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AN EXTENSION OF SOFT ROUGH FUZZY SETS

Ismat Beg and Tabasam Rashid

Abstract. This paper introduces a novel extension of soft rough
fuzzy set so-called modified soft rough fuzzy set model in which
new lower and upper approximation operators are presented together
their related properties that are also investigated. Eventually it
is shown that these new models of approximations are finer than
previous ones developed by using soft rough fuzzy sets.

1. Introduction

The management of uncertainty in real-world problems is always a
complex task and, in many situations classical mathematical tools and
models cannot deal with the uncertainty involved with the information.
Hence many theories have been presented in the literature to cope with
the uncertainty, vagueness and ambiguity, like fuzzy set theory [31],
rough set theory [19, 20], soft set theory [17] and many other math-
ematical tools. Each of these theories has its inherent difficulties as
pointed out in [17]. Fuzzy set theory has thus been used to handle im-
precision in decision making problems to take care of the ambiguity in
information [3–6, 32]. Significant applications of rough sets in various
fields can also be seen in [10, 12, 13, 20–23]. Molodtsov [17] introduced
the concept of soft set theory as a new mathematical tool to deal with
uncertainty. Maji et al. [15] further developed the theoretical concepts of
soft set theory. This theory has been widely applied to many real world
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problems [27–29] and in the development of new mathematical struc-
tures [1, 2, 9, 11, 14, 18, 24, 25, 30]. Despite soft set theory and rough set
theory are different tools to deal with uncertainty, some researchers [1,8]
have shown that there is some kind of linkage between these two differ-
ent theories. Feng et al. [7] provided a framework to combine fuzzy sets,
rough sets and soft sets all together, which gives rise to several interest-
ing new concepts such as rough soft sets, soft rough sets and soft rough
fuzzy sets. Shabir et al. [26] presented the notion of modified soft rough
set to improve some difficulties in definition of Feng’s soft rough set.
Meng et al. [16] developed some important approximation operators for
soft rough fuzzy set which are the improved version of Feng’s model.
According to these approximation operators a very strong condition was
implemented, that is soft set as approximation space should be a full
soft set. If the approximation space is not full soft set then there will
be shortcomings (undefinable set will not always have upper or lower
approximation). The purpose of this paper aims at improving the ba-
sic structure of the approximations to overcome these shortcomings by
defining modified soft rough fuzzy sets. Rest of this paper is arranged
in the following manner. In Section 2, some basic notions are given to
understand our proposal. In Section 3, modified soft rough fuzzy sets
and its approximation operators are developed. In Section 4, conclusion
of the paper is given. This study presents a preliminary, but potentially
interesting research direction.

2. Preliminaries

First we review some basic concepts, necessary to understand our pro-
posal.
Let U be a crisp universe of generic elements, a fuzzy set µA in the
universe U is a mapping from U to [0, 1]. For any u ∈ U, the value µA(u)
is called the degree of membership of u in µA. If membership value of
the elements is 0 or 1 then that fuzzy set is also called as crisp set. So
the membership value of all the elements in universal set U is 1 and the
membership value of all the elements in empty set is 0. Universal set U
in the form of fuzzy set is denoted by µU and µU(u) = 1 for all u ∈ U.
Similarly, empty set ∅ in the form of fuzzy set is denoted by µ∅(u) = 0 for
all u ∈ U. The family of all subsets of U is denoted by P (U) and family
of all fuzzy sets in U is denoted by FS(U). With the min-max system
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proposed by Zadeh, fuzzy set intersection, union and complement are
defined component wise as follow:

(µA ∩ µB)(u) = µA(u) ∧ µB(u),
(µA ∪ µB)(u) = µA(u) ∨ µB(u),
µcA(u) = 1− µA(u),
where µA, µB are fuzzy sets and u ∈ U. By µA ⊆ µB, we mean that

µA(u) ≤ µB(u) for all u ∈ U. Clearly, µA = µB if µA(u) = µB(u) for all
u ∈ U.

Definition 2.1. [32] α-level set of µA is defined as (µA)α = {u ∈
U ;µA(u) > α}.

In 1999, Molodtsov [17] introduced the concept of soft sets. Let U be
the universe set and E the set of all possible parameters under consid-
eration with respect to U. Usually, parameters are attributes, character-
istics, or properties of objects in U. Molodtsov [17] defined the notion of
a soft set in the following way:

Definition 2.2. [17] A pair (F,A) is called a soft set over U, where
A ⊆ E and F is a mapping given by F : A → P (U). In other words,
a soft set over U is a parameterized family of subsets of U. For e ∈ A,
F (e) may be considered as the set of e-approximate elements of the soft
set (F,A).For u ∈ U, F (e)u = 1 if u ∈ F (e) and F (e)u = 0 if u /∈ F (e).

Definition 2.3. [8] Let S = (F,A) be a soft set over U. Then the
pair SAS = (U, S) is called a soft approximation space. Based on SAS,
following two operations are defined:
sraSAS(X) = {u ∈ U : ∃a ∈ A[u ∈ F (a) ⊆ X]}
sraSAS(X) = {u ∈ U : ∃a ∈ A[u ∈ F (a), F (a) ∩X 6= ∅]}
for any subset X of U. Two subsets sraSAS(X) and sraSAS(X) called

the lower and upper soft rough approximations of X in SAS, respectively
are obtained. If sraSAS(X) = sraSAS(X), X is said to be soft definable;
otherwise X is called a soft rough set.

Definition 2.4. [8] Let S = (F,A) be a soft set over U. If
⋃
a∈A

F (a) =

U, then S is called a full soft set.

Definition 2.5. [26] Let (F,A) be a soft set over U, where F is a
map F : A → P (U). Let φ : U → P (A) be another map defined as
φ(x) = {a : x ∈ F (a)}. Then the pair MSAS = (U, φ) is called modified
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soft approximation space and for any X ⊆ U, lower modified soft rough
approximation is defined as

msraMSAS(X) : {x ∈ X : φ(x) 6= φ(y) for all y ∈ Xc},

where Xc = U −X and its upper modified soft rough approximation is
defined as

msraMSAS(X) = {x ∈ U : φ(x) = φ(y) for all y ∈ X}.

If msraMSAS(X) 6= msraMSAS(X), then X is said to be modified soft
rough set.

Definition 2.6. [7] Let S = (F,A) be a full soft set over U and
SAS = (U, S) be a soft approximation space. For a fuzzy set µA ∈
FS(U), the lower and upper soft rough approximations of µA with re-
spect to SAS are denoted by SRASAS(µA) and SRASAS(µA), respec-
tively, which are fuzzy sets in U given by:

SRASAS(µA)(x) = ∧{µA(y);∃a ∈ A({x, y} ⊆ F (a))}
SRASAS(µA)(x) = ∨{µA(y);∃a ∈ A({x, y} ⊆ F (a))}
for all x ∈ U. The operators SRASAS and SRASAS are called the

lower and upper soft rough approximation operators on fuzzy sets. If
SRASAS(µA) = SRASAS(µA), µA is said to be soft definable; otherwise
µ is called a soft rough fuzzy set.

3. Modified Soft Rough Fuzzy Set (MSRFS)

Shabir et al. [26] highlighted few drawbacks in Feng’s soft rough set
[7, 8] and gave a new model for soft rough set. Meng et al. [16] showed
that the soft rough fuzzy set is an extension of Feng’s soft rough set.
From these results in this section is proposed the modified soft rough
fuzzy set. This extension overcomes the drawbacks of Feng’s and Meng’s
soft rough fuzzy sets.

Definition 3.1. Let (F,A) be a soft set over U, where F is a map
F : A → P (U). Let φ : U → P (A) be another map defined as φ(x) =
{a : x ∈ F (a)}. Then the pair MSAS = (U, φ) is called modified soft ap-
proximation space. For any fuzzy set µA ∈ FS(U), the lower and upper
modified soft rough approximations of µA with respect to MSAS are
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denoted by MSRAMSAS(µA) and MSRAMSAS(µA), respectively, which
are fuzzy sets in U given by:

MSRAMSAS(µA)(x)

=

{
µA(x) if φ(x) 6= φ(y) for all y ∈ ((µA)0)

c

0 if φ(x) = φ(y) for some y ∈ ((µA)0)
c

for all x ∈ (µA)0 and

MSRAMSAS(µA)(x)

=

 1 if φ(x) 6= ∅ and φ(x) = φ(y) for some y ∈ (µA)0
µA(x) if φ(x) = ∅ and φ(x) = φ(y) for some y ∈ (µA)0
0 if φ(x) 6= φ(y) for all y ∈ (µA)0

for all x ∈ U. The operators MSRAMSAS and MSRAMSAS are called
the lower and upper modified soft rough approximation operators on
fuzzy sets. If MSRAMSAS(µA) = MSRAMSAS(µA), then µA is called
modified soft definable; otherwise µA is a modified soft rough fuzzy set.

Remark 1. For any fuzzy set µA, it is easy to see that
µ∅ ⊆MSRAMSAS(µA) ⊆ µU and µ∅ ⊆MSRAMSAS(µA) ⊆ µU .

Theorem 3.2. Let (F,A) be a soft set over U, MSAS = (U, φ) be a
modified soft approximation space and µA ∈ FS(U). Then we have

1. MSRAMSAS(µA) ⊆ µA ⊆MSRAMSAS(µA),
2. MSRAMSAS(µU) = µU = MSRAMSAS(µU),
3. MSRAMSAS(µ∅) = µ∅ = MSRAMSAS(µ∅).

Proof. Point wise proof is;

1. There are two cases for MSRAMSAS(µA)(x).
Case i. If MSRAMSAS(µA)(x) = µA(x) then we can write that

MSRAMSAS(µA)(x) ≤ µA(x).

Case ii. If MSRAMSAS(µA)(x) = 0 then MSRAMSAS(µA)(x) ≤ µA(x)
because we know that 0 ≤ µA(x) ≤ 1.

Thus, MSRAMSAS(µA)(x) ≤ µA(x).
Now we want to prove that µA(x) ≤MSRAMSAS(µA)(x).
There are three cases for MSRAMSAS(µA)(x).

Case i. If MSRAMSAS(µA)(x) = 1 then we can write that

µA(x) ≤MSRAMSAS(µA)(x).

Case ii. IfMSRAMSAS(µA)(x) = µA(x) then µA(x) ≤MSRAMSAS(µA)(x).
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Case iii. MSRAMSAS(µA)(x) = 0 when φ(x) 6= φ(y) for all y ∈ (µA)0,
which further implies that x /∈ (µA)0. So µA(x) = 0.
Thus µA(x) ≤MSRAMSAS(µA)(x).

Hence

MSRAMSAS(µA) ⊆ µA ⊆MSRAMSAS(µA).

2. By (1), we can write that µU ⊆MSRAMSAS(µU).
By definition ofMSRAMSAS(µA), we can writeMSRAMSAS(µA) ⊆

µU for any fuzzy set µA. So MSRAMSAS(µU) ⊆ µU .
Thus, µU = MSRAMSAS(µU).
By definition, it is noted that µU(x) = 1 for all x ∈ U. So φ(x) 6=

φ(y) for all y ∈ ((µU)0)
c then MSRAMSAS(µU)(x) = µU(x).

Thus, MSRAMSAS(µU)(x) = 1 for all x ∈ U.
Hence

MSRAMSAS(µU) = µU = MSRAMSAS(µU).

3. By (1), we can write that MSRAMSAS(µ∅) ⊆ µ∅.
By definition of MSRAMSAS(µ∅), we can write

µ∅ ⊆MSRAMSAS(µA) for any fuzzy set µA. So µ∅ ⊆MSRAMSAS(µ∅).
Hence MSRAMSAS(µ∅) = µ∅.
It is obvious that (µ∅)0 = ∅.
So there does not exist any y in (µ∅)0.
This implies that φ(x) 6= φ(y) for all y ∈ (µ∅)0 .

Thus, MSRAMSAS(µ∅)(x) = 0 for all x ∈ U.
Hence

MSRAMSAS(µ∅) = µ∅ = MSRAMSAS(µ∅).

Theorem 3.3. Let (F,A) be a soft set over U, MSAS = (U, φ) be a
modified soft approximation space and µA, µB ∈ FS(U). Then we have

1. µA ⊆ µB ⇒MSRAMSAS(µA) ⊆MSRAMSAS(µB),
2. µA ⊆ µB ⇒MSRAMSAS(µA) ⊆MSRAMSAS(µB).

Proof. 1. Let µA ⊆ µB which implies that µA(x) ≤ µB(x) for all
x ∈ U.

If MSRAMSAS(µA)(x) = 0 then it is easy to see that
MSRAMSAS(µA)(x) ≤MSRAMSAS(µB)(x) for all x ∈ U.
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If MSRAMSAS(µA)(x) = µA(x) and MSRAMSAS(µB)(x) =
µB(x) then MSRAMSAS(µA)(x) ≤MSRAMSAS(µB)(x) for all x ∈
U.

But MSRAMSAS(µA)(x) = µA(x) 6= 0 implies that φ(x) 6= φ(y)
for all y ∈ ((µA)0)

c and x ∈ (µA)0. So obviously x ∈ (µB)0 as
µA ⊆ µB. It can be written that φ(x) 6= φ(y) for all y ∈ ((µB)0)

c,
so by definition MSRAMSAS(µB)(x) = 0

Hence

MSRAMSAS(µA) ⊆MSRAMSAS(µB).

2. Let µA ⊆ µB which implies that µA(x) ≤ µB(x) for all x ∈ U.
We want to show thatMSRAMSAS(µA)(x) ≤MSRAMSAS(µB)(x)

for all x ∈ U.
If MSRAMSAS(µB)(x) = 1 then MSRAMSAS(µA)(x)

≤MSRAMSAS(µB)(x).
MSRAMSAS(µB)(x) = µB(x) 6= 1 and µB(x) 6= 0, when φ(x) =

∅ and φ(x) = φ(y) for some y ∈ (µB)0. There are two possible
cases:

Case i. When φ(x) = ∅ and φ(x) = φ(y) for some y ∈ (µA)0 then

MSRAMSAS(µA)(x) = µA(x).

Since µA(x) ≤ µB(x) for all x ∈ U.
So

MSRAMSAS(µA)(x) ≤MSRAMSAS(µB)(x).

Case ii. When φ(x) = ∅ and φ(x) 6= φ(y) for all y ∈ (µA)0 then

MSRAMSAS(µA)(x) = 0.

Thus MSRAMSAS(µA)(x) ≤MSRAMSAS(µB)(x).
Hence

MSRAMSAS(µA) ⊆MSRAMSAS(µB).

The following theorem can be easly proved by using Theorem 3.4.

Theorem 3.4. Let (F,A) be a soft set over U, MSAS = (U, φ) be a
modified soft approximation space and µA, µB ∈ FS(U). Then we have

1. MSRAMSAS(µA ∪ µB) ⊇MSRAMSAS(µA) ∪MSRAMSAS(µB),
2. MSRAMSAS(µA ∩ µB) ⊆MSRAMSAS(µA) ∩MSRAMSAS(µB),
3. MSRAMSAS(µA ∪ µB) ⊇MSRAMSAS(µA) ∪MSRAMSAS(µB),
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4. MSRAMSAS(µA ∩ µB) ⊆MSRAMSAS(µA) ∩MSRAMSAS(µB).

Theorem 3.5. Let (F,A) be a soft set over U, MSAS = (U, φ) be a
modified soft approximation space and µA ∈ FS(U). Then we have

1. MSRAMSAS(MSRAMSAS(µA)) ⊇MSRAMSAS(µA),
2. MSRAMSAS(MSRAMSAS(µA)) ⊇MSRAMSAS(µA),
3. MSRAMSAS(MSRAMSAS(µA)) ⊆MSRAMSAS(µA),
4. MSRAMSAS(MSRAMSAS(µA)) ⊆MSRAMSAS(µA),
5. MSRAMSAS(MSRAMSAS(µA)) ⊇MSRAMSAS(µA).

Proof. Point wise proof is given below.

1. By definition we know that µA(x) ≤ MSRAMSAS(µA)(x) for any
fuzzy set µA. Now replace µA by MSRAMSAS(µA) then we get
MSRAMSAS(µA)(x) ≤MSRAMSAS(MSRAMSAS(µA))(x).

Hence

MSRAMSAS(µA)(x) ⊆MSRAMSAS(MSRAMSAS(µA))(x).

2. By Theorem 3.4(1) we know that MSRAMSAS(µA) ⊆ µA and by
using Theorem 3.4(2) it can be written that
MSRAMSAS(MSRAMSAS(µA)) ⊆MSRAMSAS(µA).

3. By definition we know that MSRAMSAS(µA)(x) ≤ µA(x) for any
fuzzy set µA. Now replace µA by MSRAMSAS(µA) then we get

MSRAMSAS(MSRAMSAS(µA))(x) ≤MSRAMSAS(µA)(x).

Hence

MSRAMSAS(MSRAMSAS(µA)) ⊆MSRAMSAS(µA).

4. By Theorem 3.4(1) we know that µA ⊇ MSRAMSAS(µA) and by
using Theorem 3.4(2) it can be written that
MSRAMSAS(MSRAMSAS(µA)) ⊇MSRAMSAS(µA).

Example 3.6. Let U = {u1, u2, u3, u4, u5, u6} be the set of six utility
stores (universe set) and A = {e1, e2, e3, e4} ⊆ E, where e1 represents
empowerment of sales, e2 represents perceived quality of products, e3
represents high traffic location, e4 represents covered area. The soft set
(F,A) is representing this data in Table 1.
F : A→ P (U)
φ : U → P (A)
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Table 1. Soft set (F,A)

u1 u2 u3 u4 u5 u6
e1 1 1 1 1 1 1
e2 1 0 1 1 0 1
e3 1 0 0 1 0 1
e4 0 1 0 0 1 0

Then the MSAS (U, φ) will be φ(u1) = {e1, e2, e3}, φ(u2) = {e1, e4},
φ(u3) = {e1, e2}, φ(u4) = {e1, e2, e3}, φ(u5) = {e1, e4} = φ(u2), φ(u6) =
{e1, e2, e3} = φ(u4) = φ(u1).
µA = {(u1, 0.3), (u2, 0.4), (u3, 0), (u4, 0), (u5, 0), (u6, 0)}
MSRAMSAS(µA) = {(u1, 0), (u2, 0), (u3, 0), (u4, 0), (u5, 0), (u6, 0)}
MSRAMSAS(µA) = {(u1, 1), (u2, 1), (u3, 0), (u4, 1), (u5, 1), (u6, 1)}
µB = {(u1, 0), (u2, 0.4), (u3, 0), (u4, 0.7), (u5, 0), (u6, 0)}
MSRAMSAS(µB) = {(u1, 0), (u2, 0), (u3, 0), (u4, 0), (u5, 0), (u6, 0)}
MSRAMSAS(µB) = {(u1, 1), (u2, 1), (u3, 0), (u4, 1), (u5, 1), (u6, 1)}
µA ∪ µB = {(u1, 0.3), (u2, 0.4), (u3, 0), (u4, 0.7), (u5, 0), (u6, 0)}
MSRAMSAS(µA∪µB) = {(u1, 1), (u2, 1), (u3, 0), (u4, 1), (u5, 1), (u6, 1)}
MSRAMSAS(µA)∪MSRAMSAS(µB) = {(u1, 1), (u2, 1), (u3, 0), (u4, 1),

(u5, 1), (u6, 1)}
Note that

MSRAMSAS(µA) ∪MSRAMSAS(µB) = MSRAMSAS(µA ∪ µB).

µA ∩ µB = {(u1, 0), (u2, 0.4), (u3, 0), (u4, 0), (u5, 0), (u6, 0)}
MSRAMSAS(µA∩µB) = {(u1, 0), (u2, 1), (u3, 0), (u4, 0), (u5, 1), (u6, 0)}
MSRAMSAS(µB∩µB) = {(u1, 0), (u2, 0), (u3, 0), (u4, 0), (u5, 0), (u6, 0)}
MSRAMSAS(µB) ∩MSRAMSAS(µA) = MSRAMSAS(µB ∩ µB).
MSRAMSAS(µA)∩MSRAMSAS(µB) = {(u1, 1), (u2, 1), (u3, 0), (u4, 1),

(u5, 1), (u6, 1)}
Where

MSRAMSAS(µA) ∩MSRAMSAS(µB) *MSRAMSAS(µA ∩ µB).

µC = {(u1, 0), (u2, 0.4), (u3, 0.6), (u4, 0), (u5, 0), (u6, 0)}
MSRAMSAS(µC) = {(u1, 0), (u2, 0), (u3, 0.6), (u4, 0), (u5, 0), (u6, 0)}
MSRAMSAS(µC) = {(u1, 0), (u2, 1), (u3, 1), (u4, 0), (u5, 1), (u6, 0)}
µD = {(u1, 0), (u2, 0), (u3, 0.3), (u4, 0), (u5, 0.7), (u6, 0)}
MSRAMSAS(µD) = {(u1, 0), (u2, 0), (u3, 0.3), (u4, 0), (u5, 0), (u6, 0)}
MSRAMSAS(µD) = {(u1, 0), (u2, 1), (u3, 1), (u4, 0), (u5, 1), (u6, 0)}
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µC ∪ µD = {(u1, 0), (u2, 0.4), (u3, 0.6), (u4, 0), (u5, 0.7), (u6, 0)}
MSRAMSAS(µC∪µD) = {(u1, 0), (u2, 0.4), (u3, 0.6), (u4, 0), (u5, 0.7), (u6, 0)}
MSRAMSAS(µC)∪MSRAMSAS(µD) = {(u1, 0), (u2, 0), (u3, 0.6), (u4, 0),

(u5, 0), (u6, 0)}
Note that

MSRAMSAS(µC ∪ µD) *MSRAMSAS(µC) ∪MSRAMSAS(µD).

MSRAMSAS(µC∪µD) = {(u1, 0), (u2, 1), (u3, 1), (u4, 0), (u5, 1), (u6, 0)}
µC ∩ µD = {(u1, 0), (u2, 0), (u3, 0.3), (u4, 0), (u5, 0), (u6, 0)}
MSRAMSAS(µC∩µD) = {(u1, 0), (u2, 0), (u3, 0.3), (u4, 0), (u5, 0), (u6, 0)}
Note that

MSRAMSAS(µC ∩ µD) = MSRAMSAS(µC) ∩MSRAMSAS(µD).

Remark 2. In general

MSRAMSAS(µcA) * (MSRAMSAS(µA))c

MSRAMSAS(µcA) + (MSRAMSAS(µA))c,

(MSRAMSAS(µA))c *MSRAMSAS(µcA)

and

(MSRAMSAS(µA))c +MSRAMSAS(µcA).

Example 3.7. Let U = {u1, u2, u3, u4, u5, u6, u7, u8, u9} be the set of
nine utility stores (universe set) and A = {e1, e2, e3, e4} ⊆ E, where
e1 represents empowerment of sales, e2 represents perceived quality of
products, e3 represents high traffic location, e4 represents covered area.
The soft set (F,A) is representing this data in Table 2.
F : A→ P (U)
φ : U → P (A)

Table 2. Soft set (F,A)

u1 u2 u3 u4 u5 u6 u7 u8 u9
e1 1 1 1 1 1 1 0 0 0
e2 1 0 1 1 0 1 0 0 0
e3 1 0 0 1 0 1 0 0 0
e4 0 1 0 0 1 0 0 0 0

Then the MSAS (U, φ) will be φ(u1) = {e1, e2, e3}, φ(u2) = {e1, e4},
φ(u3) = {e1, e2}, φ(u4) = {e1, e2, e3}, φ(u5) = {e1, e4} = φ(u2), φ(u6) =
{e1, e2, e3} = φ(u4) = φ(u1), φ(u7) = ∅ = φ(u8) = φ(u9).
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If we take µA = {(u1, 0.3), (u2, 0.4), (u3, 1), (u4, 0), (u5, 1), (u6, 0), (u7, 0.2),
(u8, 0), (u9, 1)}, then µcA = {(u1, 0.7), (u2, 0.6), (u3, 0), (u4, 1), (u5, 0),
(u6, 1), (u7, 0.8), (u8, 1), (u9, 0)}.

Next we calculate some approximations.
MSRAMSAS(µA) = {(u1, 0), (u2, 0.4), (u3, 1), (u4, 0), (u5, 1), (u6, 0),

(u7, 0), (u8, 0), (u9, 0)}
(MSRAMSAS(µA))c = {(u1, 1), (u2, 0.6), (u3, 0), (u4, 1), (u5, 0), (u6, 1),

(u7, 1), (u8, 1), (u9, 1)}
MSRAMSAS(µcA) = {(u1, 0.7), (u2, 0), (u3, 0), (u4, 1), (u5, 0), (u6, 1),

(u7, 0), (u8, 0), (u9, 0)}
(MSRAMSAS(µcA))c = {(u1, 0.3), (u2, 1), (u3, 1), (u4, 0), (u5, 1), (u6, 0),

(u7, 1), (u8, 1), (u9, 1)}
MSRAMSAS(µA) = {(u1, 1), (u2, 1), (u3, 1), (u4, 1), (u5, 1), (u6, 1),

(u7, 0.2), (u8, 0), (u9, 1)}
(MSRAMSAS(µA))c = {(u1, 0), (u2, 0), (u3, 0), (u4, 0), (u5, 0), (u6, 0),

(u7, 0.8), (u8, 1), (u9, 0)}
MSRAMSAS(µcA) = {(u1, 1), (u2, 1), (u3, 0), (u4, 1), (u5, 1), (u6, 1),

(u7, 0.8), (u8, 1), (u9, 0)}
(MSRAMSAS(µcA))c = {(u1, 0), (u2, 0), (u3, 1), (u4, 0), (u5, 0), (u6, 0),

(u7, 0.2), (u8, 0), (u9, 1)}
Note that

(MSRAMSAS(µA))c(u2) < MSRAMSAS(µcA)(u2)

and
MSRAMSAS(µcA)(u7) < (MSRAMSAS(µA))c(u7).

Thus
MSRAMSAS(µcA) * (MSRAMSAS(µA))c

and
MSRAMSAS(µcA) + (MSRAMSAS(µA))c.

Note that

MSRAMSAS(µcA)(u1) > (MSRAMSAS(µA))c(u1)

and
(MSRAMSAS(µA))c(u7) > MSRAMSAS(µcA)(u7).

So
(MSRAMSAS(µA))c *MSRAMSAS(µcA)

and
(MSRAMSAS(µA))c +MSRAMSAS(µcA).
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It is easy to note that

(MSRAMSAS(µcA))c *MSRAMSAS(µA)

and

(MSRAMSAS(µcA))c +MSRAMSAS(µA).

Therefore

MSRAMSAS(µA) * (MSRAMSAS(µcA))c

and

MSRAMSAS(µA) + (MSRAMSAS(µcA))c.

MSRAMSAS(µA) = {(u1, 0), (u2, 0.4), (u3, 1), (u4, 0), (u5, 1),

(u6, 0), (u7, 0), (u8, 0), (u9, 0)}
MSRAMSAS(MSRAMSAS(µA)) = {(u1, 0), (u2, 0.4), (u3, 1),

(u4, 0), (u5, 1), (u6, 0), (u7, 0), (u8, 0), (u9, 0)}
MSRAMSAS(MSRAMSAS(µA)) = {(u1, 0), (u2, 1), (u3, 1), (u4, 0),

(u5, 1), (u6, 0), (u7, 0), (u8, 0), (u9, 0)}
Note that

MSRAMSAS(MSRAMSAS(µA)) = MSRAMSAS(µA)

and

MSRAMSAS(MSRAMSAS(µA)) ⊃MSRAMSAS(µA).

MSRAMSAS(µA) = {(u1, 1), (u2, 1), (u3, 1), (u4, 1), (u5, 1), (u6, 1),
(u7, 0.2), (u8, 0), (u9, 1)}
MSRAMSAS(MSRAMSAS(µA)) = {(u1, 1), (u2, 1), (u3, 1), (u4, 1),

(u5, 1), (u6, 1), (u7, 0), (u8, 0), (u9, 0)}
MSRAMSAS(MSRAMSAS(µA)) = {(u1, 1), (u2, 1), (u3, 1), (u4, 1),

(u5, 1), (u6, 1), (u7, 0.2), (u8, 0), (u9, 1)}
Thus

MSRAMSAS(MSRAMSAS(µA)) ⊂MSRAMSAS(µA)

and

MSRAMSAS(MSRAMSAS(µA)) = MSRAMSAS(µA).
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4. Conclusions

Fuzzy set theory has been successfully used to handle vagueness and
imprecision in information, meanwhile the soft rough set theory has been
remarkably applied to the approximation of undefinable sets. Approx-
imations of undefinable set are important and needed. In the existing
literature these approximations do not satisfy the basic properties of
approximation measure. Therefore, MSRFSs have been introduced to
overcome such deficiencies. It has been also shown that MSRFS provide
better approximations of undefinable sets. Our study present prelimi-
nary results and has significant potential for new research directions in
future.
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