\right)^{4}|\omega|^{4} L(a)=\omega^{4} L(a)
$$

for all $a \in A$. Since $a$ was an arbitrary element in $A$, we may conclude that $L$ is quartic homogeneous.

Next, replacing $x$ by $m^{k} x$ and $y$ by $m^{k} y$ and $z=0$ in the inequality (3.4), we have

$$
\begin{aligned}
\|\Delta L(x, y)\| & =\lim _{n \rightarrow \infty}\left\|\frac{\Delta f\left(m^{n} x, m^{n} y\right)}{m^{4 n}}\right\| \\
& \leq \lim _{n \rightarrow \infty} \frac{1}{|m|^{4 n}} \phi\left(0,0, m^{n} x, m^{n} y, 0\right)=0
\end{aligned}
$$

for all $x, y \in A$. Then we get $\Delta L(x, y)=0$ for all $x, y \in A$. This means that $L$ is a quartic Lie derivation. On letting $x=y=0$ and $z=m^{k} z$ in the inequality (3.4), we have

$$
\begin{equation*}
\left\|\frac{f\left(m^{n} z^{*}\right)}{m^{4 n}}-\frac{f\left(m^{n} z\right)^{*}}{m^{4 n}}\right\| \leq \frac{\phi\left(0,0,0,0, m^{n} z\right)}{|m|^{4 n}} \tag{3.11}
\end{equation*}
$$

for all $z \in A$. As $n \rightarrow \infty$ in the inequality (3.11), we have

$$
L\left(z^{*}\right)=L(z)^{*}
$$

for all $z \in A$. This means that $L$ is a quartic Lie $*$-derivation. Now, we will show that the quartic Lie $*$-derivation is unique. Hence we assume $L^{\prime}: A \rightarrow A$ is another quartic $*$-derivation satisfying the inequality (3.5). Then

$$
\begin{aligned}
\left\|L(a)-L^{\prime}(a)\right\| & =\frac{1}{|m|^{4 n}}\left\|L\left(m^{n} a\right)-L^{\prime}\left(m^{n} a\right)\right\| \\
& \leq \frac{1}{|m|^{4 n}}\left(\left\|L\left(m^{n} a\right)-f\left(m^{n} a\right)\right\|+\left\|f\left(m^{n} a\right)-L^{\prime}\left(m^{n} a\right)\right\|\right) \\
& \leq \frac{1}{|m|^{4 n+1}} \sum_{j=0}^{\infty} \frac{1}{|m|^{4 j}} \phi\left(m^{j+n} a, 0,0,0,0\right) \\
& =\frac{1}{|m|^{4}} \sum_{j=n}^{\infty} \frac{1}{|m|^{4 j}} \phi\left(m^{j} a, 0,0,0,0\right),
\end{aligned}
$$

which tends to zero as $k \rightarrow \infty$, for all $a \in A$. Thus $L(a)=L^{\prime}(a)$ for all $a \in A$. Hence the uniqueness of $L$ was proved, as claimed.

Corollary 3.3. Let $\theta$, $r$ be positive real number with $r<4$. Suppose that $f: A \rightarrow M$ is an even mapping with $f(0)=0$ such that

$$
\begin{gathered}
\left\|\Delta_{\mu} f(a, b)\right\| \leq \theta\left(\|a\|^{r}+\|b\|^{r}\right) \\
\left\|\Delta f(x, y)+f\left(z^{*}\right)-f(z)^{*}\right\| \leq \theta\left(\|x\|^{r}+\|y\|^{r}+\|z\|^{r}\right)
\end{gathered}
$$

for all $\mu \in \mathbb{T}_{\frac{1}{n_{0}}}^{1}$ and $a, b, x, y, z \in A$. Then there exists a unique quartic Lie *-derivation $L: A \rightarrow M$ satisfying

$$
\|f(a)-L(a)\| \leq \frac{\theta\|a\|^{r}}{\left(|m|^{4}-|m|^{r}\right)}
$$

for all $a \in A$.
Proof. On taking $\phi(a, b, x, y, z)=\theta\left(\|a\|^{r}+\|b\|^{r}+\|x\|^{r}+\|y\|^{r}+\|z\|^{r}\right)$ in Theorem 3.2 for all $a, b, x, y, z \in A$, we have the desired results.

In the following corollaries, we will investigate the hyperstability for the quartic Lie $*$-derivations.

Corollary 3.4. Let $r$ be positive real number with $r<4$. Suppose that $f: A \rightarrow M$ is an even mapping with $f(0)=0$ such that

$$
\begin{gathered}
\left\|\Delta_{\mu} f(a, b)\right\| \leq\|a\|^{r}\|b\|^{r} \\
\left\|\Delta f(x, y)+f\left(z^{*}\right)-f(z)^{*}\right\| \leq\|x\|^{r}\|y\|^{r}\|z\|^{r}
\end{gathered}
$$

for all $\mu \in \mathbb{T}_{\frac{1}{n_{0}}}^{1}$ and $a, b, x, y, z \in A$. Then $f$ is a quartic Lie $*$-derivation on $A$.

Proof. If we take $\phi(a, b, x, y, z)=\left(\|a\|^{r}+\|x\|^{r}\right)\left(\|b\|^{r}+\|y\|^{r}\|z\|^{r}\right)$ in Theorem 3.2 for all $a, b, x, y, z \in A$, then we have $\widetilde{\phi}(a, 0,0,0,0)=0$. Hence (3.5) implies that $f$ is a quartic Lie $*$-derivation on $A$.

Corollary 3.5. Let $r$ be positive real number with $r<4$. Suppose that $f: A \rightarrow M$ is an even mapping with $f(0)=0$ such that

$$
\begin{gathered}
\left\|\Delta_{\mu} f(a, b)\right\| \leq\|a\|^{r}\|b\|^{r} \\
\left\|\Delta f(x, y)+f\left(z^{*}\right)-f(z)^{*}\right\| \leq\|x\|^{r}\left(\|y\|^{r}+\|z\|^{r}\right)
\end{gathered}
$$

for all $\mu \in \mathbb{T}_{\frac{1}{n_{0}}}^{1}$ and $a, b, x, y, z \in A$. Then $f$ is a quartic Lie $*$-derivation on $A$.

Proof. Assume that $\phi(a, b, x, y, z)=\left(\|a\|^{r}+\|x\|^{r}\right)\left(\|b\|^{r}+\|y\|^{r}+\|z\|^{r}\right)$ in Theorem 3.2 for all $a, b, x, y, z \in A$. Then $\widetilde{\phi}(a, 0,0,0,0)=0$. Hence the inequality (3.5) implies that $f$ is a quartic Lie $*$-derivation on $A$.

The following statements are relative to the alternative of fixed point; see [11] and [15]. By using this method, we will prove the Hyers-Ulam stability.

Theorem 3.6 ( The alternative of fixed point [11], [15] ). Suppose that we are given a complete generalized metric space $(\Omega, d)$ and a strictly contractive mapping $T: \Omega \rightarrow \Omega$ with Lipschitz constant $l$. Then for each given $x \in \Omega$, either

$$
d\left(T^{n} x, T^{n+1} x\right)=\infty \text { for all } n \geq 0
$$

or there exists a natural number $n_{0}$ such that

1. $d\left(T^{n} x, T^{n+1} x\right)<\infty$ for all $n \geq n_{0}$;
2. The sequence $\left(T^{n} x\right)$ is convergent to a fixed point $y^{*}$ of $T$;
3. $y^{*}$ is the unique fixed point of $T$ in the set

$$
\triangle=\left\{y \in \Omega \mid d\left(T^{n_{0}} x, y\right)<\infty\right\} ;
$$

4. $d\left(y, y^{*}\right) \leq \frac{1}{1-l} d(y, T y)$ for all $y \in \triangle$.

Theorem 3.7. Let $n_{0}$ be a positive integer. Suppose that $f: A \rightarrow M$ is a continuous even mapping with $f(0)=0$. Assume that $\phi: A^{5} \rightarrow$ $[0, \infty)$ is a continuous mapping such that

$$
\begin{gather*}
\left\|\Delta_{\mu} f(a, b)\right\| \leq \phi(a, b, 0,0,0)  \tag{3.12}\\
\left\|\Delta f(x, y)+f\left(z^{*}\right)-f(z)^{*}\right\| \leq \phi(0,0, x, y, z) \tag{3.13}
\end{gather*}
$$

for all $\mu \in \mathbb{T}_{\frac{1}{n_{0}}}^{1}$ and $a, b, x, y, z \in A$. If there is a constant $l \in(0,1)$ such that

$$
\begin{equation*}
\phi(m a, m b, m x, m y, m z) \leq|m|^{4} l \phi(a, b, x, y, z) \tag{3.14}
\end{equation*}
$$

then there exists a quartic Lie $*$-derivation $L: A \rightarrow M$ such that

$$
\begin{equation*}
\|f(a)-L(a)\| \leq \frac{1}{|m|^{4}(1-l)} \phi(a, 0,0,0,0) \tag{3.15}
\end{equation*}
$$

for all $a, b, x, y, z \in A$.
Proof. We will consider the following set

$$
\Omega=\{g \mid g: A \rightarrow A, g(0)=0\} .
$$

Then there is the generalized metric on $\Omega$, $d(g, h)=\inf \{\lambda \in(0, \infty) \mid\|g(a)-h(a)\| \leq \lambda \phi(a, 0,0,0,0)$, for all $a \in A\}$. It is not hard to prove that $(\Omega, d)$ is a complete space. A function $T: \Omega \rightarrow \Omega$ is defined by

$$
\begin{equation*}
T(g)(a)=\frac{1}{m^{4}} g(m a) \tag{3.16}
\end{equation*}
$$

for all $a \in A$. We know that there is an arbitrary constant with $d(g, h) \leq$ $\lambda$, for all $g, h \in \Omega$, where $\lambda \in(0, \infty)$. Then

$$
\begin{equation*}
\|g(a)-h(a)\| \leq \lambda \phi(a, 0,0,0,0) \tag{3.17}
\end{equation*}
$$

for all $a \in A$. On taking $a=m a$ in the inequality (3.17) and using the inequality (3.14) and the equation (3.16), we get

$$
\begin{aligned}
\|T(g)(a)-T(h)(a)\| & =\frac{1}{|m|^{4}}\|g(m a)-h(m a)\| \\
& \leq \frac{1}{|m|^{4}} \lambda \phi(m a, 0,0,0,0) \leq \operatorname{cl} \phi(a, 0,0,0,0)
\end{aligned}
$$

This implies that

$$
d(T g, T h) \leq \lambda l
$$

Hence we have that

$$
d(T g, T h) \leq l d(g, h)
$$

for all $g, h \in \Omega$. This means that $T$ is a strictly self-mapping of $\Omega$ with the Lipschitz constant $l$. On taking $\mu=1, b=0$ in the inequality (3.12), we have

$$
\left\|\frac{1}{m^{4}} f(m a)-f(a)\right\| \leq \frac{1}{|m|^{4}} \phi(a, 0,0,0,0)
$$

for all $a \in A$. This means that

$$
d(T f, f) \leq \frac{1}{|m|^{4}}
$$

Now, We will apply to Theorem of the alternative of fixed point. Since $\lim _{n \rightarrow \infty} d\left(T^{n} f, L\right)=0$, we know that there exists a fixed point $L$ of $T$ in $\Omega$ such that

$$
\begin{equation*}
L(a)=\lim _{n \rightarrow \infty} \frac{f\left(m^{n} a\right)}{m^{4 n}} \tag{3.18}
\end{equation*}
$$

for all $a \in A$. Hence

$$
d(f, L) \leq \frac{1}{1-l} d(T f, f) \leq \frac{1}{|m|^{4}} \frac{1}{1-l}
$$

Hence we may conclude that the inequality (3.15) holds. Since $l \in(0,1)$, the inequality (3.14) implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\phi\left(m^{n} a, m^{n} b, m^{n} x, m^{n} y, m^{n} z\right)}{|m|^{4 n}}=0 . \tag{3.19}
\end{equation*}
$$

Replacing $a$ by $m^{n} a$ and $b$ by $m^{n} b$ in the inequality (3.12), we get

$$
\frac{1}{|m|^{4 n}}\left\|\Delta_{\mu} f\left(m^{n} a, m^{n} b\right)\right\| \leq \frac{\phi\left(m^{n} a, m^{n} b, 0,0,0\right)}{|m|^{4 n}}
$$

On taking the limit as $k \rightarrow \infty$, we get $\Delta_{\mu} f(a, b)=0$ and all $\mu \in \mathbb{T}_{\frac{1}{n_{0}}}^{1}$. The remains of this proof are analogous to the proof in Theorem 3.2.

Corollary 3.8. Let $\theta$, $r$ be real numbers with $0<r<4$. Suppose that $f: A \rightarrow M$ is a mapping with $f(0)=0$ such that

$$
\begin{gathered}
\left\|\Delta_{\mu} f(a, b)\right\| \leq \theta\left(\|a\|^{r}+\|b\|^{r}\right) \\
\left\|\Delta f(x, y)+f\left(z^{*}\right)-f(z)^{*}\right\| \leq \theta\left(\|x\|^{r}+\|y\|^{r}+\|z\|^{r}\right)
\end{gathered}
$$

for all $\mu \in \mathbb{T}_{\frac{1}{n_{0}}}^{1}$ and $a, b, x, y, z \in A$. Then there exists a unique quartic Lie $*$-derivation $L: A \rightarrow M$ satisfying

$$
\|f(a)-L(a)\| \leq \frac{\theta\|a\|^{r}}{|m|^{4}(1-l)}
$$

for all $a \in A$.
Proof. The proof follows from Theorem 3.7 by taking $\phi(a, b, x, y, z)=$ $\theta\left(\|a\|^{r}+\|b\|^{r}+\|x\|^{r}+\|y\|^{r}+\|z\|^{r}\right)$ for all $a, b, x, y, z \in A$.

Next, we will prove the hyperstability for the quartic Lie $*$-derivations.
Corollary 3.9. Let $r$ be a real number with $0<r<4$. Suppose that $f: A \rightarrow M$ is an even mapping with $f(0)=0$ such that

$$
\begin{gathered}
\left\|\Delta_{\mu} f(a, b)\right\| \leq\|a\|^{r}\|b\|^{r} \\
\left\|\Delta f(x, y)+f\left(z^{*}\right)-f(z)^{*}\right\| \leq\|x\|^{r}\|y\|^{r}\|z\|^{r}
\end{gathered}
$$

for all $\mu \in \mathbb{T}_{\frac{1}{n_{0}}}^{1}$ and $a, b, x, y, z \in A$. Then $f$ is a quartic Lie $*$-derivation on $A$.

Proof. If $\phi(a, b, x, y, z)=\left(\|a\|^{r}+\|x\|^{r}\right)\left(\|b\|^{r}+\|y\|^{r}\|z\|^{r}\right)$ in Theorem 3.7, then we get $\widetilde{\phi}(a, 0,0,0,0)=0$. Thus we may conclude that $f$ is a quartic Lie $*$-derivation on $A$ because of the inequality (3.15).

Corollary 3.10. Let $r$ be a real number with $0<r<4$. Suppose that $f: A \rightarrow M$ is an even mapping with $f(0)=0$ such that

$$
\begin{gathered}
\left\|\Delta_{\mu} f(a, b)\right\| \leq\|a\|^{r}\|b\|^{r} \\
\left\|\Delta f(x, y)+f\left(z^{*}\right)-f(z)^{*}\right\| \leq\|x\|^{r}\left(\|y\|^{r}+\|z\|^{r}\right)
\end{gathered}
$$

for all $\mu \in \mathbb{T}_{\frac{1}{n_{0}}}^{1}$ and $a, b, x, y, z \in A$. Then $f$ is a quartic Lie $*$-derivation on $A$.

Proof. On letting $\phi(a, \underset{\sim}{b}, x, y, z)=\left(\|a\|^{r}+\|x\|^{r}\right)\left(\|b\|^{r}+\|y\|^{r}+\|z\|^{r}\right)$ in Theorem 3.7, we get $\widetilde{\phi}(a, 0,0,0,0)=0$. Thus $f$ is a quartic Lie *derivation because of the inequality (3.15).

## References

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66.
[2] N. Brillouët-Belluot, J. Brzdȩk and K. Ciepliński, Fixed point theory and the Ulam stability, Abstract and Applied Analysis 2014, Article ID 829419, 16 pages (2014).
[3] J. Brzdȩk, L. Cǎdariu and K. Ciepliński, On some recent developments in Ulam's type stability, Abstract and Applied Analysis 2012, Article ID 716936, 41 pages (2012).
[4] J. K. Chung and P. K. Sahoo, On the general solution of a quartic functional equation, Bulletin of the Korean Mathematical Society, 40 no. 4 (2003), 565-576.
[5] St. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64.
[6] A. Fošner and M. Fošner, Approximate cubic Lie derivations, Abstract and Applied Analysis 2013, Article ID 425784, 5 pages (2013).
[7] D. H. Hyers, On the stability of the linear equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
[8] D. H. Hyers, G. Isac, and T. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Boston, USA, 1998.
[9] S. Jang and C. Park, Approximate *-derivations and approximate quadratic *derivations on $C^{*}$-algebra, J. Inequal. Appl. 2011, Articla ID 55 (2011).
[10] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, vol. 48 of Springer Optimization and Its Applications, Springer, New York, USA, 2011.
[11] B. Margolis and J.B. Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 126, 74 (1968), 305-309.
[12] C. Park and A. Bodaghi, On the stability of $*$-derivations on Banach *-algebras, Adv. Diff. Equat. 2012 2012:138 (2012).
[13] J. M. Rassias, Solution of the Ulam stability problem for quartic mappings, Glasnik Matematicki Series III, 34 no. 2 (1999)243-252.
[14] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978) 297-300.
[15] I.A. Rus, Principles and Appications of Fixed Point Theory, Ed. Dacia, ClujNapoca, 1979 (in Romanian).
[16] P.K. Sahoo, A generalized cubic functional equation, Acta Math. Sinica 21 no. 5 (2005), 1159-1166.
[17] S. M. Ulam, Problems in Morden Mathematics, Wiley, New York, USA, 1960.
[18] T.Z. Xu, J.M. Rassias and W.X. Xu, A generalized mixed quadratic-quartic functional equation, Bull. Malaysian Math. Scien. Soc. 35 no. 3 (2012), 633649.
[19] S.Y. Yang, A. Bodaghi, K.A.M. Atan, Approximate cubic *-derivations on Banach *-algebra, Abstract and Applied Analysis, 2012, Article ID 684179, 12 pages (2012).

Dongseung Kang
Mathematics Education
Dankook University
Yongin 16890, Korea
E-mail: dskang@dankook.ac.kr
Heejeong Koh
Mathematics Education
Dankook University
Yongin 16890, Korea
E-mail: khjmath@dankook.ac.kr

