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BOUNDEDNESS IN NONLINEAR PERTURBED
DIFFERENTIAL SYSTEMS VIA ¢, -SIMILARITY

DonNG MAN IM AND YOoON HOE Goo

ABSTRACT. This paper shows that the solutions to nonlinear per-
turbed differential system

Y = flty) + / o(s,5(5))ds + h(t, y(t), Ty (1))

to
have bounded properties. To show the bounded properties, we im-
pose conditions on the perturbed part ftto g(s,y(s))ds, h(t,y(t), Ty(t)),
and on the fundamental matrix of the unperturbed system y’ =
f(t,y) using the notion of h-stability.

1. Introduction and preliminaries

We consider the nonautonomous differential system

= f(t,x), x(ty) = xo, (1.1)
where f € C(RT x R"R"), RT = [0,00) and R" is the Euclidean n-
space. We assume that the Jacobian matrix f, = 0f/0x exists and is
continuous on RT x R™ and f(¢,0) = 0. Also, we consider the perturbed
differential systems of (1.1)
t

J = ft,y) + / o(s,y())ds + h(t, y(6), Ty(0). y(to) = o (1.2)

to

Received September 9, 2015. Revised November 17, 2016. Accepted December
20, 2016.

2010 Mathematics Subject Classification: 34D10, 34D20.

Key words and phrases: h-stability, t.o-similarity, bounded, nonlinear nonau-
tonomous system.

© The Kangwon-Kyungki Mathematical Society, 2016.

This is an Open Access article distributed under the terms of the Creative com-
mons Attribution Non-Commercial License (http://creativecommons.org/licenses/by
-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduc-
tion in any medium, provided the original work is properly cited.



724 Dong Man Im and Yoon Hoe Goo

where g € C(RT x R",R"), h € C(RT x R" x R",R") , ¢(t,0) = 0,
h(t,0,0) =0, and T : C(R*T,R™) — C(R",R") is a continuous operator.

The symbol | - | will be used to denote any convenient vector norm
in R". For an n x n matrix A, define the norm |A| of A by |A| =
SUp|, <1 |A|.

Let x(t, to, x9) denote the unique solution of (1.1) with z(tg, to, zo) =
xg, existing on [ty,00). Then we can consider the associated variational
systems around the zero solution of (1.1) and around xz(t), respectively,

v'(t) = fa(t,0)u(t), v(to) = vo (1.3)
and
2'(t) = fo(t,x(t, to, x0))2(t), 2(tg) = 2o. (1.4)
The fundamental matrix ®(¢, ¢y, zo) of (1.4) is given by

0
D(t,t = —ux(¢t, ¢
(¢, to, o) 89[:03:( , to, o),
and ®(t,1y,0) is the fundamental matrix of (1.3).
We recall some notions of h-stability [16].

DEFINITION 1.1. The system (1.1) (the zero solution z = 0 of (1.1))
is called an h-system if there exist a constant ¢ > 1, and a positive
continuous function h on R such that

|2(t)] < c|wol h(t) h(to) ™

for t > to > 0 and |zg| small enough (here h(t)™! = ﬁ)

DEFINITION 1.2. The system (1.1) (the zero solution z = 0 of (1.1))
is called
(hS)h-stable if there exists § > 0 such that (1.1) is an h-system for
|zo| < & and h is bounded.

Pinto [15, 16] introduced the notion of h-stability (hS) with the inten-
tion of obtaining results about stability for a weakly stable system (at
least, weaker than those given exponential asymptotic stability) under
some perturbations. That is, Pinto extended the study of exponential
asymptotic stability to a variety of reasonable systems called h-systems.
Choi, Ryu [5] and Choi et al. [6] investigated bounds of solutions for non-
linear perturbed systems. Also, Goo [8,9,10,11] and Choi and Goo [3,4]
investigated boundedness of solutions for nonlinear perturbed systems.
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In this paper, we investigate bounds for solutions of the nonlinear
differential systems using the notion of ¢, -similarity.

Let M denote the set of all n x n continuous matrices A(t) defined on
R* and N be the subset of M consisting of those nonsingular matrices
S(t) that are of class C' with the property that S(¢) and S~*(¢) are
bounded. The notion of t,-similarity in M was introduced by Conti [7].

DEFINITION 1.3. A matrix A(t) € M is to-similar to a matrix B(t) €
M if there exists an n x n matrix F(t) absolutely integrable over R,
ie.,

/Oo |F(t)]dt < oo

such that

S(t)+ S(t)B(t) — A(t)S(t) = F(t) (1.5)
for some S(t) € N.

The notion of t,.-similarity is an equivalence relation in the set of all
n X n continuous matrices on R*, and it preserves some stability concepts
[7, 12].

For the proof we prepare some related properties.

LEMMA 1.4. [16] The linear system
' = A(t)x, z(ty) = xo, (1.6)

where A(t) is an n X n continuous matrix, is an h-system (respectively
h-stable) if and only if there exist ¢ > 1 and a positive and continuous
(respectively bounded) function h defined on R" such that

|6(t, t0)| < ch(t) h(to) ™ (L.7)
for t >ty > 0, where ¢(t,ty) is a fundamental matrix of (1.6).

We need Alekseev formula to compare between the solutions of (1.1)
and the solutions of perturbed nonlinear system

v = fty) +9(t,y), ylto) = vo, (1.8)

where g € C(RT x R",R™) and ¢(¢,0) = 0. Let y(t) = y(¢, o, yo) denote
the solution of (1.8) passing through the point (o, ) in Rt x R™.

The following is a generalization to nonlinear system of the variation
of constants formula due to Alekseev [1].
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LEMMA 1.5. [2] Let x and y be a solution of (1.1) and (1.8), re-
spectively. If yo € R", then for all t > t, such that x(t,ty,y0) € R",

y(ta th yD) € Rn:

¢
Wltstosg) = 2(tto, o) + | B(t.5,5(5)) (5. 3(5) ds
to
THEOREM 1.6. [5] If the zero solution of (1.1) is hS, then the zero
solution of (1.3) is hS.

THEOREM 1.7. [6] Suppose that f,(t,0) is ts-similar to f,(t, z(t,to, xo))
for t >ty > 0 and |xo| < & for some constant 6 > 0. If the solution
v =0 of (1.3) is hS, then the solution z = 0 of (1.4) is hS.

LEMMA 1.8. (Bihari — type inequality) Let u,A € C(R"), w €
C((0,00)) and w(u) be nondecreasing in u. Suppose that, for some
c>0,

u(t) <c+ /t/\(s)w(u(s))ds, t >t >0.
Then 0
u(t) < W1 [W(c) +/ /\(s)ds],

to

where to <t < by, W(u) = [ -2 W-L(u) is the inverse of W (u),

up w(s)’

and

t
b, = sup {t >ty : W(e) +/ A(s)ds € domW’l}.

to

LEMMA 1.9. [3] Let u, )\1,)\2,)\3)\4,)\5,)\6 € C(R+), w € C((0,00))
and w(u) be nondecreasing in u, u < w(u). Suppose that for some
c>0,

u(t) §c+/ Al(s)u(s)ds—i-/ Aa(s)w(u(s))ds

to to

+ /  Mals) / (P (u(r))drds

to to

+ /t As(s) /S Xe(T)w(u(T))drds, 0 <ty <t.

to to
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Then

u(t) < W1 [W(c) + /t()\l(s) + Aa(s) + Asz(s) /S M(T)dT

to to

FAs(s) / S >\6(T)d7)ds] ,

to

where to <t < by, W, W~ are the same functions as in Lemma 1.8,
and

S

by = sup {t > to: W(e) + /t()\l(s) + Xa(s) + )\3(5)/ Ay(T)dT

to to

s (s) / “Ao(r)dr)ds € domW—l}.

to

LEMMA 1.10. [3] Let u, )\1, )\2, )\37 )\47 )\57 )\67 A7 € C(R+), w C((O, OO)),
and w(u) be nondecreasing in u, u < w(u). Suppose that for some ¢ > 0
and 0 S to S t,

w e [ M(uls)ds + A hs) [ oot

() /t N () (u(r))dr)drds + /t: N (s) /t Me(r)w(u(r))drds.

Then

u(t) <w [ &)+ JL () + Nals) [ alr) + Na(r) J7 Ns(r)dr)dr
+a(s) fis Ar(7)dr)ds|,

where ty < t < by, W, W1 are the same functions as in Lemma 1.8,
and

b= sup {t > 10 W(e) + [ () + Aals) [ () + Ma(r) J7 As(r)dr)dr
(s ft Xe(7)dr)ds € domW |,

For the proof we need the following corollary from Lemma 1.10.

COROLLARY 1.11. Let u, A1, Aa, A3, As, A5, A\g € C(R+), w e C((O, OO)),
and w(u) be nondecreasing in u, u < w(u). Suppose that for some ¢ > 0
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and 0 <ty <t,

u(t) < c—l—/ A1(s) /S(AQ(T)U(T) + A3(7) /T M () w(u(r))dr)drds

to to to

; / Ao(s) / ol )w(u(r))drds.
Then O 0

u(t) SW‘l[W(c)Jr S (s) [ a(r) + Aa(r) [ Aa(r)dr)dr
+25(5) fi Aa(r)dr)ds]

where ty < t < by, W, W1 are the same functions as in Lemma 1.8,
and

by = sup {t >ty : W(e) + ftt (Ai(s) ft (A7) + As(T )LZ Ay(r)dr)dr
F25(5) fis Ao(7)dr)ds € domW .

LEMMA 1.12. [8] Let u, )\1, )\2, )\3, )\4, )\5, )\6, A7 € C(R+), w € C((O, OO)),
and w(u) be nondecreasing in u, u < w(u). Suppose that for some ¢ > 0
and 0 <ty <t,

uy e+ [ n(lu(s))ds + / h(s) [ Gatryutr)

to to to

A7) /t "N (F)u(r)dr)drds + /t: No(s) /t Ne(7)w(u(r))drds.

Then
u(t) gw—[ &)+ JL ) + Nals) [ a(r) + Ma(r) J7 As(r)dr)dr

+a(s) fis Ae(7)dr)ds|,

where ty < t < by, W, W~ are the same functions as in Lemma 1.8,
and

by = sup {t >t W)+ j; (A1(s) + Aa(s )LZ(A3<T) + Ay (7) ftz As(r)dr)dr
FAa(s) fis Ar(7)dr)ds € domW .

We prepare the following corollary from Lemma 1.12 that is used in
proving the theorem.
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COROLLARY 1.13. Let u, A1, Aa, A3, Ay, As € C(RT), w € C((0,00)),
and w(u) be nondecreasing in u, u < w(u). Suppose that for some ¢ > 0
and 0 <ty <t,

u(t) < c+ / () (u(s))ds + / " Mals) / Ao()u(r)drds

to to to

+ /t: M(s) /t s(7)w(u(r))drds.

u(t) gw—l[ ¢) + [ (M(s) + Xals) [; As(r)dr

Then

Fu(s) fi Aa(r)dr)ds]

where ty < t < by, W, W1 are the same functions as in Lemma 1.8,
and

bl = Ssup {t > to +j;5 )\1 +)\2 )ftf) )\5(’7’)(17’

Fi(5) Ji As(r)dr)ds € domW 1 ]

2. Main Results

In this section, we investigate boundedness for solutions of nonlinear
perturbed differential systems via f.,-similarity.

To obtain the bounded result, the following assumptions are needed:

(H1) f.(t,0) is too-similar to f, (¢, x(t, o, x)) for t > to > 0 and
|zo| < § for some constant § > 0.

(H2) The solution x = 0 of (1.1) is hS with the increasing function h.

(H3) w(u) is nondecreasing in u such that v < w(u) and Lw(u) <
w(%) for some v > 0.

THEOREM 2.1. Let a,b,c,k,w € C(R'). Suppose that (H1), (H2),
(H3), and g in (1.2) satisfies

l9(t, ()] < a®)w(ly(®)]) + b(t)/ k(s)w(ly(s)Dds — (2.1)

to
and

At y(t), Ty(t))] S/ c(s)ly(s)lds, (2.2)

to
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where a,b,c,k € L'(RT). Then, any solution y(t) = y(t,to, yo) of (1.2)
is bounded on [ty,c0) and it satisfies

y(t)] < h(HW +@//‘ +MXKMWMM@,

where W, W= are the same functions as in Lemma 1.8, and

t s
blzsup{tZtOIW(C)+02/ /(G(T)+CT
to Jto

+0(7) /T k(r)dr)drds € domW_l}.

to

Proof. Let z(t) = x(t, 19, yo) and y(t) = y(¢, to, yo) be solutions of (1.1)
and (1.2), respectively. By Theorem 1.6, since the solution z = 0 of (1.1)
is hS, the solution v = 0 of (1.3) is hS. Using (H1), by Theorem 1.7, the
solution z = 0 of (1.4) is hS. Using the nonlinear variation of constants
formula Lemma 1.5, Lemma 1.4, together with (2.1), and (2.2), we have

e |+/ﬁ@tsy |mrm>Wh+mww@M@@mW“

< erlyolh(t) hito) ! + /cmuM@*(/IWMMMﬂD

to to

+b(7) /T k(r)w(|y(r)|)dr)dr + /

to to

S

c(m)|y(7) |dr> ds

Applying (H2) and (H3), we obtain

|MM§qmmwmm4+/gﬂ@(fdﬂequ

to to (7—)
+ [ a8 o) [ kol hanar)as
Set u(t) = |y(t)||h(t)7|. Then, by Corollary 1.11, we have
ly()| < ()W +C2/ / T)+b(T )/tTk('r’)dr)des],

where ¢ = c¢1|yo| h(ty)~!. From the above estimation, we obtain the

desired result. Thus, the theorem is proved. O
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REMARK 2.2. Letting ¢(s) = 0 in Theorem 2.1, we obtain the similar
result as that of Theorem 3.6 in [9].

THEOREM 2.3. Let a,b,c,k,w € C(R'). Suppose that (H1), (H2),
(H3), and g in (1.2) satisfies

/t 95, y(s))lds < a(tyw(ly()]) + b() / b(s)|y(s)|ds, £ > 1o > 0,
' ' (2.3)
d

an

It y(6), Ty(8)] < / (syw(Jy(s))ds, (2.4)

to

where a,b,c,k € L'(RT). Then, any solution y(t) = y(t,to, yo) of (1.2)
is bounded on [ty,c0) and it satisfies

S

ly(t)| < h(t)W ! [W(c) + ¢y /t(a(s) - /S c(r)dr + b(s)/

to to to

k(T)dT)dS} :

where ty <t < b, and W, W~! are the same functions as in Lemma 1.8
and

b= sup {t > 10 : W(e) + e /t(a(s)—f—/sc(r)dT

to to

+b(s)/ k(T)dr)ds € domW_l}.
to

Proof. Let x(t) = x(t,t9,y0) and y(t) = y(t,to,y0) be solutions of
(1.1) and (1.2), respectively. By the same argument as in the proof in
Theorem 2.1, the solution z = 0 of (1.4) is hS. Applying Lemma 1.4,
lemma 1.5, together with (2.3) and (2.4) we have

y(0)] < J2(t)] + / B, 5, y())|( / g(ry(r)ldr + [h(s y(s), Ty(s)))ds
< cululh(t) ta) "+ [ eab@h(s) " (als)u(ly()

to

+ b(s) /S k(T)|y(T)ldr + /S C(T)w(|y(7')\)d7'> ds.

to to
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It follows from (H2) and (H3), we obtain

900 < il ) + [ c2h<t>a<s>w<'z§—j§‘>ds

+ [ent [ SC(T)w(%)de(s) / Sk(r)%dr)ds.

to to to

Set u(t) = |y(t)||h(t)~'|. Now an application of Corollary 1.13 yields

ly(1)] < h(t)W‘l[W(c)+02 /t(a(s)+/sc(7')d7+b(s) /Sk‘(T)dT)dS],

to to to
where ¢ = ¢1]yo| h(to) ™. Thus, any solution y(t) = y(t, to,yo) of (1.2) is
bounded on [ty, 00), and so the proof is complete. ]

REMARK 2.4. Letting ¢(s) = 0 in Theorem 2.3, we obtain the same
result as that of Theorem 3.4 in [10].

THEOREM 2.5. Let a,b,c, k,q,w € C(R"). Suppose that (H1), (H2),
(H3), and g in (1.2) satisfies

9L, y(1)] < a(t)w(ly(t)]) +b(t)/ k(s)ly(s)lds (2.5)

to
and

[t y (@), Ty(6)] < c@)(wlly(®)]) + [Ty@O)]), [Ty(H)] < / q(s)ly(s)lds,

t

i (2.6)
where t >ty > 0 and a,b,c,k,q € L*(RT). Then, any solution y(t) =
y(t,to,yo) of (1.2) is bounded on on [ty, 00) and it satisfies

o) < AW W) + e /t Tels) + /t (alr) + b(r) /t " k(r)dr)dr
+els) [ almyarlis).

to

where W, W~ are the same functions as in Lemma 1.8, and

by = sup {tztO:W(c)+02 /t[c(s) N /S(a(7)+b(7) /Tk(r)dr)dT

to to to

+c(s) /S q(T)dr]ds € domW_l}.

to
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Proof. Let x(t) = x(t,t0,y0) and y(t) = y(t,to,y0) be solutions of
(1.1) and (1.2), respectively. By the same argument as in the proof in
Theorem 2.1, the solution z = 0 of (1.4) is hS. From Lemma 1.4, Lemma
1.5, together with (2.5), and (2.6), we have

()] <at |+/\<I>tsy [ ot u(e)r + 1. y(s). T(s) s

< culwl(®) hlto) ™ + [ esh(th()7( / (afmyu(ly(r))

+b(7) /tT k(r)|y(r)|dr)dr + c(s)( +/ q(T |d7' ds.

Using the assumptions (H2) and (H3), we obtain

(0] < callne) bita) ™+ [ eah(t)(cls)u )

to

+ /ts(a(T)w( |z€3|) + b(7) /tT k(r) |%E;))|dr)d7' + c(s) /ts q(7) |ZE:§|CZT> ds.
|

Set u(t) = |y(t)||h(t)|~. Then, by Lemma 1.12, we have
(o) < hOW ™ [IW(0) + e /t e(s) + /t (alr) + () /t ' k(r)dr)dr
+els) [ ar)arlds)

to

where ¢ = ¢;|yo| h(tp) L. The above estimation yields the desired result
since the function A is bounded. Hence the proof is complete. O

REMARK 2.6. Letting a(t) = b(t) and ¢(t) = 0 in Theorem 2.5, we
obtain the similar result as that of Theorem 3.7 in [10].

THEOREM 2.7. Let a,b, k,q,w € C(RT). Suppose that (H1), (H2),
(H3), and g in (1.2) satisfies

/ 9(6) ks < a) (10 + [ Kuluislhas) 27

to
an

|h(t, y(2), Ty(@))] < b(&)(w(|y@O) N+ Ty@O)]), [ Ty()| < /t qa(s)w(ly(s)|)ds
’ (2.8)
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where t > ty > 0 and a,b,k,q € L*(R"). Then, any solution y(t) =
y(t,to,yo) of (1.2) is bounded on [ty, 00) and it satisfies

ly(t)| < h(t)W ! |:W(C) + 02/ (a(s) + b(s) + a(s) /S k(T)dr

+b(s) /ts q(T)dT)dS},

where ty <t < by and W, W' are the same functions as in Lemma 1.8
and

by = sup {t >ty : W(c) + 2 /t(a(s) +b(s) + a(s) /s k(T)dr

to to

+b(s)/ q(T)dr)ds € domW_l}.
to

Proof. Let z(t) = x(t,t9,y0) and y(t) = y(t,to,y0) be solutions of
(1.1) and (1.2), respectively. By the same argument as in the proof in
Theorem 2.1, the solution z = 0 of (1.4) is hS. By Lemma 1.4, Lemma
1.5, together with (2.7), and (2.8), we have

y(t)] < |2(t)] + / B, 5,y())|( / lg(r, y(r)ldr + (s, y(s), Ty(s))ds
< exlyolh(t) h(to) ™ + / eah(O)h(s)™" (as)ly(s)] + b(s)w(ly(s))

to

+als) | k(ryw(ly(r))dr + b(s) /

to to

S

Q(T))w(!y(T)!)dT>ds.

By the assumptions (H2) and (H3), we obtain

ly(t)| < cilyolh(t) h(to) ™ +/ coh(t) <a(5) ly(s)] n b(s)w(‘y(sﬂ)

to h(5> h($>
() /t q(T)w(%)dT—i—a(s) /t k(T)UJ(%—Zi')dT)dS.

Set u(t) = |y(t)||h(t)~!|. Now an application of Lemma 1.9 yields

y(B)] < ROW [W(e) + e / (a(s) + b(s) + als) / k(r)dr

to to

+b(s) /S q(T)dT)dS] :

to
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Thus any solution y(t) = y(t,to, yo) of (1.2) is bounded on [ty, 00). This
completes the proof. O

REMARK 2.8. Letting b(¢) = 0 in Theorem 2.7, we obtain the similar
result as that of Theorem 3.3 in [9].

Acknowledgement. The authors are very grateful for the referee’s
valuable comments.
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