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MASS FORMULA OF SELF-DUAL CODES OVER

GALOIS RINGS GR(p2, 2)

Whan-hyuk Choi

Abstract. We investigate the self-dual codes over Galois rings and
determine the mass formula for self-dual codes over Galois rings
GR(p2, 2).

1. Introduction

As an application of computer science, error correcting codes were
firstly defined over GF(2) by Hamming in 1950. Sooner or later math-
ematicians extended them over arbitrary fields. In [6], Hammons et al.
found that some good non-linear codes are obtained from codes over a
ring Z4 via Gray map. More recently, many papers are published about
codes over Zm for an arbitrary integer m.

On the other hands, many important codes such as Golay code and
extended Hamming code are self-dual codes. In 1996, Gaborit calculated
the mass formulas for self-dual codes over Z4 in [4]. This paper motivated
Nagata, et al. to find the mass formulas for self-dual codes over Zpe in
consecutive papers, [1], [10], [11], [12].

And in [13], Park found a method to classify self-dual codes over
Zm where m is a multiple of distinct primes. To generalize the results
in [13], we investigated the classification of self-dual codes over Zpe for
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any odd prime p. As a consquence we found the complete classfication
of self-orthogonal codes over Zp2 in small lengths in [3].

It is well-known that the codes over finite chain rings have some good
properties. Actually, Zpe over which we have investigated the classifica-
tion of self-dual codes is a Galois ring and every finite chain ring is a
homomorphic image of some polynomial ring over a Galois ring. There-
fore investigating codes over Galois rings would be necessary to study
codes over finite rings.

In this paper, we use the similar argument of Gaborit in [4] and
Balmaceda et al. in [1], to generalize the result to the self-dual codes
over Galois ring GR(p2, 2) for odd prime p.

2. Galois rings

Let r be a positive integer and p(X) be a monic basic irreducible
polynomial in Zpe [X] of degree r that divides Xpr−1− 1. We can choose
p(X) so that ζ = X + 〈p(X)〉 is a primitive (pr − 1)st root of unity.
Then, Galois ring is defined as

GR(pe, r) = Zpe [X]/〈p(X)〉 ' Zpe [ζ].

GR(pe, r) which is the generalization of Galois field, is the Galois
extension of degree r over Zpe with the residue field Fpr and is a finite
chain rings with ideals of the form 〈pi〉 for 0 ≤ i ≤ e−1. The extensions
are unique up to isomorphism.

The set Tr = {0, 1, ζ, . . . , ζpr−2} of coset representatives of GR(pe, r)
modulo 〈p〉 is a complete set and known as Teichmüller set. The elements
of GR(pe, r) can be uniquely written as the p-adic representation,

c0 + c1p+ c2p
2 + · · ·+ ce−1p

e−1

with ci ∈ Tr.
The other way of representation of Galois ring is the ζ-adic expansion,

b0 + b1ζ + · · ·+ br−1ζ
r−1

with bi ∈ Zpe .

For the further study of Galois rings, see [5, 9, 16].
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3. Codes over Galois ring

A code C over GR(pe, r) of length n has a generator matrix permu-
tation equivalent to the standard form

(1) G =


Ik0 A01 A02 A03 . . . A0,e−1 A0e

0 pIk1 pA12 pA13 . . . pA1,e−1 pA1e

0 0 p2Ik2 p2A23 . . . p2A2,e−1 p2A2e

· · · · . . . · ·
0 0 0 0 . . . pe−1Ike−1 pe−1Ae−1,e

 ,

where the columns are grouped into blocks of sizes k0, k1, . . . , ke−1, ke
which are nonnegative integers adding to n [7].

A code which have a generator matrix with this standard form is said
to be of type (1)k0(p)k1(p2)k2 · · · (pe−1)ke−1 . and k0 is called the free rank.
A code of type 1k0 is called a free code.

Note that a code with type (1)k0(p)k1(p2)k2 · · · (pe−1)ke−1 has
(per)k0(p(e−1)r)k1(p(e−2)r)k2 · · · (pr)ke−1 codewords.

We can define the standard inner product over the space GR(pe,m)n

by

(v1, · · · , vn) · (w1, · · · , wn) = v1w1 + · · ·+ vnwn

and the dual code C ⊥ of C by

C ⊥ = {v ∈ GR(pe,m)n | v ·w = 0 for all w ∈ C}.

A code C is called self-orthogonal if C ⊂ C ⊥ and self-dual if C = C ⊥.
If C is a code of the form (1) then C ⊥ has a generator matrix of the

form

G⊥ =


B0e B0,e−1 · · · B03 B02 B01 Ike
pB1e pB1,e−1 · · · pB13 pB12 pIke−1 0
p2B2e p2B2,e−1 · · · p2B23 peIke−2 0 0
· · · · · · · · ·

pe−1Be−1,e pe−1Ik1 · · · 0 0 0 0


where the column blocks have the same size as in G [2].

Note that if C has type 1k0(p)k1 · · · (pe−1)ke−1 then the dual code has
type 1kepke−1(p2)ke−2 · · · (pe−1)k1 , where ke = n −

∑e−1
i=0 ki. This means

that if C is self-dual with the type (1)k0(p)k1(p2)k2 · · · (pe−1)ke−1 , then
ki = ke−i for all i.

For any code C of length n over GR(pe, r)
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|C ||C ⊥| = pern.

If C is a self-orthogonal code of length n and |C | = pern/2, then C is
self-dual.

4. Codes over GR(p2, 2)

From now on, we denote GR(pe, 2) as Re.
Recall that an element in Re can be written as a+bζ where a, b ∈ Zpe .

We use the following three maps for the computation in GR(p2, 2). One
is the natural projection modulo p, πe : Re → R1, and the other two
non homomorphism maps ψ1 : Re → Zpe and ψ2 : Re → Zpe defined as
ψ1(a+bζ) = a and ψ2(a+bζ) = b. We can easily abuse these three maps
on the vectors in Rn

e componentwisely.
And let ge : Zn

pe → Zn and he : Rn
e → Rn

e+1 be two canonical injections
componentwise.

Let γ1 and γ2 be the composition of ge ◦ ψ2 and ge ◦ ψ2, respectively.
We also define the operation ⊕pe on two vectors x, y ∈ Zn as

x
⊕
pe

y :=

(
bx+ y

pe
c, bx+ y

pe
c, · · · , bx+ y

pe
c
)
.

One can easily see that

he(x+ y) = he(x) + he(y)− pe
(
γ1(x)

⊕
pe

γ1(y) +
(
γ2(x)

⊕
pe

γ2(y)
)
ζ

)
.

Let C be a code over Re. For 0 ≤ i ≤ e − 1, we can define the ith
torsion code of C as

Tori(C ) = {πe(v) | piv ∈ C , v ∈ Rn
e }.

T or0(C ) = πe(C ) is usually called the residue code and denoted by
Res(C ).

Especially for the code C over R2, we will denote Tor1(C ) as C1 and
Res(C ) as C0 for the brevity.

A code C over R2 with type (1)k0(p)k1 is equivalent to a code with
generator matrix in the standard form:

G =

(
Ik0 A1 B1 + pB2

0 pIk1 pC1

)
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where A1, B1, B2 and C1 are matrices over R1.
If C has a generator matrix G then C0 and C1 have generator matrices

G0 =
(
Ik0 A1 B1

)
, G1 =

(
Ik0 A1 B1

0 Ik1 C1

)
,

respectively, by the definition of C0 and C1. Note that C0 ⊂ C1 and
|C | = (p2)2k0(p2)k1 .

We can define a non-homomorphism map F : C0 → Rn
1/C1 defined

by

F (x) = {y ∈ Rn
1 | x+ py ∈ C }.

Then, C = {x+ py | x ∈ C0, y ∈ F (x)}. Note that

F (x+ y) = F (x) + F (y) +

(
γ1(x)

⊕
pe

γ1(y) +
(
γ2(x)

⊕
pe

γ2(y)
)
ζ

)
.

The map F is determined by the matrix B2 and vice versa. Therefore
we can see that the set of codes over R2 is in one-to-one correspondence
with the set of triplets (C0,C1, F ).

5. Self-dual Codes over GR(p2, 2)

From now on, we assume that p is an odd prime and note that a
self-dual codes over R2 of length n has the type of 1k0pk1 such that
2k0 + k1 = n

Lemma 5.1. For any positive integer n, there exists a self-dual code
over R2 of length n.

Proof. The matrix pIn generates a self-dual code of length n for any
n where In is the nth identity matrix.

The following lemma is well-known.

Lemma 5.2. Let C be self-dual code over R2. Then C0 is self-
orthogonal and C ⊥0 = C1

According to previous argument, to construct self-dual codes over R2

of length n with type 1k0pk1 , above all we find a self-orthogonal code over
R1 of length n and rank k0. Then we obtain C1 as the dual code of C0.
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Finally we must choose the map F which satisfies a certain condition for
C to be a self-dual code.

Therefore, to count the number of self-dual codes over R2, we must
know the number of codes over R1 = Fp2 and the number of distinct
map F which satisfies the certain condition. We will investigate it by
the same argument from [1] and [4] in the followings.

Let C be a self-dual codes over R2 of length n has the type of 1k0pk1

and {e1, e2, . . . ek0} be the basis of C0. we can enlarge the basis to the
basis {e1, e2, . . . ek0 , ek0+1, · · · , en} of Rn

2 . We can consider the dual basis
{e∗1, e∗2, . . . e∗k0 , e

∗
k0+1, · · · , e∗n} defined by ei ·e∗j = δij, the Kronecker delta.

Then

Rn
1/C1 ' 〈e∗1, · · · , e∗k0〉

where 〈e∗1, · · · , e∗k0〉 is the subspace generated by {e∗1, e∗2, . . . e∗k0}.
We can define the map f : C0 → 〈e∗1, · · · , e∗k0〉 which takes every

codeword in C0 to the unique representative of the map F : C0 → Rn
1/C1

in 〈e∗k0+1, · · · , e∗n〉. Thus we can replace F by f .

Lemma 5.3. Let C be a code corresponding to (C0,C1, f) over R2 of
type 1k0pk1 such that 2k0 + k1 = n. Then C is self-dual if and only if
the following conditions are satisfied:

(i) C1 = C ⊥0
(ii) h1(x) ·h1(x′)+p(h1(f(x)) ·h1(x′)+h1(x) ·h1(f(x′))) ≡ 0 (mod p2)

for all x, x′ ∈ C0.

Proof. Let C be a self-dual code. The first condition is from the
previous lemma. The second condition is deduced from the fact that for
each x, x′ ∈ C0, z = x + pf(x), z′ = x′ + pf(x′) are codewords in C
satisfying

z · z′ = (x+ pf(x)) · (x′ + pf(x′)) ≡ 0 (mod p2)

⇐⇒ h1(x) ·h1(x′)+p(h1(f(x)) ·h1(x′)+h1(x) ·h1(f(x′))) ≡ 0 (mod p2).

Conversely, the two condition ensure that self-orthogonality of C and
by the type of C , |C | = |C0| · |C1|. Thus C is self-dual.

According to the previous lemma, we can construct distinct self-dual
codes over R2 from each self-orthogonal code over R1 = Fp2 as follows.

Let C0 be a self-orthogonal codes over Fp2 . Then we can regard C0 as
a residue code of a self-dual codes C with the generator matrix G. The
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basis {e∗1, · · · , e∗k0} can be taken as the canonical basis from row vectors
of the matrix (

Ik0 0
)
.

Then, the map f is characterized by the image of a basis of C0 which
can be taken as the set of row vectors of

G0 =
(
Ik0 A1 B1

)
.

Let ei be the ith row vector of G0 then the map f is defined by the
matrix

M = (mij)1≤i,j≤k0 where f(ei) =

k1∑
j=1

mije
∗
j .

Then, we can construct self-dual codes over R2 by the following
lemma.

Theorem 5.4. Assume that C is a code satisfying C1 = C ⊥0 and G0

is generator matrix of C0 and G1 is generator matrix of C1. Then C is
self-dual with a generator matrix (non standard form)

G =

(
Ik0 + pM A1 B1

0 pIk1 pC1

)
if and only if

(2) Ik0 + p(M +M>) + A1A
>
1 +B1B

>
1 ≡ 0 (mod p2).

Proof. Only if part is trivial. C1 = C ⊥0 guarantees that 2k0 + k1 = n
and

(
Ik0 + pM A1 B1

0 pIk1 pC1

)(
Ik0 + pM A1 B1

)> ≡ 0 (mod p2)

Therefore,

Ik0+p(M+M>)+A1A
>
1 +B1B

>
1 ≡ 0 (mod p2) =⇒ GG> ≡ 0 (mod p2)

Hence, C is self-orthogonal. From the fact that C has the type 1k0pk1 ,

|C | = p4
k0p2

k1 = p4k0+2k1 = p2n. Thus |C | = |C ⊥| and C is self-dual.
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6. Mass Formula

Theorem 6.1. [8,11,14,15] Let σq(n, k) be the number of self-orthogonal
codes of length n and dimension k over Fq, where q = pm for some prime
p and an integer m. Then:

(i) If n is odd,

σq(n, k) =

∏k−1
i=0 (q(n−1−2i) − 1)∏k

i=1(q
i − 1)

(k ≥ 1).

(ii) If n is even, q even,

σq(n, k) =
(qn−k − 1)

∏k−1
i=1 (qn−2i − 1)∏k

i=1(q
i − 1)

(k ≥ 2),

σq(n, 1) =
qn−1 − 1

q − 1
.

(iii) If n is even, q odd,

σq(n, k) =
(qn−k − 1− η((−1)n/2)(qn/2−k − qn/2))

∏k−1
i=1 (qn−2i − 1)∏k

i=1(q
i − 1)

(k ≥ 2),

σq(n, 1) =
qn−1 − 1− η((−1)n/2)(qn/2−1 − qn/2)

q − 1
,

where η(x) is 1 if x is a square, -1 if x is not a square and 0 if
x = 0.

Note that σq(n, 0) = 1 for all n and q.

Theorem 6.2. Let p be an odd prime. If C0 is a self-orthogonal
codes over a Galois ring GR(p, 2) with rank k. Then the number of
distinct self-dual codes over a Galois ring GR(p2, 2) corresponding to C0

is (p2)k(k−1)/2

Proof. By the previous argument, we know that the number of distinct
matrix M = (mij) determines the number of distinct self-dual codes
corresponding to C0. By the condition of (2), we can deduce that ei ·
ej + p(mij +mji) ≡ 0 (mod p2) for all ei and ej, ith and jth row vectors
of G0 respectively. Thus, diagonal elements of M is determined by G0

and we can set any element of GR(p, 2) as mij for i > j and mji is
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determined by mij. So the number of M satisfying (2) is the number of
choices of m′ijs for i > j.

Corollary 6.3. Let p be an odd prime. The number of distinct
self-dual codes over a Galois ring GR(p2, 2) is

∑
0≤k≤bn/2c

σp2(n, k)(p2)k(k−1)/2,

where σp2(n, k) is the number of distinct self-orthogonal codes over Fp2 .

7. examples

In this chapter we introduce some examples of self-dual codes over
GR(p2, 2) for p = 3, 5 which are obtained by following the previous
argument. We use the computational algebra system Magma for com-
putation and it represents a Galois ring by a root of some intrinsic ir-
reducible polynomial. Note that we follow the representations of Galois
rings in Magma

7.1. Self-dual codes over GR(9, 2) of length 4, type 1132. We can
take the irreducible polynomial for GR(3, 2) and GR(9, 2) commonly as
h(x) = x2+2x+2. Let ω and ω̄ be roots of h(x) as the representatives of
GR(3, 2) and GR(9, 2) respectively. Then, h1(ω) = ω̄ and ω2 = ω + 1 ∈
Z3[ω] and ω̄2 = 7ω̄ + 7 ∈ Z9[ω̄].

There are 4 self-orthogonal codes over GR(3, 2) of length 4 with rank
k = 1 upto equivalence, whose generator matrices are as follows:

G1
0 =

(
1 0 1 1

)
G2

0 =
(
1 1 1 + ω 1 + ω

)
G3

0 =
(
1 ω 1 + ω 1 + 2ω

)
G4

0 =
(
1 0 0 1 + ω

)
.
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Then we obtain the generator matrices Gi
1’s of the torsion code as the

dual code of each self-dual codes C i
0 ’s over GR(3, 2) :

G1
1 =

1 0 1 1
0 1 0 0
0 0 1 2

 G2
1 =

1 1 1 + ω 1 + ω
0 1 0 1 + ω
0 0 1 2



G3
1 =

1 ω 1 + ω 1 + 2ω
0 1 0 1 + ω
0 0 1 1 + 2ω

 G4
1 =

1 0 0 1 + ω
0 1 0 0
0 0 1 0


Then, we can choose the map f as the matrix M . In this case, each

residue code has the rank k = 1 and is corresponding to only one self-
dual code over GR(9, 2) of length 4 with type 1132 which has generator
matrix in the standard form as follows:

G1 =

1 0 1 4
0 3 0 0
0 0 3 6

 G2 =

1 1 1 + ω̄ 1 + ω̄
0 3 0 3 + 3ω̄
0 0 3 6



G3 =

1 ω̄ 1 + ω̄ 7 + 8ω̄
0 3 0 3 + 3ω̄
0 0 3 3 + 6ω̄

 G4 =

1 0 0 1 + ω̄
0 3 0 0
0 0 3 0



7.2. self-dual codes over GR(9, 2) of length 5 with type 1231. Let
C0 be a self-orthogonal code over GR(3, 2) of length 5 with rank 2 with
generator matrix

G0 =

(
1 0 1 2 + 2ω 1 + ω
0 1 1 + ω ω 2 + ω

)
.

Then we obtain a generator matrix G1 of C1 as a C ⊥0 ,

G1 =

1 0 1 2 + 2ω 1 + ω
0 1 1 + ω ω 2 + ω
0 0 1 ω 1 + 2ω

 .
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There are (32)1 = 9 distinct self-dual codes over GR(9, 2) with gener-
ator matrices:

G1 =

1 0 1 2 + 2ω̄ 4 + 4ω̄
0 1 1 + ω̄ 6 + 7ω̄ 8 + ω̄
0 0 3 3ω̄ 3 + 6ω̄

 G2 =

1 0 1 5 + 2ω̄ 7 + 4ω̄
0 1 1 + ω̄ 6 + 4ω̄ 2 + 7ω̄
0 0 3 3ω̄ 3 + 6ω̄



G3 =

1 0 1 8 + 2ω̄ 1 + 4ω̄
0 1 1 + ω̄ 6 + ω̄ 5 + 4ω̄
0 0 3 3ω̄ 3 + 6ω̄

 G4 =

1 0 1 8 + 5ω̄ 4 + 7ω̄
0 1 1 + ω̄ 3 + 4ω̄ 5 + ω̄
0 0 3 3ω̄ 3 + 6ω̄



G5 =

1 0 1 5 + 5ω̄ 7 + 7ω̄
0 1 1 + ω̄ 3 + ω̄ 8 + 7ω̄
0 0 3 3ω̄ 3 + 6ω̄

 G6 =

1 0 1 8 + 5ω̄ 1 + 7ω̄
0 1 1 + ω̄ 3 + 7ω̄ 2 + 4ω̄
0 0 3 3ω̄ 3 + 6ω̄



G7 =

1 0 1 2 + 8ω̄ 4 + ω̄
0 1 1 + ω̄ ω̄ 2 + ω̄
0 0 3 3ω̄ 3 + 6ω̄

 G8 =

1 0 1 5 + 8ω̄ 7 + ω̄
0 1 1 + ω̄ 7ω̄ 5 + 7ω̄
0 0 3 3ω̄ 3 + 6ω̄



G9 =

1 0 1 8 + 8ω̄ 1 + ω̄
0 1 1 + ω̄ 4ω̄ 8 + 4ω̄
0 0 3 3ω̄ 3 + 6ω̄

 .

7.3. self-dual code over GR(25, 2) of length 4 with, type 12. We
can take the irreducible polynomial for GR(5, 2) and GR(25, 2) com-
monly as h(x) = x2 + 4x+ 2. Let ω and ω̄ be roots of h(x) as the repre-
sentatives of GR(5, 2) and GR(25, 2) respectively. Then, h1(ω) = ω̄ and
ω2 = ω + 3 ∈ Z5[ω] and ω̄2 = 21ω̄ + 23 ∈ Z25[ω̄].

Let C0 be a self-orthogonal code over GR(5, 2) of length 4 with rank
2 with generator matrix

G0 =

(
1 0 1 1 + 3ω
0 1 1 + 3ω 4

)
.

It is clear that C0 is self-dual, thus C0 = C1.

There are (52)1 = 25 self-dual codes corresponding the code C0 over
GR(25, 2):
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G1 =

(
1 0 1 + 5ω̄ 21 + 3ω̄
0 1 21 + 3ω̄ 24 + 20ω̄

)
G2 =

(
1 0 1 + 10ω̄ 6 + 13ω̄
0 1 6 + 13ω̄ 24 + 15ω̄

)

G3 =

(
1 0 1 + 15ω̄ 16 + 23ω̄
0 1 16 + 23ω̄ 24 + 10ω̄

)
G4 =

(
1 0 1 + 20ω̄ 1 + 8ω̄
0 1 1 + 8ω̄ 24 + 5ω̄

)

G5 =

(
1 0 6 + 5ω̄ 11 + 23ω̄
0 1 11 + 23ω̄ 19 + 20ω̄

)
G6 =

(
1 0 11 + 20ω̄ 6 + 23ω̄
0 1 6 + 23ω̄ 14 + 5ω̄

)

G7 =

(
1 0 21 + 15ω̄ 1 + 3ω̄
0 1 1 + 3ω̄ 4 + 10ω̄

)
G8 =

(
1 0 21 + 5ω̄ 6 + 8ω̄
0 1 6 + 8ω̄ 4 + 20ω̄

)

G9 =

(
1 0 1 11 + 18ω̄
0 1 11 + 18ω̄ 24

)
G10 =

(
1 0 21 + 10ω̄ 16 + 18ω̄
0 1 16 + 18ω̄ 4 + 15ω̄

)

G11 =

(
1 0 11 16 + 8ω̄
0 1 16 + 8ω̄ 14

)
G12 =

(
1 0 11 + 5ω̄ 1 + 18ω̄
0 1 1 + 18ω̄ 14 + 20ω̄

)

G13 =

(
1 0 21 21 + 23ω̄
0 1 21 + 23ω̄ 4

)
G14 =

(
1 0 16 + 15ω̄ 11 + 8ω̄
0 1 11 + 8ω̄ 9 + 10ω̄

)

G15 =

(
1 0 6 + 10ω̄ 21 + 8ω̄
0 1 21 + 8ω̄ 19 + 15ω̄

)
G16 =

(
1 0 16 6 + 3ω̄
0 1 6 + 3ω̄ 9

)

G17 =

(
1 0 11 + 15ω̄ 21 + 13ω̄
0 1 21 + 13ω̄ 14 + 10ω̄

)
G18 =

(
1 0 21 + 20ω̄ 11 + 13ω̄
0 1 11 + 13ω̄ 4 + 5ω̄

)

G19 =

(
1 0 6 + 15ω̄ 6 + 18ω̄
0 1 6 + 18ω̄ 19 + 10ω̄

)
G20 =

(
1 0 11 + 10ω̄ 11 + 3ω̄
0 1 11 + 3ω̄ 14 + 15ω̄

)

G21 =

(
1 0 16 + 10ω̄ 1 + 23ω̄
0 1 1 + 23ω̄ 9 + 15ω̄

)
G22 =

(
1 0 6 1 + 13ω̄
0 1 1 + 13ω̄ 19

)

G23 =

(
1 0 16 + 20ω̄ 21 + 18ω̄
0 1 21 + 18ω̄ 9 + 5ω̄

)
G24 =

(
1 0 6 + 20ω̄ 16 + 3ω̄
0 1 16 + 3ω̄ 19 + 5ω̄

)

G25 =

(
1 0 16 + 5ω̄ 16 + 13ω̄
0 1 16 + 13ω̄ 9 + 20ω̄

)
.

.
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[5] Fernando Q. Gouvêa, p-adic Numbers, Springer, 1997.
[6] Roger A. Hammons, Vijay P. Kumar, A. Robert Calderbank, N. Sloane, and
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