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BOUNDEDNESS IN NONLINEAR PERTURBED

DIFFERENTIAL SYSTEMS VIA t∞-SIMILARITY

Dong Man Im and Yoon Hoe Goo

Abstract. This paper shows that the solutions to nonlinear per-
turbed differential system

y′ = f(t, y) +

∫ t

t0

g(s, y(s))ds + h(t, y(t), T y(t))

have bounded properties. To show the bounded properties, we im-

pose conditions on the perturbed part
∫ t

t0
g(s, y(s))ds, h(t, y(t), Ty(t)),

and on the fundamental matrix of the unperturbed system y′ =
f(t, y) using the notion of h-stability.

1. Introduction and preliminaries

We consider the nonautonomous differential system

x′ = f(t, x), x(t0) = x0, (1.1)

where f ∈ C(R+ × Rn,Rn), R+ = [0,∞) and Rn is the Euclidean n-
space. We assume that the Jacobian matrix fx = ∂f/∂x exists and is
continuous on R+×Rn and f(t, 0) = 0. Also, we consider the perturbed
differential systems of (1.1)

y′ = f(t, y) +

∫ t

t0

g(s, y(s))ds+ h(t, y(t), T y(t)), y(t0) = y0, (1.2)

Received September 9, 2015. Revised November 17, 2016. Accepted December
20, 2016.

2010 Mathematics Subject Classification: 34D10, 34D20.
Key words and phrases: h-stability, t∞-similarity, bounded, nonlinear nonau-

tonomous system.
c© The Kangwon-Kyungki Mathematical Society, 2016.
This is an Open Access article distributed under the terms of the Creative com-

mons Attribution Non-Commercial License (http://creativecommons.org/licenses/by
-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduc-
tion in any medium, provided the original work is properly cited.



724 Dong Man Im and Yoon Hoe Goo

where g ∈ C(R+ × Rn,Rn), h ∈ C(R+ × Rn × Rn,Rn) , g(t, 0) = 0,
h(t, 0, 0) = 0, and T : C(R+,Rn)→ C(R+,Rn) is a continuous operator.

The symbol | · | will be used to denote any convenient vector norm
in Rn. For an n × n matrix A, define the norm |A| of A by |A| =
sup|x|≤1 |Ax|.

Let x(t, t0, x0) denote the unique solution of (1.1) with x(t0, t0, x0) =
x0, existing on [t0,∞). Then we can consider the associated variational
systems around the zero solution of (1.1) and around x(t), respectively,

v′(t) = fx(t, 0)v(t), v(t0) = v0 (1.3)

and

z′(t) = fx(t, x(t, t0, x0))z(t), z(t0) = z0. (1.4)

The fundamental matrix Φ(t, t0, x0) of (1.4) is given by

Φ(t, t0, x0) =
∂

∂x0
x(t, t0, x0),

and Φ(t, t0, 0) is the fundamental matrix of (1.3).
We recall some notions of h-stability [16].

Definition 1.1. The system (1.1) (the zero solution x = 0 of (1.1))
is called an h-system if there exist a constant c ≥ 1, and a positive
continuous function h on R+ such that

|x(t)| ≤ c |x0|h(t)h(t0)
−1

for t ≥ t0 ≥ 0 and |x0| small enough (here h(t)−1 = 1
h(t)

).

Definition 1.2. The system (1.1) (the zero solution x = 0 of (1.1))
is called
(hS)h-stable if there exists δ > 0 such that (1.1) is an h-system for
|x0| ≤ δ and h is bounded.

Pinto [15, 16] introduced the notion of h-stability (hS) with the inten-
tion of obtaining results about stability for a weakly stable system (at
least, weaker than those given exponential asymptotic stability) under
some perturbations. That is, Pinto extended the study of exponential
asymptotic stability to a variety of reasonable systems called h-systems.
Choi, Ryu [5] and Choi et al. [6] investigated bounds of solutions for non-
linear perturbed systems. Also, Goo [8,9,10,11] and Choi and Goo [3,4]
investigated boundedness of solutions for nonlinear perturbed systems.
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In this paper, we investigate bounds for solutions of the nonlinear
differential systems using the notion of t∞-similarity.

LetM denote the set of all n×n continuous matrices A(t) defined on
R+ and N be the subset of M consisting of those nonsingular matrices
S(t) that are of class C1 with the property that S(t) and S−1(t) are
bounded. The notion of t∞-similarity inM was introduced by Conti [7].

Definition 1.3. A matrix A(t) ∈M is t∞-similar to a matrix B(t) ∈
M if there exists an n × n matrix F (t) absolutely integrable over R+,
i.e., ∫ ∞

0

|F (t)|dt <∞

such that

Ṡ(t) + S(t)B(t)− A(t)S(t) = F (t) (1.5)

for some S(t) ∈ N .

The notion of t∞-similarity is an equivalence relation in the set of all
n×n continuous matrices on R+, and it preserves some stability concepts
[7, 12].

For the proof we prepare some related properties.

Lemma 1.4. [16] The linear system

x′ = A(t)x, x(t0) = x0, (1.6)

where A(t) is an n × n continuous matrix, is an h-system (respectively
h-stable) if and only if there exist c ≥ 1 and a positive and continuous
(respectively bounded) function h defined on R+ such that

|φ(t, t0)| ≤ c h(t)h(t0)
−1 (1.7)

for t ≥ t0 ≥ 0, where φ(t, t0) is a fundamental matrix of (1.6).

We need Alekseev formula to compare between the solutions of (1.1)
and the solutions of perturbed nonlinear system

y′ = f(t, y) + g(t, y), y(t0) = y0, (1.8)

where g ∈ C(R+×Rn,Rn) and g(t, 0) = 0. Let y(t) = y(t, t0, y0) denote
the solution of (1.8) passing through the point (t0, y0) in R+ × Rn.

The following is a generalization to nonlinear system of the variation
of constants formula due to Alekseev [1].
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Lemma 1.5. [2] Let x and y be a solution of (1.1) and (1.8), re-
spectively. If y0 ∈ Rn, then for all t ≥ t0 such that x(t, t0, y0) ∈ Rn,
y(t, t0, y0) ∈ Rn,

y(t, t0, y0) = x(t, t0, y0) +

∫ t

t0

Φ(t, s, y(s)) g(s, y(s)) ds.

Theorem 1.6. [5] If the zero solution of (1.1) is hS, then the zero
solution of (1.3) is hS.

Theorem 1.7. [6] Suppose that fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0))
for t ≥ t0 ≥ 0 and |x0| ≤ δ for some constant δ > 0. If the solution
v = 0 of (1.3) is hS, then the solution z = 0 of (1.4) is hS.

Lemma 1.8. (Bihari − type inequality) Let u, λ ∈ C(R+), w ∈
C((0,∞)) and w(u) be nondecreasing in u. Suppose that, for some
c > 0,

u(t) ≤ c+

∫ t

t0

λ(s)w(u(s))ds, t ≥ t0 ≥ 0.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

λ(s)ds
]
,

where t0 ≤ t < b1 , W (u) =
∫ u
u0

ds
w(s)

, W−1(u) is the inverse of W (u),

and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

λ(s)ds ∈ domW−1
}
.

Lemma 1.9. [3] Let u, λ1, λ2, λ3λ4, λ5, λ6 ∈ C(R+), w ∈ C((0,∞))
and w(u) be nondecreasing in u, u ≤ w(u). Suppose that for some
c > 0,

u(t) ≤ c+

∫ t

t0

λ1(s)u(s)ds+

∫ t

t0

λ2(s)w(u(s))ds

+

∫ t

t0

λ3(s)

∫ s

t0

λ4(τ)w(u(τ))dτds

+

∫ t

t0

λ5(s)

∫ s

t0

λ6(τ)w(u(τ))dτds, 0 ≤ t0 ≤ t.
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Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(λ1(s) + λ2(s) + λ3(s)

∫ s

t0

λ4(τ)dτ

+λ5(s)

∫ s

t0

λ6(τ)dτ)ds
]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 1.8,
and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

(λ1(s) + λ2(s) + λ3(s)

∫ s

t0

λ4(τ)dτ

+λ5(s)

∫ s

t0

λ6(τ)dτ)ds ∈ domW−1
}
.

Lemma 1.10. [3] Let u, λ1, λ2, λ3, λ4, λ5, λ6, λ7 ∈ C(R+), w ∈ C((0,∞)),
and w(u) be nondecreasing in u, u ≤ w(u). Suppose that for some c > 0
and 0 ≤ t0 ≤ t,

u(t) ≤ c+

∫ t

t0

λ1(s)u(s)ds+

∫ t

t0

λ2(s)

∫ s

t0

(λ3(τ)u(τ)

+λ4(τ)

∫ τ

t0

λ5(r)w(u(r))dr)dτds+

∫ t

t0

λ6(s)

∫ s

t0

λ7(τ)w(u(τ))dτds.

Then

u(t) ≤ W−1
[
W (c) +

∫ t
t0

(λ1(s) + λ2(s)
∫ s
t0

(λ3(τ) + λ4(τ)
∫ τ
t0
λ5(r)dr)dτ

+λ6(s)
∫ s
t0
λ7(τ)dτ)ds

]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 1.8,
and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t
t0

(λ1(s) + λ2(s)
∫ s
t0

(λ3(τ) + λ4(τ)
∫ τ
t0
λ5(r)dr)dτ

+λ6(s)
∫ s
t0
λ7(τ)dτ)ds ∈ domW−1

}
.

For the proof we need the following corollary from Lemma 1.10.

Corollary 1.11. Let u, λ1, λ2, λ3, λ4, λ5, λ6 ∈ C(R+), w ∈ C((0,∞)),
and w(u) be nondecreasing in u, u ≤ w(u). Suppose that for some c > 0
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and 0 ≤ t0 ≤ t,

u(t) ≤ c+

∫ t

t0

λ1(s)

∫ s

t0

(λ2(τ)u(τ) + λ3(τ)

∫ τ

t0

λ4(r)w(u(r))dr)dτds

+

∫ t

t0

λ5(s)

∫ s

t0

λ6(τ)w(u(τ))dτds.

Then

u(t) ≤ W−1
[
W (c) +

∫ t
t0

(λ1(s)
∫ s
t0

(λ2(τ) + λ3(τ)
∫ τ
t0
λ4(r)dr)dτ

+λ5(s)
∫ s
t0
λ6(τ)dτ)ds

]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 1.8,
and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t
t0

(λ1(s)
∫ s
t0

(λ2(τ) + λ3(τ)
∫ τ
t0
λ4(r)dr)dτ

+λ5(s)
∫ s
t0
λ6(τ)dτ)ds ∈ domW−1

}
.

Lemma 1.12. [8] Let u, λ1, λ2, λ3, λ4, λ5, λ6, λ7 ∈ C(R+), w ∈ C((0,∞)),
and w(u) be nondecreasing in u, u ≤ w(u). Suppose that for some c > 0
and 0 ≤ t0 ≤ t,

u(t) ≤ c+

∫ t

t0

λ1(s)w(u(s))ds+

∫ t

t0

λ2(s)

∫ s

t0

(λ3(τ)u(τ)

+λ4(τ)

∫ τ

t0

λ5(r)u(r)dr)dτds+

∫ t

t0

λ6(s)

∫ s

t0

λ7(τ)w(u(τ))dτds.

Then

u(t) ≤ W−1
[
W (c) +

∫ t
t0

(λ1(s) + λ2(s)
∫ s
t0

(λ3(τ) + λ4(τ)
∫ τ
t0
λ5(r)dr)dτ

+λ6(s)
∫ s
t0
λ7(τ)dτ)ds

]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 1.8,
and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t
t0

(λ1(s) + λ2(s)
∫ s
t0

(λ3(τ) + λ4(τ)
∫ τ
t0
λ5(r)dr)dτ

+λ6(s)
∫ s
t0
λ7(τ)dτ)ds ∈ domW−1

}
.

We prepare the following corollary from Lemma 1.12 that is used in
proving the theorem.
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Corollary 1.13. Let u, λ1, λ2, λ3, λ4, λ5 ∈ C(R+), w ∈ C((0,∞)),
and w(u) be nondecreasing in u, u ≤ w(u). Suppose that for some c > 0
and 0 ≤ t0 ≤ t,

u(t) ≤ c+

∫ t

t0

λ1(s)w(u(s))ds+

∫ t

t0

λ2(s)

∫ s

t0

λ3(τ)u(τ)dτds

+

∫ t

t0

λ4(s)

∫ s

t0

λ5(τ)w(u(τ))dτds.

Then

u(t) ≤ W−1
[
W (c) +

∫ t
t0

(λ1(s) + λ2(s)
∫ s
t0
λ3(τ)dτ

+λ4(s)
∫ s
t0
λ5(τ)dτ)ds

]
,

where t0 ≤ t < b1, W , W−1 are the same functions as in Lemma 1.8,
and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t
t0

(λ1(s) + λ2(s)
∫ s
t0
λ3(τ)dτ

+λ4(s)
∫ s
t0
λ5(τ)dτ)ds ∈ domW−1

}
.

2. Main Results

In this section, we investigate boundedness for solutions of nonlinear
perturbed differential systems via t∞-similarity.

To obtain the bounded result, the following assumptions are needed:
(H1) fx(t, 0) is t∞-similar to fx(t, x(t, t0, x0)) for t ≥ t0 ≥ 0 and

|x0| ≤ δ for some constant δ > 0.
(H2) The solution x = 0 of (1.1) is hS with the increasing function h.
(H3) w(u) is nondecreasing in u such that u ≤ w(u) and 1

v
w(u) ≤

w(u
v
) for some v > 0.

Theorem 2.1. Let a, b, c, k, w ∈ C(R+). Suppose that (H1), (H2),
(H3), and g in (1.2) satisfies

|g(t, y(t))| ≤ a(t)w(|y(t)|) + b(t)

∫ t

t0

k(s)w(|y(s)|)ds (2.1)

and

|h(t, y(t), T y(t))| ≤
∫ t

t0

c(s)|y(s)|ds, (2.2)
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where a, b, c, k ∈ L1(R+). Then, any solution y(t) = y(t, t0, y0) of (1.2)
is bounded on [t0,∞) and it satisfies

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

∫ s

t0

(a(τ) + c(τ) + b(τ)

∫ τ

t0

k(r)dr)dτds
]
,

where W , W−1 are the same functions as in Lemma 1.8, and

b1 = sup
{
t ≥ t0 : W (c) + c2

∫ t

t0

∫ s

t0

(a(τ) + c(τ)

+b(τ)

∫ τ

t0

k(r)dr)dτds ∈ domW−1
}
.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of (1.1)
and (1.2), respectively. By Theorem 1.6, since the solution x = 0 of (1.1)
is hS, the solution v = 0 of (1.3) is hS. Using (H1), by Theorem 1.7, the
solution z = 0 of (1.4) is hS. Using the nonlinear variation of constants
formula Lemma 1.5, Lemma 1.4, together with (2.1), and (2.2), we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|
(∫ s

t0

|g(τ, y(τ))|dτ + |h(s, y(s), T y(s))|
)
ds

≤ c1|y0|h(t)h(t0)
−1 +

∫ t

t0

c2h(t)h(s)−1
(∫ s

t0

(a(τ)w(|y(τ)|)

+ b(τ)

∫ τ

t0

k(r)w(|y(r)|)dr)dτ +

∫ s

t0

c(τ)|y(τ)|dτ
)
ds.

Applying (H2) and (H3), we obtain

|y(t)| ≤ c1|y0|h(t)h(t0)
−1 +

∫ t

t0

c2h(t)
(∫ s

t0

c(τ)
|y(τ)|
h(τ)

dτ

+

∫ s

t0

(a(τ)w(
|y(τ)|
h(τ)

) + b(τ)

∫ τ

t0

k(r)w(
|y(r)|
h(r)

)dr)dτ
)
ds.

Set u(t) = |y(t)||h(t)−1|. Then, by Corollary 1.11, we have

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

∫ s

t0

(a(τ) + c(τ) + b(τ)

∫ τ

t0

k(r)dr)dτds
]
,

where c = c1|y0|h(t0)
−1. From the above estimation, we obtain the

desired result. Thus, the theorem is proved.
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Remark 2.2. Letting c(s) = 0 in Theorem 2.1, we obtain the similar
result as that of Theorem 3.6 in [9].

Theorem 2.3. Let a, b, c, k, w ∈ C(R+). Suppose that (H1), (H2),
(H3), and g in (1.2) satisfies∫ t

t0

|g(s, y(s))|ds ≤ a(t)w(|y(t)|) + b(t)

∫ t

t0

k(s)|y(s)|ds, t ≥ t0 ≥ 0,

(2.3)
and

|h(t, y(t), T y(t))| ≤
∫ t

t0

c(s)w(|y(s)|)ds, (2.4)

where a, b, c, k ∈ L1(R+). Then, any solution y(t) = y(t, t0, y0) of (1.2)
is bounded on [t0,∞) and it satisfies

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(a(s) +

∫ s

t0

c(τ)dτ + b(s)

∫ s

t0

k(τ)dτ)ds
]
,

where t0 ≤ t < b1 and W , W−1 are the same functions as in Lemma 1.8
and

b1 = sup
{
t ≥ t0 : W (c) + c2

∫ t

t0

(a(s) +

∫ s

t0

c(τ)dτ

+b(s)

∫ s

t0

k(τ)dτ)ds ∈ domW−1
}
.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(1.1) and (1.2), respectively. By the same argument as in the proof in
Theorem 2.1, the solution z = 0 of (1.4) is hS. Applying Lemma 1.4,
lemma 1.5, together with (2.3) and (2.4) we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|(
∫ s

t0

|g(τ, y(τ))|dτ + |h(s, y(s), T y(s))|)ds

≤ c1|y0|h(t)h(t0)
−1 +

∫ t

t0

c2h(t)h(s)−1
(
a(s)w(|y(s)|)

+ b(s)

∫ s

t0

k(τ)|y(τ)|dτ +

∫ s

t0

c(τ)w(|y(τ)|)dτ
)
ds.
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It follows from (H2) and (H3), we obtain

|y(t)| ≤ c1|y0|h(t)h(t0)
−1 +

∫ t

t0

c2h(t)a(s)w(
|y(s)|
h(s)

)ds

+

∫ t

t0

c2h(t)(

∫ s

t0

c(τ)w(
|y(τ)|
h(τ)

)dτ + b(s)

∫ s

t0

k(τ)
|y(τ)|
h(τ)

dτ)ds.

Set u(t) = |y(t)||h(t)−1|. Now an application of Corollary 1.13 yields

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(a(s) +

∫ s

t0

c(τ)dτ + b(s)

∫ s

t0

k(τ)dτ)ds
]
,

where c = c1|y0|h(t0)
−1. Thus, any solution y(t) = y(t, t0, y0) of (1.2) is

bounded on [t0,∞), and so the proof is complete.

Remark 2.4. Letting c(s) = 0 in Theorem 2.3, we obtain the same
result as that of Theorem 3.4 in [10].

Theorem 2.5. Let a, b, c, k, q, w ∈ C(R+). Suppose that (H1), (H2),
(H3), and g in (1.2) satisfies

|g(t, y(t))| ≤ a(t)w(|y(t)|) + b(t)

∫ t

t0

k(s)|y(s)|ds (2.5)

and

|h(t, y(t), T y(t))| ≤ c(t)(w(|y(t)|) + |Ty(t)|), |Ty(t)| ≤
∫ t

t0

q(s)|y(s)|ds,

(2.6)
where t ≥ t0 ≥ 0 and a, b, c, k, q ∈ L1(R+). Then, any solution y(t) =
y(t, t0, y0) of (1.2) is bounded on on [t0,∞) and it satisfies

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

[c(s) +

∫ s

t0

(a(τ) + b(τ)

∫ τ

t0

k(r)dr)dτ

+c(s)

∫ s

t0

q(τ)dτ ]ds
]
,

where W , W−1 are the same functions as in Lemma 1.8, and

b1 = sup
{
t ≥ t0 : W (c) + c2

∫ t

t0

[c(s) +

∫ s

t0

(a(τ) + b(τ)

∫ τ

t0

k(r)dr)dτ

+c(s)

∫ s

t0

q(τ)dτ ]ds ∈ domW−1
}
.
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Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(1.1) and (1.2), respectively. By the same argument as in the proof in
Theorem 2.1, the solution z = 0 of (1.4) is hS. From Lemma 1.4, Lemma
1.5, together with (2.5), and (2.6), we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|(
∫ s

t0

|g(τ, y(τ))|dτ + |h(s, y(s), T y(s))|)ds

≤ c1|y0|h(t)h(t0)
−1 +

∫ t

t0

c2h(t)h(s)−1
(∫ s

t0

(a(τ)w(|y(τ)|)

+ b(τ)

∫ τ

t0

k(r)|y(r)|dr)dτ + c(s)(w(|y(s)|) +

∫ s

t0

q(τ)|y(τ)|dτ)
)
ds.

Using the assumptions (H2) and (H3), we obtain

|y(t)| ≤ c1|y0|h(t)h(t0)
−1 +

∫ t

t0

c2h(t)
(
c(s)w(

|y(s)|
h(s)

)

+

∫ s

t0

(a(τ)w(
|y(τ)|
h(τ)

) + b(τ)

∫ τ

t0

k(r)
|y(r)|
h(r)

dr)dτ + c(s)

∫ s

t0

q(τ)
|y(τ)|
h(τ)

dτ
)
ds.

Set u(t) = |y(t)||h(t)|−1. Then, by Lemma 1.12, we have

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

[c(s) +

∫ s

t0

(a(τ) + b(τ)

∫ τ

t0

k(r)dr)dτ

+c(s)

∫ s

t0

q(τ)dτ ]ds
]
,

where c = c1|y0|h(t0)
−1. The above estimation yields the desired result

since the function h is bounded. Hence the proof is complete.

Remark 2.6. Letting a(t) = b(t) and c(t) = 0 in Theorem 2.5, we
obtain the similar result as that of Theorem 3.7 in [10].

Theorem 2.7. Let a, b, k, q, w ∈ C(R+). Suppose that (H1), (H2),
(H3), and g in (1.2) satisfies∫ t

t0

|g(s), y(s))|ds ≤ a(t)
(
|y(t)|+

∫ t

t0

k(s)w(|y(s)|)ds
)

(2.7)

and

|h(t, y(t), T y(t))| ≤ b(t)(w(|y(t)|)+|Ty(t)|), |Ty(t)| ≤
∫ t

t0

q(s)w(|y(s)|)ds,

(2.8)
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where t ≥ t0 ≥ 0 and a, b, k, q ∈ L1(R+). Then, any solution y(t) =
y(t, t0, y0) of (1.2) is bounded on [t0,∞) and it satisfies

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(a(s) + b(s) + a(s)

∫ s

t0

k(τ)dτ

+b(s)

∫ s

t0

q(τ)dτ)ds
]
,

where t0 ≤ t < b1 and W , W−1 are the same functions as in Lemma 1.8
and

b1 = sup
{
t ≥ t0 : W (c) + c2

∫ t

t0

(a(s) + b(s) + a(s)

∫ s

t0

k(τ)dτ

+b(s)

∫ s

t0

q(τ)dτ)ds ∈ domW−1
}
.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of
(1.1) and (1.2), respectively. By the same argument as in the proof in
Theorem 2.1, the solution z = 0 of (1.4) is hS. By Lemma 1.4, Lemma
1.5, together with (2.7), and (2.8), we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|(
∫ s

t0

|g(τ, y(τ))|dτ + |h(s, y(s), T y(s))|)ds

≤ c1|y0|h(t)h(t0)
−1 +

∫ t

t0

c2h(t)h(s)−1
(
a(s)|y(s)|+ b(s)w(|y(s)|)

+ a(s)

∫ s

t0

k(τ)w(|y(τ)|)dτ + b(s)

∫ s

t0

q(τ))w(|y(τ)|)dτ
)
ds.

By the assumptions (H2) and (H3), we obtain

|y(t)| ≤ c1|y0|h(t)h(t0)
−1 +

∫ t

t0

c2h(t)
(
a(s)
|y(s)|
h(s)

+ b(s)w(
|y(s)|
h(s)

)

+b(s)

∫ s

t0

q(τ)w(
|y(τ)|
h(τ)

)dτ + a(s)

∫ s

t0

k(τ)w(
|y(τ)|
h(τ)

)dτ
)
ds.

Set u(t) = |y(t)||h(t)−1|. Now an application of Lemma 1.9 yields

|y(t)| ≤ h(t)W−1
[
W (c) + c2

∫ t

t0

(a(s) + b(s) + a(s)

∫ s

t0

k(τ)dτ

+b(s)

∫ s

t0

q(τ)dτ)ds
]
.



Boundedness in nonlinear differential systems via t∞-similarity 735

Thus any solution y(t) = y(t, t0, y0) of (1.2) is bounded on [t0,∞). This
completes the proof.

Remark 2.8. Letting b(t) = 0 in Theorem 2.7, we obtain the similar
result as that of Theorem 3.3 in [9].

Acknowledgement. The authors are very grateful for the referee’s
valuable comments.
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