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A FIXED POINT APPROACH TO THE STABILITY OF
QUARTIC LIE x-DERIVATIONS

DONGSEUNG KANG AND HEEJEONG KOH*

ABSTRACT. We obtain the general solution of the functional equa-
tion f(az +y) — f(z —ay) + 5a(a® + 1) f(z —y) + (a* = D f(y) =
sa(a® + 1) f(x +y) + (a* — 1) f(x) and prove the stability problem
of the quartic Lie %-derivation by using a directed method and an
alternative fixed point method.

1. Introduction

A mapping is said to be stable if a mapping is an almost-homomorphism,
there exists a true homomorphism near the almost-homomorphism. Ulam
introduced the stability problem for functional equations which con-
cerned the stability of group homomorphisms, thai is, given two groups GG
and H , is every almost-homomorphism G — H close to a true homomor-
phism G — H 7; see [17]. Hyers [7] investigated stability problems re-
lated to the question of Ulam on Banach spaces. Subsequently, the result
of Hyers was generalized by a number of authors. In particular, Aoki [1]
studied the stability problem for additive mapping and Rassias [14]
proved the problem for linear mappings by considering a unbounded
Cauchy difference operator. Afterwards, the result of Rassias has pro-
vided a lot of influence in the development of what we call Hyers-Ulam
stability or Hyers-Ulam-Rassias stability. The stability problems of this
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topic have been investigated by a number of authors; see [10], [8], [2]
and [3]. In fact, the stability problems have been extensively investi-
gated to the various points of views such as various functional equations,
various spaces and so on. Especially, Jang and Park [9] introduced the
concepts of x-derivations and investigated the stability problems of qua-
dratic #-derivations on Banach C*-algebra. Also, Park and Bodaghi and
Yang et al. studied the stability properties of x-derivations by using an
alternative fixed point method; see [12] and [19]. Also, Fosner and Fosner
introduced the basic concepts of cubic Lie derivations and investigated
the stability problem of cubic Lie derivations; see [6].

Rassias introduced the quartic functional equation in [13] which was
the oldest quartic functional equation and investigated the stability
problems of the following functional equation:

(1.1) flx+2y)+ f(x—2y) +6f(x) =4f(x+y) +4f(z—y) +24f(y).

Chung and Sahoo [4] obtained the general solution of (1.1) by using
the properties of a certain mapping of the form A(z,z,z,x), where the
function A : R* — R is symmetric and additive in each variable.

In this paper, we will consider the following functional equation which
is generalized and different from the equation (1.1):

(12)  flaz+y) ~ flz —ay) + (@ + 1) f( ) + (a* ~ 1)f()

= Sal@ Vi +y)+ (@~ 1)f ()
for all x,y € X and an integer a(a # 0,+1). We will show that the
equation (1.2) is a general solution of quartic functional equation and
introduced a quartic Lie x-derivation. Finally, we will prove the Hyers-
Ulam stability problem of the quartic Lie %-derivations by using directed
and fixed point methods.

2. A general solution of a quartic functional equation

Let X and Y be real vector spaces. In this section we will obtain
the result that the functional equation (1.2) is a general solution of
a quartic functional equation by using 4-additive symmetric mapping.
Before we proceed, we will introduce some basic concepts concerning
4-additive symmetric mappings. A mapping Ay : X* — Y is called
4-additive if it is additive in each variable. A mapping A, is said to



Quartic Lie *-Derivations 589

be symmetric if Ay(x1, 22,23, 74) = As(To1), To2), To(3), To(s)) for every
permutation {o(1),0(2),0(3),0(4)} of {1,2,3,4}. If Ay(xy, 20,23, 24)
is a 4-additive symmetric mapping, then A*(x) will denote the diagonal
Ay(z,x,z,2) and Al(qr) = ¢*A(z) for all z € X and all ¢ € Q. A
mapping A*(x) is called a monomial function of degree 4 (assuming A* #
0). On taking x; =29 ==z =z and T34y = Tg 0 =+ =Ty =Yy
in Ay(wy,29,23,24), it is denoted by A**%(z,y). We note that the
generalized concepts of n-additive symmetric mappings are found in [16]
and [18].

THEOREM 2.1. Let A*(z) be the diagonal of the 4-additive symmetric
mapping Ay : X* — Y. A mapping f : X — Y is a solution of the
functional equation (1.2) if and only if f is of the form f(x) = A*(x) for
allz € X .

Proof. Assume that f satisfies the functional equation (1.2). We will
show that f(z) = A*(z) for all z € X . On letting y = 0 in the equation
(1.2), we have

(2.1) flaz) = a*f(z) = (a* = 1)£(0)

for all z € X and an integer number a # 0, £1. Also, we have
1
f(y) = f(=ay) + ga(@® + D f(=y) + (" = Df(y)

= Sal@® + 1)f() + (a* ~ 1F(0)

by letting z = 0 in the equation (1.2). Replacing y by x in the previous
equation, we get

1
f(@) = f(=az) + a(a® + 1) f(=z) + (" = 1) f(2)
~la@+1 Y- 1)f(0
= Sale® +1)f(2) + (' = 1)f(0)
for all z € X and a # 0,+1. Hence the equation (2.1) implies that f is
an odd mapping. On taking x = y in the equation (1.2) and using the
equation (2.1), we have

(a+1)*f(z) = [(a+1)* = 1]£(0) — (a = 1)*f(2) + [(a — 1)* = 1] f(0)
+%a(a2 F1)£(0) = Sa(a? + 1) f(x) — ?a(az +1)£(0)
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for all x € X and an integer a (a # 0, +1) . Then we have a(a®*—1) f(0) =
0 for an integer a(a # 0,+£1). This means that f(0) = 0. Also, the
equation (2.1) implies that

(2.2) flax) =o' f(2)

for all z € X . We can rewrite the functional equation (1.2) in the fol-
lowing form

1 1
f@) = o faa+y) +

o =+ - 1) =0,

for all x,y € X and an integer a (a # 0,+1). By Theorems 3.5 and 3.6
in [18], f is a generalized polynomial function of degree at most 4, that
is, f is of the form

(23) @) = A'2) + ) + A2) + A'2) + A(a)

for all z € X, where A°(z) = A° is an arbitrary element of ¥ and
A(z) is the diagonal i-additive symmetric mapping 4; : X* — Y (i =
1,2,3,4). Since f(0) = 0 and f(—x) = f(x) for all z € X, A%(z) =
A% =0 and A'(z) = A3(x) = 0. Hence we have

fla) = Al(z) + A%(z),
for all z € X . The equation (2.3) and A"(qz) = ¢"A"(z) for all x € X
and all ¢ € Q imply that a?(a®*—1)A%(z) = 0 for an integer a (a # 0, +1) .
Hence A?(x) =0, that is, f(x) = A*(x) for all z € X , as desired.

Conversely, suppose f(z) = A%(z) for all z € X, where A*(z) is a
diagonal 4-additive symmetric mapping A4 : X* — Y . Note that

A'(qz + py)
= ¢*ANx) + 4g°pA> (2, y) + 6¢°p* A* (2, y) + 4qp° A (2, y) + p* A (y)
s AY (z,y) = A (royy),  rtAY(x,y) = AS (2, ry)

where 1 < s,t < 3 and p,q,r € Q. Thus f satisfies the equation (1.2).
]

For this reason, we call the mapping f a generalized quartic mapping
if f satisfies the equation (1.2).
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3. Quartic Lie x-Derivations

In this section, we will investigate the Hyers-Ulam stability of the
qyartic Lie *-derivation by using directed method and a fixed point
method. Let A be a complex normed *-algebra and M be a Banach
A-bimodule. For convenience, we will use || - || as norms on a normed
algebra A and a normed A-bimodule M .

A mapping f : A — M is called a quartic homogeneous mapping if
f(ua) = p*f(a), for all a € A and u € C. A quartic homogeneous
mapping f : A — M is called a quartic derivation if

flay) = f@)y* +2*f(y)
for all z,y € A. A quartic homogeneous mapping f is called a quartic
Lie derivation if

fz, ) = [f(2), y'] + [, F(v)]

for all z,y € A, where [z, y| = xy — yx. A quartic Lie derivation f
is called a quartic Lie x-derivation if f satisfies f(z*) = f(x)* for all
reA.

ExaAMPLE 3.1. Let A = C be a complex number field with the map

z +— 2z* = Z (where z is the complex conjugate of z). Suppose that
f:A— Aby f(x) =z for all z € A. Then f is quartic and

f(lz, y) = [f(x), y'] + [2*, f(y)] =0
for all x,y € A. Also,
fla*) = f(z) = 3" = f(x) = f()"

for all x € A. Hence we know that f is a quartic Lie x-derivation, as
desired.

For this entire section,
T'={peCllul=1}.
For the given mapping f : A — M , we consider

(31) 8uf(a,8) = flmpa-t j1b) — f(pa—mpb) + ' m(m? + 1) f(a )

bt (m® = 1) F(8) — Sptm(m® + 1) f(a -+ ) — i (m* — 1)f(a)

Af(a,b) == f(la, b)) — [f(a), b"] = [a*, f(D)]
foralla,be A, p € C andmeZ(m#0,+£1).



592 Dongseung Kang and Heejeong Koh

THEOREM 3.2. Let ng be a positive integer. Suppose that there is
a mapping f : A — M with f(0) = 0 and there exists a function
¢ : A> — [0, co) such that

o0

(3.2) g(a, b,x,y, z) ]Z; |nj|4] ¢(m1a mJb m’x mjy’mﬂ ) < oo
(3.3) 1A f(a,b)|] < é(a,b,0,0,0)
(3.4) A (2, y) + f(z7) = f(2)"]] < (0,0,2,y,2)

for all u € ’]I“1 ={e”]10 <0 < 2} and all a,b,x,y,z € A. For each

fixeda € A, 1f the mapping r — f(ra) from R to M is continuous then
there exists a unique quartic Lie *- der1vat1on L: A — M such that

(3.5) 1f(a) = L(a)[| < — Tl |4 $(a,0,0,0,0),
foralla € A.
Proof. On letting b=0 and x =1 in the inequality (3.3), we have
1
(3.6) 1(0) = o Fma)l| < (0,0.0,0.0)

for all a € A. By using the induction steps with (3.6), we have the
following inequality

1 1 k 1 i ¢(mj@70707070>
(3.7) ||m (mta) - Wf(m a)|| < m* 2_:

[ml*

fort > k> 0anda € A.Both (3.2) and (3.7) imply that {5 f(m"a)}52,
is a Cauchy sequence. By the completeness of M ;| we know that the se-
quence is convergent. Hence we can define a mapping L:A— M
as

. 1 n
(3.8) L(a) = 7111_)120% (m"a)
for a € A. On taking t = n and k = 0 in the inequality (3.7), we get
n—1 :
1 1 »(m?a,0,0,0,0)
3.9 — "a) — < :
@0 gl — ol < o S S

for n > 0 and @ € A. On taking n — oo in the inequality (3.9), the
inequality (3.2) implies that the inequality (3.5) holds.
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We know that
: 1 n n
(3.10) 1A, L(a, b)[| = lim ——2||A,, f(m"a, m"b)||

5o |m|4n
< lim o(m™a,m"b,0,0,0)
n—00 ’m‘éln

for all a,b € A and u € T, . On taking g = 1 in the inequality (3.10),

=0,

we may conclude that the (;napping L is a quartic mapping. Also, the
inequality (3.10) implies that A,L(a,0) = 0. Then we have

L(pa) = u*L(a)
foralla € Aand p € T . Let v € T'. Then we may let v = ¢ | where

no

a1 0
0<6<2m,and let v, =v™0 =¢emo . Then v; € T, . Hence we have
no

L(va) = L(v}°a) = v{™ L(a) = " L(a)

for all v € T' and @ € A. Suppose that p is any continuous linear
functional on A and a is a fixed element in A. Then we may define a
function g : R — R by
g(r) = p(L(ra))
for all » € R. It is not hard to check that the mapping ¢ is quartic. For
all k € N and r € R, we may let
k

a(r) = p( L)

mAk
We note that ¢ is measurable because ¢ is the pointwise limit of the
sequence of measurable functions gy . In addition, the measurable quartic
function g is continuous (see [5]) and we have

g(r) =r'g(1)
for all r € R. Thus
p(L(ra)) = g(r) = r'g(1) = r'p(L(a)) = p(r*L(a))
for all » € R. Since p was an arbitrary continuous linear functional on
A,
L(ra) = r*L(a)
for all 7 € R. Let w € C(w # 0). Then % € T'. Hence

||

Lwa) = L(wla) = (%>4L(|w|a) _ (i)4|w|4L(a) — wiL(a)

@l wl
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for all @ € A. Since a was an arbitrary element in A, we may conclude
that L is quartic homogeneous.

Next, replacing = by m*z and y by m*y and z = 0 in the inequality
(3.4), we have

) Af(m"z, m"y
ALyl = lim |2 )|

n—00 mAn

1
< lim ——(0,0,m"z,m"y,0) =0
for all z,y € A. Then we get AL(x,y) =0 for all z,y € A. This means
that L is a quartic Lie derivation. On letting x = y = 0 and z = m*z in
the inequality (3.4), we have

m4n - m4n

#(0,0,0,0,m"z)

|m’4n

(3.11)

for all z € A. As n — oo in the inequality (3.11), we have
L(z") = L(2)"

for all z € A. This means that L is a quartic Lie x-derivation. Now, we
will show that the quartic Lie x-derivation is unique. Hence we assume
L' : A — Ais another quartic *-derivation satisfying the inequality (3.5).
Then

1

IL@ = L@l = o llEmta) = Lmta)|
1 n n n / n
< o (1E00") = S0 a)]| + 1) = Lo a)] )
<

1 =1 .
+n
|m|4n+1 Z ‘m|4j gb(m] a,0,0,0,0)
§=0

I < 1 .
— W Z Wqﬁ('ﬁ’ﬂa, 07 0, 07 0) 5
j=n

which tends to zero as k — oo, for all @ € A. Thus L(a) = L'(a) for all
a € A. Hence the uniqueness of L was proved, as claimed. O

COROLLARY 3.3. Let 0 ,r be positive real number with r < 4. Sup-
pose that f : A — M is an even mapping with f(0) = 0 such that

1A (a, D)I] < O([[al[" +[[]]")
1Af (2, y) + F(z7) = F)I < O] + 1yl + [1=]]")
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for all p € T, and a,b,z,y,z € A. Then there exists a unique quartic
Lie #-derivation L : A — M satisfying
0l]all"
1f(a) = L(a)l] < 7—F——=
(Im[* = |m][")
foralla € A.

Proof. On taking ¢(a, b, z, y, 2) = 0({|al|" +[|b||" +[||[" + |[y|I" +[|2]|")
in Theorem 3.2 for all a,b,z,y,z € A, we have the desired results. [J

In the following corollaries, we will investigate the hyperstability for
the quartic Lie *-derivations.

COROLLARY 3.4. Let r be positive real number with r < 4. Suppose
that f : A — M is an even mapping with f(0) = 0 such that

1AL f (a, )| < lal["[|b]]"
A (@, y) + (%) = fE)I < =l"[lyll"[|=]]"
for all p € TY, and a,b,x,y,2 € A. Then f is a quartic Lie *-derivation
on A. ’
Proof. 1f we take ¢(a, b, z,y,z) = ([|al|" + [|z[[")(|[6]]" + [[y[["][=]]") in
Theorem 3.2 for all a,b,z,y,z € A, then we have ¢(a,0,0,0,0) = 0.
Hence (3.5) implies that f is a quartic Lie *-derivation on A. O

COROLLARY 3.5. Let r be positive real number with r < 4. Suppose
that f : A — M is an even mapping with f(0) = 0 such that

1A f(a, B[] < [lal["|[b]]"
A (@, y) + (%) = fE)I < Nl (lyl]" + (12117
for all p € TY, and a,b,x,y,2 € A. Then f is a quartic Lie *-derivation
on A. ’
Proof. Assume that ¢(a, b, ,y, z) = (||al|"+||=(|") (|[o["+[[y|["+[|z]|")
in Theorem 3.2 for all a,b,x,y,z € A. Then ¢(a,0,0,0,0) = 0. Hence
the inequality (3.5) implies that f is a quartic Lie *-derivation on A. [

The following statements are relative to the alternative of fixed point;
see [11] and [15]. By using this method, we will prove the Hyers-Ulam
stability.



596 Dongseung Kang and Heejeong Koh

THEOREM 3.6 ( The alternative of fixed point [11], [15] ). Suppose
that we are given a complete generalized metric space (),d) and a
strictly contractive mapping T : {0 — € with Lipschitz constant [ . Then
for each given x € (), either

d(T"z, T""'x) = oo for alln >0,

or there exists a natural number ng such that

1. d(T"x, T"'x) < oo for all n > ny;
2. The sequence (T"x) is convergent to a fixed point y* of T';
3. y* is the unique fixed point of T' in the set

A ={y € Qd(T™z,y) < oo}
4. d(y,y*) < %_l d(y,Ty) for ally € A .

THEOREM 3.7. Let ng be a positive integer. Suppose that f : A — M
is a continuous even mapping with f(0) = 0. Assume that ¢ : A —
[0,00) is a continuous mapping such that

(312) HAMf(aab)H S ¢(aab707070)

(3.13) 1A (2, y) + f(z7) = F(2)"[] < 6(0,0,2,y,2)

for all p € TY, and a,b,x,y,z € A. If there is a constant | € (0, 1) such
that "

(3.14) d(ma, mb, mx, my, mz) < |m|*¢(a,b,x,y, 2)

then there exists a quartic Lie x-derivation L : A — M such that

1
(3.15) 1f(a) = L(a)]| < mfb(aﬂ,@,o,o)

for all a,b,z,y,z € A.
Proof. We will consider the following set
Q={glg: A— A, g(0)=0}.
Then there is the generalized metric on €2,
d(g, h) = inf{\ € (0,00)| || g(a)—h(a) [|[< Ap(a,0,0,0,0),for all a € A}.

It is not hard to prove that (£2,d) is a complete space. A function
T : Q — Q is defined by

(3.16) T(9)(a) = — g(ma)
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for all a € A. We know that there is an arbitrary constant with d(g, h) <
A, for all g,h € Q, where X\ € (0, c0). Then

(3.17) lg(a) = h(a)|| < Ad(a,0,0,0,0)

for all a € A. On taking a = ma in the inequality (3.17) and using the
inequality (3.14) and the equation (3.16), we get

IT(9)(@) = T(h)@)| = —|lg(ma) — h(ma)]|

m|*

1
< W A ¢(ma,0,0,0,0) < cl¢(a,0,0,0,0).
m
This implies that
d(Tg, Th) < \l.
Hence we have that
d(Tg, Th) < ld(g, h),

for all g, h € €. This means that T is a strictly self-mapping of {2 with
the Lipschitz constant [ . On taking 4 = 1,b = 0 in the inequality (3.12),

we have

1 1
H@f(ma) - f(a)H S |m_|4¢<a’ 07 07 07 O)
for all @ € A. This means that

1
(T < —.
(T.9) < 1
Now, We will apply to Theorem of the alternative of fixed point. Since
lim,, o d(T™f, L) = 0, we know that there exists a fixed point L of T
in ) such that

. f(m™a)
(3.18) L(a) :nh—{go e
for all @ € A. Hence
d(f,L) < b d(Tf, f) < LI )
T 11 T mft 1 =1

Hence we may conclude that the inequality (3.15) holds. Since [ € (0, 1),
the inequality (3.14) implies that
d(m™a, m™b, m"x, m"y, m"z)

(3.19) lim

n—o0 |m|4n

=0.
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Replacing a by m™a and b by m"b in the inequality (3.12), we get

1 m”a, m"b,0,0,0
A e ) < & )

On taking the limit as k — oo, we get A, f(a,b) =0 and all y € T,

0]
The remains of this proof are analogous to the proof in Theorem 3.2. [

COROLLARY 3.8. Let 0,r be real numbers with 0 < r < 4. Suppose
that f : A — M is a mapping with f(0) = 0 such that

1A (@, b)I] < O([[al[" +[[]]")
1Af (@, y) + £(2%) = f)I < 0(]]]" + yll" + [[=1]")
for all p € T, and a,b,z,y,z € A. Then there exists a unique quartic
Lie #-derivation L : A — M satisfying
0]all"

||f(a) = L(a >||_W

for alla € A.

Proof. The proof follows from Theorem 3.7 by taking ¢(a, b, x,y, z) =
O([lall” + 16" + llz][" + [yl + [|z[|") for all a,b,z,y, z € A. O

Next, we will prove the hyperstability for the quartic Lie *-derivations.

COROLLARY 3.9. Let r be a real number with 0 < r < 4. Suppose
that f : A — M is an even mapping with f(0) = 0 such that

1A (a, DI < [lal["[[6l]"

A (@, y) + (%) = fR)I < =l"[lyll"[|=]]"
for all p € TY, and a,b,x,y,2 € A. Then f is a quartic Lie *-derivation

nQ
on A.
Proof. If ¢(a,b,x,y, z) = (|[a[|" + [[=|[")(|[6]|" + [[y[|"||z]|") in Theo-

rem 3.7, then we get ¢(a,0,0,0,0) = 0. Thus we may conclude that f
is a quartic Lie x-derivation on A because of the inequality (3.15). O

COROLLARY 3.10. Let r be a real number with 0 < r < 4. Suppose
that f : A — M is an even mapping with f(0) = 0 such that

1AL (a, b)I] < [lal["[|bI]"
1Af (@, y) + FE) = FE < (2l (vl + [1211)
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for all p € TY, and a,b,x,y,2 € A. Then f is a quartic Lie *-derivation
on A.

no

Proof. On letting ¢(a, b, z,y, 2) = (|lal|" + [[«[[")(|[BI" + [yl + [|=]]")

in Theorem 3.7, we get ¢(a,0,0,0,0) = 0. Thus f is a quartic Lie *-
derivation because of the inequality (3.15). O

1]
2]
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