MASS FORMULA OF SELF-DUAL CODES OVER
 GALOIS RINGS $G R\left(p^{2}, 2\right)$

Whan-hyuk Choi

Abstract

We investigate the self-dual codes over Galois rings and determine the mass formula for self-dual codes over Galois rings $G R\left(p^{2}, 2\right)$.

1. Introduction

As an application of computer science, error correcting codes were firstly defined over GF(2) by Hamming in 1950. Sooner or later mathematicians extended them over arbitrary fields. In [6], Hammons et al. found that some good non-linear codes are obtained from codes over a ring \mathbb{Z}_{4} via Gray map. More recently, many papers are published about codes over \mathbb{Z}_{m} for an arbitrary integer m.

On the other hands, many important codes such as Golay code and extended Hamming code are self-dual codes. In 1996, Gaborit calculated the mass formulas for self-dual codes over \mathbb{Z}_{4} in [4]. This paper motivated Nagata, et al. to find the mass formulas for self-dual codes over $\mathbb{Z}_{p^{e}}$ in consecutive papers, [1], [10], [11], [12].

And in [13], Park found a method to classify self-dual codes over \mathbb{Z}_{m} where m is a multiple of distinct primes. To generalize the results in [13], we investigated the classification of self-dual codes over $\mathbb{Z}_{p^{e}}$ for

Received September 19, 2016. Revised December 20, 2016. Accepted December 26, 2016.

2010 Mathematics Subject Classification: 94B05.
Key words and phrases: codes over Galois ring, self-dual codes, mass formula.
(c) The Kangwon-Kyungki Mathematical Society, 2016.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.
any odd prime p. As a consquence we found the complete classfication of self-orthogonal codes over $\mathbb{Z}_{p^{2}}$ in small lengths in [3].

It is well-known that the codes over finite chain rings have some good properties. Actually, $\mathbb{Z}_{p^{e}}$ over which we have investigated the classification of self-dual codes is a Galois ring and every finite chain ring is a homomorphic image of some polynomial ring over a Galois ring. Therefore investigating codes over Galois rings would be necessary to study codes over finite rings.

In this paper, we use the similar argument of Gaborit in [4] and Balmaceda et al. in [1], to generalize the result to the self-dual codes over Galois ring $G R\left(p^{2}, 2\right)$ for odd prime p.

2. Galois rings

Let r be a positive integer and $p(X)$ be a monic basic irreducible polynomial in $\mathbb{Z}_{p^{e}}[X]$ of degree r that divides $X^{p^{r}-1}-1$. We can choose $p(X)$ so that $\zeta=X+\langle p(X)\rangle$ is a primitive $\left(p^{r}-1\right)$ st root of unity. Then, Galois ring is defined as

$$
G R\left(p^{e}, r\right)=\mathbb{Z}_{p^{e}}[X] /\langle p(X)\rangle \simeq \mathbb{Z}_{p^{e}}[\zeta] .
$$

$G R\left(p^{e}, r\right)$ which is the generalization of Galois field, is the Galois extension of degree r over $\mathbb{Z}_{p^{e}}$ with the residue field $\mathbb{F}_{p^{r}}$ and is a finite chain rings with ideals of the form $\left\langle p^{i}\right\rangle$ for $0 \leq i \leq e-1$. The extensions are unique up to isomorphism.

The set $T_{r}=\left\{0,1, \zeta, \ldots, \zeta^{p^{r}-2}\right\}$ of coset representatives of $G R\left(p^{e}, r\right)$ modulo $\langle p\rangle$ is a complete set and known as Teichmüller set. The elements of $G R\left(p^{e}, r\right)$ can be uniquely written as the p-adic representation,

$$
c_{0}+c_{1} p+c_{2} p^{2}+\cdots+c_{e-1} p^{e-1}
$$

with $c_{i} \in T_{r}$.
The other way of representation of Galois ring is the ζ-adic expansion,

$$
b_{0}+b_{1} \zeta+\cdots+b_{r-1} \zeta^{r-1}
$$

with $b_{i} \in \mathbb{Z}_{p^{e}}$.
For the further study of Galois rings, see [5, 9, 16].

3. Codes over Galois ring

A code \mathscr{C} over $G R\left(p^{e}, r\right)$ of length n has a generator matrix permutation equivalent to the standard form

$$
G=\left(\begin{array}{ccccccc}
I_{k_{0}} & A_{01} & A_{02} & A_{03} & \ldots & A_{0, e-1} & A_{0 e} \tag{1}\\
0 & p I_{k_{1}} & p A_{12} & p A_{13} & \ldots & p A_{1, e-1} & p A_{1 e} \\
0 & 0 & p^{2} I_{k_{2}} & p^{2} A_{23} & \ldots & p^{2} A_{2, e-1} & p^{2} A_{2 e} \\
\cdot & \cdot & \cdot & . & \ldots & \cdot & \cdot \\
0 & 0 & 0 & 0 & \ldots & p^{e-1} I_{k_{e-1}} & p^{e-1} A_{e-1, e}
\end{array}\right),
$$

where the columns are grouped into blocks of sizes $k_{0}, k_{1}, \ldots, k_{e-1}, k_{e}$ which are nonnegative integers adding to n [7].

A code which have a generator matrix with this standard form is said to be of type $(1)^{k_{0}}(p)^{k_{1}}\left(p^{2}\right)^{k_{2}} \cdots\left(p^{e-1}\right)^{k_{e-1}}$. and k_{0} is called the free rank. A code of type $1^{k_{0}}$ is called a free code.

Note that a code with type $(1)^{k_{0}}(p)^{k_{1}}\left(p^{2}\right)^{k_{2}} \cdots\left(p^{e-1}\right)^{k_{e-1}}$ has $\left(p^{e r}\right)^{k_{0}}\left(p^{(e-1) r}\right)^{k_{1}}\left(p^{(e-2) r}\right)^{k_{2}} \cdots\left(p^{r}\right)^{k_{e-1}}$ codewords.

We can define the standard inner product over the space $G R\left(p^{e}, m\right)^{n}$ by

$$
\left(v_{1}, \cdots, v_{n}\right) \cdot\left(w_{1}, \cdots, w_{n}\right)=v_{1} w_{1}+\cdots+v_{n} w_{n}
$$

and the dual code \mathscr{C}^{\perp} of \mathscr{C} by

$$
\mathscr{C}^{\perp}=\left\{\mathbf{v} \in G R\left(p^{e}, m\right)^{n} \mid \mathbf{v} \cdot \mathbf{w}=0 \text { for all } \mathbf{w} \in C\right\} .
$$

A code \mathscr{C} is called self-orthogonal if $\mathscr{C} \subset \mathscr{C}^{\perp}$ and self-dual if $\mathscr{C}=\mathscr{C}^{\perp}$. If \mathscr{C} is a code of the form (1) then \mathscr{C}^{\perp} has a generator matrix of the form

$$
G^{\perp}=\left(\begin{array}{ccccccc}
B_{0 e} & B_{0, e-1} & \cdots & B_{03} & B_{02} & B_{01} & I_{k_{e}} \\
p B_{1 e} & p B_{1, e-1} & \cdots & p B_{13} & p B_{12} & p I_{k_{e-1}} & 0 \\
p^{2} B_{2 e} & p^{2} B_{2, e-1} & \cdots & p^{2} B_{23} & p^{e} I_{k_{e-2}} & 0 & 0 \\
\cdot & \cdot & \cdots & \cdot & \cdot & \cdot & \cdot \\
p^{e-1} B_{e-1, e} & p^{e-1} I_{k_{1}} & \cdots & 0 & 0 & 0 & 0
\end{array}\right)
$$

where the column blocks have the same size as in G [2].
Note that if \mathscr{C} has type $1^{k_{0}}(p)^{k_{1}} \cdots\left(p^{e-1}\right)^{k_{e-1}}$ then the dual code has type $1^{k_{e}} p^{k_{e-1}}\left(p^{2}\right)^{k_{e-2}} \cdots\left(p^{e-1}\right)^{k_{1}}$, where $k_{e}=n-\sum_{i=0}^{e-1} k_{i}$. This means that if \mathscr{C} is self-dual with the type $(1)^{k_{0}}(p)^{k_{1}}\left(p^{2}\right)^{k_{2}} \cdots\left(p^{e-1}\right)^{k_{e-1}}$, then $k_{i}=k_{e-i}$ for all i.

For any code \mathscr{C} of length n over $G R\left(p^{e}, r\right)$

$$
\left|\mathscr{C} \| \mathscr{C}^{\perp}\right|=p^{e r n}
$$

If \mathscr{C} is a self-orthogonal code of length n and $|\mathscr{C}|=p^{e r n / 2}$, then \mathscr{C} is self-dual.

4. Codes over $G R\left(p^{2}, 2\right)$

From now on, we denote $G R\left(p^{e}, 2\right)$ as R_{e}.
Recall that an element in R_{e} can be written as $a+b \zeta$ where $a, b \in \mathbb{Z}_{p^{e}}$. We use the following three maps for the computation in $G R\left(p^{2}, 2\right)$. One is the natural projection modulo $p, \pi_{e}: R_{e} \rightarrow R_{1}$, and the other two non homomorphism maps $\psi_{1}: R_{e} \rightarrow \mathbb{Z}_{p^{e}}$ and $\psi_{2}: R_{e} \rightarrow \mathbb{Z}_{p^{e}}$ defined as $\psi_{1}(a+b \zeta)=a$ and $\psi_{2}(a+b \zeta)=b$. We can easily abuse these three maps on the vectors in R_{e}^{n} componentwisely.

And let $g_{e}: \mathbb{Z}_{p^{e}}^{n} \rightarrow \mathbb{Z}^{n}$ and $h_{e}: R_{e}^{n} \rightarrow R_{e+1}^{n}$ be two canonical injections componentwise.

Let γ_{1} and γ_{2} be the composition of $g_{e} \circ \psi_{2}$ and $g_{e} \circ \psi_{2}$, respectively. We also define the operation $\oplus_{p^{e}}$ on two vectors $x, y \in \mathbb{Z}^{n}$ as

$$
x \bigoplus_{p^{e}} y:=\left(\left\lfloor\frac{x+y}{p^{e}}\right\rfloor,\left\lfloor\frac{x+y}{p^{e}}\right\rfloor, \cdots,\left\lfloor\frac{x+y}{p^{e}}\right\rfloor\right)
$$

One can easily see that
$h_{e}(x+y)=h_{e}(x)+h_{e}(y)-p^{e}\left(\gamma_{1}(x) \bigoplus_{p^{e}} \gamma_{1}(y)+\left(\gamma_{2}(x) \bigoplus_{p^{e}} \gamma_{2}(y)\right) \zeta\right)$.
Let \mathscr{C} be a code over R_{e}. For $0 \leq i \leq e-1$, we can define the i th torsion code of \mathscr{C} as

$$
\operatorname{Tor}_{i}(\mathscr{C})=\left\{\pi_{e}(v) \mid p^{i} v \in \mathscr{C}, v \in R_{e}^{n}\right\}
$$

$\operatorname{Tor}_{0}(\mathscr{C})=\pi_{e}(\mathscr{C})$ is usually called the residue code and denoted by $\operatorname{Res}(\mathscr{C})$.

Especially for the code \mathscr{C} over R_{2}, we will denote $\operatorname{Tor}_{1}(\mathscr{C})$ as \mathscr{C}_{1} and $\operatorname{Res}(\mathscr{C})$ as \mathscr{C}_{0} for the brevity.

A code \mathscr{C} over R_{2} with type $(1)^{k_{0}}(p)^{k_{1}}$ is equivalent to a code with generator matrix in the standard form:

$$
G=\left(\begin{array}{ccc}
I_{k_{0}} & A_{1} & B_{1}+p B_{2} \\
0 & p I_{k_{1}} & p C_{1}
\end{array}\right)
$$

where A_{1}, B_{1}, B_{2} and C_{1} are matrices over R_{1}.
If \mathscr{C} has a generator matrix G then \mathscr{C}_{0} and \mathscr{C}_{1} have generator matrices

$$
G_{0}=\left(\begin{array}{lll}
I_{k_{0}} & A_{1} & B_{1}
\end{array}\right), G_{1}=\left(\begin{array}{ccc}
I_{k_{0}} & A_{1} & B_{1} \\
0 & I_{k_{1}} & C_{1}
\end{array}\right)
$$

respectively, by the definition of \mathscr{C}_{0} and \mathscr{C}_{1}. Note that $\mathscr{C}_{0} \subset \mathscr{C}_{1}$ and $|\mathscr{C}|=\left(p^{2}\right)^{2 k_{0}}\left(p^{2}\right)^{k_{1}}$.

We can define a non-homomorphism map $F: \mathscr{C}_{0} \rightarrow R_{1}^{n} / \mathscr{C}_{1}$ defined by

$$
F(x)=\left\{y \in R_{1}^{n} \mid x+p y \in \mathscr{C}\right\} .
$$

Then, $\mathscr{C}=\left\{x+p y \mid x \in \mathscr{C}_{0}, y \in F(x)\right\}$. Note that

$$
F(x+y)=F(x)+F(y)+\left(\gamma_{1}(x) \bigoplus_{p^{e}} \gamma_{1}(y)+\left(\gamma_{2}(x) \bigoplus_{p^{e}} \gamma_{2}(y)\right) \zeta\right)
$$

The map F is determined by the matrix B_{2} and vice versa. Therefore we can see that the set of codes over R_{2} is in one-to-one correspondence with the set of triplets $\left(\mathscr{C}_{0}, \mathscr{C}_{1}, F\right)$.

5. Self-dual Codes over $G R\left(p^{2}, 2\right)$

From now on, we assume that p is an odd prime and note that a self-dual codes over R_{2} of length n has the type of $1^{k_{0}} p^{k_{1}}$ such that $2 k_{0}+k_{1}=n$

Lemma 5.1. For any positive integer n, there exists a self-dual code over R_{2} of length n.

Proof. The matrix $p I_{n}$ generates a self-dual code of length n for any n where I_{n} is the nth identity matrix.

The following lemma is well-known.
Lemma 5.2. Let \mathscr{C} be self-dual code over R_{2}. Then \mathscr{C}_{0} is selforthogonal and $\mathscr{C}_{0}^{\perp}=\mathscr{C}_{1}$

According to previous argument, to construct self-dual codes over R_{2} of length n with type $1^{k_{0}} p^{k_{1}}$, above all we find a self-orthogonal code over R_{1} of length n and rank k_{0}. Then we obtain \mathscr{C}_{1} as the dual code of \mathscr{C}_{0}.

Finally we must choose the map F which satisfies a certain condition for \mathscr{C} to be a self-dual code.

Therefore, to count the number of self-dual codes over R_{2}, we must know the number of codes over $R_{1}=\mathbb{F}_{p^{2}}$ and the number of distinct map F which satisfies the certain condition. We will investigate it by the same argument from [1] and [4] in the followings.

Let \mathscr{C} be a self-dual codes over R_{2} of length n has the type of $1^{k_{0}} p^{k_{1}}$ and $\left\{e_{1}, e_{2}, \ldots e_{k_{0}}\right\}$ be the basis of \mathscr{C}_{0}. we can enlarge the basis to the basis $\left\{e_{1}, e_{2}, \ldots e_{k_{0}}, e_{k_{0}+1}, \cdots, e_{n}\right\}$ of R_{2}^{n}. We can consider the dual basis $\left\{e_{1}^{*}, e_{2}^{*}, \ldots e_{k_{0}}^{*}, e_{k_{0}+1}^{*}, \cdots, e_{n}^{*}\right\}$ defined by $e_{i} \cdot e_{j}^{*}=\delta_{i j}$, the Kronecker delta. Then

$$
R_{1}^{n} / \mathscr{C}_{1} \simeq\left\langle e_{1}^{*}, \cdots, e_{k_{0}}^{*}\right\rangle
$$

where $\left\langle e_{1}^{*}, \cdots, e_{k_{0}}^{*}\right\rangle$ is the subspace generated by $\left\{e_{1}^{*}, e_{2}^{*}, \ldots e_{k_{0}}^{*}\right\}$.
We can define the map $f: \mathscr{C}_{0} \rightarrow\left\langle e_{1}^{*}, \cdots, e_{k_{0}}^{*}\right\rangle$ which takes every codeword in \mathscr{C}_{0} to the unique representative of the map $F: \mathscr{C}_{0} \rightarrow R_{1}^{n} / \mathscr{C}_{1}$ in $\left\langle e_{k_{0}+1}^{*}, \cdots, e_{n}^{*}\right\rangle$. Thus we can replace F by f.

Lemma 5.3. Let \mathscr{C} be a code corresponding to $\left(\mathscr{C}_{0}, \mathscr{C}_{1}, f\right)$ over R_{2} of type $1^{k_{0}} p^{k_{1}}$ such that $2 k_{0}+k_{1}=n$. Then \mathscr{C} is self-dual if and only if the following conditions are satisfied:
(i) $\mathscr{C}_{1}=\mathscr{C}_{0}^{\perp}$
(ii) $h_{1}(x) \cdot h_{1}\left(x^{\prime}\right)+p\left(h_{1}(f(x)) \cdot h_{1}\left(x^{\prime}\right)+h_{1}(x) \cdot h_{1}\left(f\left(x^{\prime}\right)\right)\right) \equiv 0\left(\bmod p^{2}\right)$ for all $x, x^{\prime} \in \mathscr{C}_{0}$.

Proof. Let \mathscr{C} be a self-dual code. The first condition is from the previous lemma. The second condition is deduced from the fact that for each $x, x^{\prime} \in \mathscr{C}_{0}, z=x+p f(x), z^{\prime}=x^{\prime}+p f\left(x^{\prime}\right)$ are codewords in \mathscr{C} satisfying

$$
z \cdot z^{\prime}=(x+p f(x)) \cdot\left(x^{\prime}+p f\left(x^{\prime}\right)\right) \equiv 0 \quad\left(\bmod p^{2}\right)
$$

$\Longleftrightarrow h_{1}(x) \cdot h_{1}\left(x^{\prime}\right)+p\left(h_{1}(f(x)) \cdot h_{1}\left(x^{\prime}\right)+h_{1}(x) \cdot h_{1}\left(f\left(x^{\prime}\right)\right)\right) \equiv 0 \quad\left(\bmod p^{2}\right)$.
Conversely, the two condition ensure that self-orthogonality of \mathscr{C} and by the type of $\mathscr{C},|\mathscr{C}|=\left|\mathscr{C}_{0}\right| \cdot\left|\mathscr{C}_{1}\right|$. Thus \mathscr{C} is self-dual.

According to the previous lemma, we can construct distinct self-dual codes over R_{2} from each self-orthogonal code over $R_{1}=\mathbb{F}_{p^{2}}$ as follows.

Let \mathscr{C}_{0} be a self-orthogonal codes over $\mathbb{F}_{p^{2}}$. Then we can regard \mathscr{C}_{0} as a residue code of a self-dual codes \mathscr{C} with the generator matrix G. The
basis $\left\{e_{1}^{*}, \cdots, e_{k_{0}}^{*}\right\}$ can be taken as the canonical basis from row vectors of the matrix

$$
\left(\begin{array}{ll}
I_{k_{0}} & 0
\end{array}\right) .
$$

Then, the map f is characterized by the image of a basis of \mathscr{C}_{0} which can be taken as the set of row vectors of

$$
G_{0}=\left(\begin{array}{lll}
I_{k_{0}} & A_{1} & B_{1}
\end{array}\right) .
$$

Let e_{i} be the i th row vector of G_{0} then the map f is defined by the matrix

$$
M=\left(m_{i j}\right)_{1 \leq i, j \leq k_{0}} \quad \text { where } \quad f\left(e_{i}\right)=\sum_{j=1}^{k_{1}} m_{i j} e_{j}^{*} .
$$

Then, we can construct self-dual codes over R_{2} by the following lemma.

Theorem 5.4. Assume that \mathscr{C} is a code satisfying $\mathscr{C}_{1}=\mathscr{C}_{0}^{\perp}$ and G_{0} is generator matrix of \mathscr{C}_{0} and G_{1} is generator matrix of \mathscr{C}_{1}. Then \mathscr{C} is self-dual with a generator matrix (non standard form)

$$
G=\left(\begin{array}{ccc}
I_{k_{0}}+p M & A_{1} & B_{1} \\
0 & p I_{k_{1}} & p C_{1}
\end{array}\right)
$$

if and only if

$$
\begin{equation*}
I_{k_{0}}+p\left(M+M^{\top}\right)+A_{1} A_{1}^{\top}+B_{1} B_{1}^{\top} \equiv 0 \quad\left(\bmod p^{2}\right) \tag{2}
\end{equation*}
$$

Proof. Only if part is trivial. $\mathscr{C}_{1}=\mathscr{C}_{0}^{\perp}$ guarantees that $2 k_{0}+k_{1}=n$ and

$$
\left(\begin{array}{ccc}
I_{k_{0}}+p M & A_{1} & B_{1} \\
0 & p I_{k_{1}} & p C_{1}
\end{array}\right)\left(\begin{array}{lll}
I_{k_{0}}+p M & A_{1} & B_{1}
\end{array}\right)^{\top} \equiv 0 \quad\left(\bmod p^{2}\right)
$$

Therefore,
$I_{k_{0}}+p\left(M+M^{\top}\right)+A_{1} A_{1}^{\top}+B_{1} B_{1}^{\top} \equiv 0 \quad\left(\bmod p^{2}\right) \Longrightarrow G G^{\top} \equiv 0 \quad\left(\bmod p^{2}\right)$
Hence, \mathscr{C} is self-orthogonal. From the fact that \mathscr{C} has the type $1^{k_{0}} p^{k_{1}}$, $|\mathscr{C}|=p^{4^{k_{0}}} p^{k^{k_{1}}}=p^{4 k_{0}+2 k_{1}}=p^{2 n}$. Thus $|\mathscr{C}|=\left|\mathscr{C}^{\perp}\right|$ and \mathscr{C} is self-dual.

6. Mass Formula

Theorem 6.1. [8,11,14,15] Let $\sigma_{q}(n, k)$ be the number of self-orthogonal codes of length n and dimension k over \mathbb{F}_{q}, where $q=p^{m}$ for some prime p and an integer m. Then:
(i) If n is odd,

$$
\sigma_{q}(n, k)=\frac{\prod_{i=0}^{k-1}\left(q^{(n-1-2 i)}-1\right)}{\prod_{i=1}^{k}\left(q^{i}-1\right)} \quad(k \geq 1)
$$

(ii) If n is even, q even,

$$
\begin{gathered}
\sigma_{q}(n, k)=\frac{\left(q^{n-k}-1\right) \prod_{i=1}^{k-1}\left(q^{n-2 i}-1\right)}{\prod_{i=1}^{k}\left(q^{i}-1\right)} \quad(k \geq 2) \\
\sigma_{q}(n, 1)=\frac{q^{n-1}-1}{q-1}
\end{gathered}
$$

(iii) If n is even, q odd,

$$
\begin{gathered}
\sigma_{q}(n, k)=\frac{\left(q^{n-k}-1-\eta\left((-1)^{n / 2}\right)\left(q^{n / 2-k}-q^{n / 2}\right)\right) \prod_{i=1}^{k-1}\left(q^{n-2 i}-1\right)}{\prod_{i=1}^{k}\left(q^{i}-1\right)} \quad(k \geq 2), \\
\sigma_{q}(n, 1)=\frac{q^{n-1}-1-\eta\left((-1)^{n / 2}\right)\left(q^{n / 2-1}-q^{n / 2}\right)}{q-1},
\end{gathered}
$$

where $\eta(x)$ is 1 if x is a square, -1 if x is not a square and 0 if $x=0$.
Note that $\sigma_{q}(n, 0)=1$ for all n and q.
Theorem 6.2. Let p be an odd prime. If \mathscr{C}_{0} is a self-orthogonal codes over a Galois ring $G R(p, 2)$ with rank k. Then the number of distinct self-dual codes over a Galois ring $G R\left(p^{2}, 2\right)$ corresponding to \mathscr{C}_{0} is $\left(p^{2}\right)^{k(k-1) / 2}$

Proof. By the previous argument, we know that the number of distinct matrix $M=\left(m_{i j}\right)$ determines the number of distinct self-dual codes corresponding to \mathscr{C}_{0}. By the condition of (2), we can deduce that e_{i}. $e_{j}+p\left(m_{i j}+m_{j i}\right) \equiv 0\left(\bmod p^{2}\right)$ for all e_{i} and e_{j}, i th and j th row vectors of G_{0} respectively. Thus, diagonal elements of M is determined by G_{0} and we can set any element of $G R(p, 2)$ as $m_{i j}$ for $i>j$ and $m_{j i}$ is
determined by $m_{i j}$. So the number of M satisfying (2) is the number of choices of $m_{i j}^{\prime} s$ for $i>j$.

Corollary 6.3. Let p be an odd prime. The number of distinct self-dual codes over a Galois ring $G R\left(p^{2}, 2\right)$ is

$$
\sum_{0 \leq k \leq\lfloor n / 2\rfloor} \sigma_{p^{2}}(n, k)\left(p^{2}\right)^{k(k-1) / 2},
$$

where $\sigma_{p^{2}}(n, k)$ is the number of distinct self-orthogonal codes over $\mathbb{F}_{p^{2}}$.

7. examples

In this chapter we introduce some examples of self-dual codes over $G R\left(p^{2}, 2\right)$ for $p=3,5$ which are obtained by following the previous argument. We use the computational algebra system Magma for computation and it represents a Galois ring by a root of some intrinsic irreducible polynomial. Note that we follow the representations of Galois rings in Magma
7.1. Self-dual codes over $G R(9,2)$ of length 4 , type $1^{1} 3^{2}$. We can take the irreducible polynomial for $G R(3,2)$ and $G R(9,2)$ commonly as $h(x)=x^{2}+2 x+2$. Let ω and $\bar{\omega}$ be roots of $h(x)$ as the representatives of $G R(3,2)$ and $G R(9,2)$ respectively. Then, $h_{1}(\omega)=\bar{\omega}$ and $\omega^{2}=\omega+1 \in$ $\mathbb{Z}_{3}[\omega]$ and $\bar{\omega}^{2}=7 \bar{\omega}+7 \in \mathbb{Z}_{9}[\bar{\omega}]$.

There are 4 self-orthogonal codes over $G R(3,2)$ of length 4 with rank $k=1$ upto equivalence, whose generator matrices are as follows:

$$
\begin{array}{ll}
G_{0}^{1}=\left(\begin{array}{llll}
1 & 0 & 1 & 1
\end{array}\right) & G_{0}^{2}=\left(\begin{array}{llll}
1 & 1 & 1+\omega & 1+\omega
\end{array}\right) \\
G_{0}^{3}=\left(\begin{array}{lllll}
1 & \omega & 1+\omega & 1+2 \omega
\end{array}\right) & G_{0}^{4}=\left(\begin{array}{llll}
1 & 0 & 0 & 1+\omega
\end{array}\right)
\end{array}
$$

Then we obtain the generator matrices G_{1}^{i} 's of the torsion code as the dual code of each self-dual codes \mathscr{C}_{0}^{i} 's over $G R(3,2)$:

$$
\begin{array}{ll}
G_{1}^{1}=\left(\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 2
\end{array}\right) & G_{1}^{2}=\left(\begin{array}{cccc}
1 & 1 & 1+\omega & 1+\omega \\
0 & 1 & 0 & 1+\omega \\
0 & 0 & 1 & 2
\end{array}\right) \\
G_{1}^{3} & =\left(\begin{array}{cccc}
1 & \omega & 1+\omega & 1+2 \omega \\
0 & 1 & 0 & 1+\omega \\
0 & 0 & 1 & 1+2 \omega
\end{array}\right)
\end{array} G_{1}^{4}=\left(\begin{array}{cccc}
1 & 0 & 0 & 1+\omega \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right), ~ l
$$

Then, we can choose the map f as the matrix M. In this case, each residue code has the rank $k=1$ and is corresponding to only one selfdual code over $G R(9,2)$ of length 4 with type $1^{1} 3^{2}$ which has generator matrix in the standard form as follows:

$$
\begin{array}{ll}
G^{1}=\left(\begin{array}{llll}
1 & 0 & 1 & 4 \\
0 & 3 & 0 & 0 \\
0 & 0 & 3 & 6
\end{array}\right) & G^{2}=\left(\begin{array}{cccc}
1 & 1 & 1+\bar{\omega} & 1+\bar{\omega} \\
0 & 3 & 0 & 3+3 \bar{\omega} \\
0 & 0 & 3 & 6
\end{array}\right) \\
G^{3} & =\left(\begin{array}{cccc}
1 & \bar{\omega} & 1+\bar{\omega} & 7+8 \bar{\omega} \\
0 & 3 & 0 & 3+3 \bar{\omega} \\
0 & 0 & 3 & 3+6 \bar{\omega}
\end{array}\right)
\end{array} G^{4}=\left(\begin{array}{cccc}
1 & 0 & 0 & 1+\bar{\omega} \\
0 & 3 & 0 & 0 \\
0 & 0 & 3 & 0
\end{array}\right), ~ l
$$

7.2. self-dual codes over $G R(9,2)$ of length 5 with type $1^{2} 3^{1}$. Let \mathscr{C}_{0} be a self-orthogonal code over $G R(3,2)$ of length 5 with rank 2 with generator matrix

$$
G_{0}=\left(\begin{array}{ccccc}
1 & 0 & 1 & 2+2 \omega & 1+\omega \\
0 & 1 & 1+\omega & \omega & 2+\omega
\end{array}\right) .
$$

Then we obtain a generator matrix G_{1} of \mathscr{C}_{1} as a \mathscr{C}_{0}^{\perp},

$$
G_{1}=\left(\begin{array}{ccccc}
1 & 0 & 1 & 2+2 \omega & 1+\omega \\
0 & 1 & 1+\omega & \omega & 2+\omega \\
0 & 0 & 1 & \omega & 1+2 \omega
\end{array}\right)
$$

There are $\left(3^{2}\right)^{1}=9$ distinct self-dual codes over $G R(9,2)$ with generator matrices:

$$
\begin{aligned}
& G^{1}=\left(\begin{array}{ccccc}
1 & 0 & 1 & 2+2 \bar{\omega} & 4+4 \bar{\omega} \\
0 & 1 & 1+\bar{\omega} & 6+7 \bar{\omega} & 8+\bar{\omega} \\
0 & 0 & 3 & 3 \bar{\omega} & 3+6 \bar{\omega}
\end{array}\right) \quad G^{2}=\left(\begin{array}{ccccc}
1 & 0 & 1 & 5+2 \bar{\omega} & 7+4 \bar{\omega} \\
0 & 1 & 1+\bar{\omega} & 6+4 \bar{\omega} & 2+7 \bar{\omega} \\
0 & 0 & 3 & 3 \bar{\omega} & 3+6 \bar{\omega}
\end{array}\right) \\
& G^{3}=\left(\begin{array}{ccccc}
1 & 0 & 1 & 8+2 \bar{\omega} & 1+4 \bar{\omega} \\
0 & 1 & 1+\bar{\omega} & 6+\bar{\omega} & 5+4 \bar{\omega} \\
0 & 0 & 3 & 3 \bar{\omega} & 3+6 \bar{\omega}
\end{array}\right) \quad G^{4}=\left(\begin{array}{ccccc}
1 & 0 & 1 & 8+5 \bar{\omega} & 4+7 \bar{\omega} \\
0 & 1 & 1+\bar{\omega} & 3+4 \bar{\omega} & 5+\bar{\omega} \\
0 & 0 & 3 & 3 \bar{\omega} & 3+6 \bar{\omega}
\end{array}\right) \\
& G^{5}=\left(\begin{array}{ccccc}
1 & 0 & 1 & 5+5 \bar{\omega} & 7+7 \bar{\omega} \\
0 & 1 & 1+\bar{\omega} & 3+\bar{\omega} & 8+7 \bar{\omega} \\
0 & 0 & 3 & 3 \bar{\omega} & 3+6 \bar{\omega}
\end{array}\right) \quad G^{6}=\left(\begin{array}{ccccc}
1 & 0 & 1 & 8+5 \bar{\omega} & 1+7 \bar{\omega} \\
0 & 1 & 1+\bar{\omega} & 3+7 \bar{\omega} & 2+4 \bar{\omega} \\
0 & 0 & 3 & 3 \bar{\omega} & 3+6 \bar{\omega}
\end{array}\right) \\
& G^{7}=\left(\begin{array}{ccccc}
1 & 0 & 1 & 2+8 \bar{\omega} & 4+\bar{\omega} \\
0 & 1 & 1+\bar{\omega} & \bar{\omega} & 2+\bar{\omega} \\
0 & 0 & 3 & 3 \bar{\omega} & 3+6 \bar{\omega}
\end{array}\right) \quad G^{8}=\left(\begin{array}{ccccc}
1 & 0 & 1 & 5+8 \bar{\omega} & 7+\bar{\omega} \\
0 & 1 & 1+\bar{\omega} & 7 \bar{\omega} & 5+7 \bar{\omega} \\
0 & 0 & 3 & 3 \bar{\omega} & 3+6 \bar{\omega}
\end{array}\right) \\
& G^{9}=\left(\begin{array}{ccccc}
1 & 0 & 1 & 8+8 \bar{\omega} & 1+\bar{\omega} \\
0 & 1 & 1+\bar{\omega} & 4 \bar{\omega} & 8+4 \bar{\omega} \\
0 & 0 & 3 & 3 \bar{\omega} & 3+6 \bar{\omega}
\end{array}\right) .
\end{aligned}
$$

7.3. self-dual code over $\operatorname{GR}(25,2)$ of length 4 with, type 1^{2}. We can take the irreducible polynomial for $G R(5,2)$ and $G R(25,2)$ commonly as $h(x)=x^{2}+4 x+2$. Let ω and $\bar{\omega}$ be roots of $h(x)$ as the representatives of $G R(5,2)$ and $G R(25,2)$ respectively. Then, $h_{1}(\omega)=\bar{\omega}$ and $\omega^{2}=\omega+3 \in \mathbb{Z}_{5}[\omega]$ and $\bar{\omega}^{2}=21 \bar{\omega}+23 \in \mathbb{Z}_{25}[\bar{\omega}]$.

Let \mathscr{C}_{0} be a self-orthogonal code over $G R(5,2)$ of length 4 with rank 2 with generator matrix

$$
G_{0}=\left(\begin{array}{cccc}
1 & 0 & 1 & 1+3 \omega \\
0 & 1 & 1+3 \omega & 4
\end{array}\right)
$$

It is clear that \mathscr{C}_{0} is self-dual, thus $\mathscr{C}_{0}=\mathscr{C}_{1}$.
There are $\left(5^{2}\right)^{1}=25$ self-dual codes corresponding the code \mathscr{C}_{0} over $G R(25,2)$:

$$
\begin{aligned}
& G^{1}=\left(\begin{array}{cccc}
1 & 0 & 1+5 \bar{\omega} & 21+3 \bar{\omega} \\
0 & 1 & 21+3 \bar{\omega} & 24+20 \bar{\omega}
\end{array}\right) \quad G^{2}=\left(\begin{array}{cccc}
1 & 0 & 1+10 \bar{\omega} & 6+13 \bar{\omega} \\
0 & 1 & 6+13 \bar{\omega} & 24+15 \bar{\omega}
\end{array}\right) \\
& G^{3}=\left(\begin{array}{cccc}
1 & 0 & 1+15 \bar{\omega} & 16+23 \bar{\omega} \\
0 & 1 & 16+23 \bar{\omega} & 24+10 \bar{\omega}
\end{array}\right) \quad G^{4}=\left(\begin{array}{cccc}
1 & 0 & 1+20 \bar{\omega} & 1+8 \bar{\omega} \\
0 & 1 & 1+8 \bar{\omega} & 24+5 \bar{\omega}
\end{array}\right) \\
& G^{5}=\left(\begin{array}{cccc}
1 & 0 & 6+5 \bar{\omega} & 11+23 \bar{\omega} \\
0 & 1 & 11+23 \bar{\omega} & 19+20 \bar{\omega}
\end{array}\right) \quad G^{6}=\left(\begin{array}{cccc}
1 & 0 & 11+20 \bar{\omega} & 6+23 \bar{\omega} \\
0 & 1 & 6+23 \bar{\omega} & 14+5 \bar{\omega}
\end{array}\right) \\
& G^{7}=\left(\begin{array}{cccc}
1 & 0 & 21+15 \bar{\omega} & 1+3 \bar{\omega} \\
0 & 1 & 1+3 \bar{\omega} & 4+10 \bar{\omega}
\end{array}\right) \quad G^{8}=\left(\begin{array}{cccc}
1 & 0 & 21+5 \bar{\omega} & 6+8 \bar{\omega} \\
0 & 1 & 6+8 \bar{\omega} & 4+20 \bar{\omega}
\end{array}\right) \\
& G^{9}=\left(\begin{array}{cccc}
1 & 0 & 1 & 11+18 \bar{\omega} \\
0 & 1 & 11+18 \bar{\omega} & 24
\end{array}\right) \quad G^{10}=\left(\begin{array}{cccc}
1 & 0 & 21+10 \bar{\omega} & 16+18 \bar{\omega} \\
0 & 1 & 16+18 \bar{\omega} & 4+15 \bar{\omega}
\end{array}\right) \\
& G^{11}=\left(\begin{array}{cccc}
1 & 0 & 11 & 16+8 \bar{\omega} \\
0 & 1 & 16+8 \bar{\omega} & 14
\end{array}\right) \quad G^{12}=\left(\begin{array}{cccc}
1 & 0 & 11+5 \bar{\omega} & 1+18 \bar{\omega} \\
0 & 1 & 1+18 \bar{\omega} & 14+20 \bar{\omega}
\end{array}\right) \\
& G^{13}=\left(\begin{array}{cccc}
1 & 0 & 21 & 21+23 \bar{\omega} \\
0 & 1 & 21+23 \bar{\omega} & 4
\end{array}\right) \quad G^{14}=\left(\begin{array}{cccc}
1 & 0 & 16+15 \bar{\omega} & 11+8 \bar{\omega} \\
0 & 1 & 11+8 \bar{\omega} & 9+10 \bar{\omega}
\end{array}\right) \\
& G^{15}=\left(\begin{array}{cccc}
1 & 0 & 6+10 \bar{\omega} & 21+8 \bar{\omega} \\
0 & 1 & 21+8 \bar{\omega} & 19+15 \bar{\omega}
\end{array}\right) \quad G^{16}=\left(\begin{array}{cccc}
1 & 0 & 16 & 6+3 \bar{\omega} \\
0 & 1 & 6+3 \bar{\omega} & 9
\end{array}\right) \\
& G^{17}=\left(\begin{array}{cccc}
1 & 0 & 11+15 \bar{\omega} & 21+13 \bar{\omega} \\
0 & 1 & 21+13 \bar{\omega} & 14+10 \bar{\omega}
\end{array}\right) \quad G^{18}=\left(\begin{array}{cccc}
1 & 0 & 21+20 \bar{\omega} & 11+13 \bar{\omega} \\
0 & 1 & 11+13 \bar{\omega} & 4+5 \bar{\omega}
\end{array}\right) \\
& G^{19}=\left(\begin{array}{cccc}
1 & 0 & 6+15 \bar{\omega} & 6+18 \bar{\omega} \\
0 & 1 & 6+18 \bar{\omega} & 19+10 \bar{\omega}
\end{array}\right) \quad G^{20}=\left(\begin{array}{cccc}
1 & 0 & 11+10 \bar{\omega} & 11+3 \bar{\omega} \\
0 & 1 & 11+3 \bar{\omega} & 14+15 \bar{\omega}
\end{array}\right) \\
& G^{21}=\left(\begin{array}{cccc}
1 & 0 & 16+10 \bar{\omega} & 1+23 \bar{\omega} \\
0 & 1 & 1+23 \bar{\omega} & 9+15 \bar{\omega}
\end{array}\right) \quad G^{22}=\left(\begin{array}{cccc}
1 & 0 & 6 & 1+13 \bar{\omega} \\
0 & 1 & 1+13 \bar{\omega} & 19
\end{array}\right) \\
& G^{23}=\left(\begin{array}{cccc}
1 & 0 & 16+20 \bar{\omega} & 21+18 \bar{\omega} \\
0 & 1 & 21+18 \bar{\omega} & 9+5 \bar{\omega}
\end{array}\right) \quad G^{24}=\left(\begin{array}{cccc}
1 & 0 & 6+20 \bar{\omega} & 16+3 \bar{\omega} \\
0 & 1 & 16+3 \bar{\omega} & 19+5 \bar{\omega}
\end{array}\right) \\
& G^{25}=\left(\begin{array}{cccc}
1 & 0 & 16+5 \bar{\omega} & 16+13 \bar{\omega} \\
0 & 1 & 16+13 \bar{\omega} & 9+20 \bar{\omega}
\end{array}\right) .
\end{aligned}
$$

References

[1] Jose Maria P. Balmaceda, Rowena Alma L. Betty, and Fidel R. Nemenzo, Mass formula for self-dual codes over $\mathbb{Z}_{p^{2}}$, Discrete Mathematics 308 (14) (2008), 2984-3002.
[2] A. R. Calderbank and N. J. A. Sloane, Modular and p-adic cyclic codes, Des. Codes Cryptography, 6 (1) (1995), 21-35.
[3] Whan-Hyuk Choi, Kwang Ho Kim, and Sook Young Park, The classification of self-orthogonal codes over $\mathbb{Z}_{p^{2}}$ of length ≤ 3, Korean Journal of Mathematics 22 (4) (2014), 725-742.
[4] Philippe Gaborit, Mass formulas for self-dual codes over \mathbb{Z}_{4} and $\mathbb{F}_{q}+u \mathbb{F}_{q}$ rings, Information Theory IEEE Transactions on 42 (4) (1996) 1222-1228.
[5] Fernando Q. Gouvêa, p-adic Numbers, Springer, 1997.
[6] Roger A. Hammons, Vijay P. Kumar, A. Robert Calderbank, N. Sloane, and Patrick Solé, The Z_{4}-linearity of Kerdock, Preparata, Goethals, and related codes, Information Theory IEEE Transactions on 40 (2) (1994), 301-319.
[7] Jon-Lark Kim and Yoonjin Lee, Construction of MDS self-dual codes over Galois rings, Designs, Codes and Cryptography, 45 (2) (2007), 247-258.
[8] Rudolf Lidl and Harald Niederreiter, Finite fields: Encyclopedia of mathematics and its applications, Computers \& Mathematics with Applications 33 (7) (1997), 136-136.
[9] Bernard R. McDonald, Finite rings with identity, volume 28. Marcel Dekker Incorporated, 1974.
[10] Kiyoshi Nagata, Fidel Nemenzo, and Hideo Wada, Constructive algorithm of self-dual error-correcting codes In Proc. of 11th International Workshop on Algebraic and Combinatorial Coding Theory, pages 215-220, 2008.
[11] Kiyoshi Nagata, Fidel Nemenzo, and Hideo Wada, The number of self-dual codes over $\mathbb{Z}_{p^{3}}$, Designs, Codes and Cryptography 50 (3) (2009), 291-303.
[12] Kiyoshi Nagata, Fidel Nemenzo, and Hideo Wada, Mass formula and structure of self-dual codes over $\mathbb{Z}_{2^{s}}$, Designs, codes and cryptography 67 (3) (2013), 293-316.
[13] Young Ho Park, The classification of self-dual modular codes, Finite Fields and Their Applications 17 (5) (2011), 442-460.
[14] Vera Pless, The number of isotropic subspaces in a finite geometry Atti. Accad. Naz. Lincei Rendic 39 (1965), 418-421.
[15] Vera Pless, On the uniqueness of the golay codes, Journal of Combinatorial theory 5 (3) (1968), 215-228.
[16] Zhe-Xian Wan, Finite Fields And Galois Rings, World Scientific Publishing Co., Inc., 2011.

Whan-hyuk Choi
Department of Mathematics
Kangwon National University
Chuncheon, 24341 Korea
E-mail: whanhyuk@gmail.com

