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GRADED INTEGRAL DOMAINS AND NAGATA RINGS, II
GYU WHAN CHANG

ABSTRACT. Let D be an integral domain with quotient field K,
X be an indeterminate over D, K[X] be the polynomial ring over
K, and R = {f € K[X] | f(0) € D}; so R is a subring of K[X]
containing D[X]. For f =ag+ a1 X + - -+ ap,X™ € R, let C(f) be
the ideal of R generated by ag,a1X,...,a,X" and N(H) = {g €
R | C(g9)y = R}. In this paper, we study two rings Ry gy and
Kr(R,v) = {g | f,g € R, g #0,and C(f) C C(g),}. We then use
these two rings to give some examples which show that the results
of [4] are the best generalizations of Nagata rings and Kronecker
function rings to graded integral domains.

1. Introduction

Let D be an integral domain with quotient field K, X be an in-
determinate over D, D[X] be the polynomial ring over D, and Ay be
the fractional ideal of D generated by the coefficients of a polynomial
f € K[X]. There are three types of interesting overrings of D[X] two of
which are
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Clearly, D[X] € D(X) C D[X]n, € K(X), and we say that D(X)
(resp., D[X]y,) is the Nagata ring (resp., (t-)Nagata ring) of D. (Defi-
nitions will be reviewed in the sequel.) For the third one, assume that
D is integrally closed, and let * be an e.a.b. star operation on D and

Kr(D, %) = {§ | f.g € DIX],g # 0, and A, C (4,),}.

Then Kr(D, %), called the Kronecker function ring of D (with respect
to %), is a Bezout domain such that Kr(D,x) N K = D and D(X) C
Kr(D,*) C K(X) [12, Theorem 32.7].

Nagata ring has many interesting ring-theoretic properties. For exam-
ple, every invertible ideal of D(X) is principal, i.e., Pic(D(X)) = {0} [1,
Theorem 2|; Max(D(X)) = {M(X) | M € Max(D)} [12, Proposition
33.1]; and if b is the b-operation on an integrally closed domain D,
then D is a Priifer domain if and only if D(X) is a Priifer domain,
if and only if D(X) = Kr(D,b) [5, Theorem 4], if and only if D(X)
is a Bezout domain [12, Theorem 33.4]. These results were general-
ized to t-Nagata rings via the t-operation as follows: Pic(D[X]y,) =
Cl(D[X]n,) = {0}; Max(D[X]n,) = {P[X]n, | P € t-Max(D)}; D is a
Priifer v-multiplication domain (PvMD) if and only if D[X]y, is a Priifer
domain, if and only if D[X]y, is a Bezout domain, if and only if each
ideal of D[X]y, is extended from D [13]; and if D is a v-domain (i.e.,
the v-operation on D is an e.a.b. star operation), then D is a PoMD if
and only if D[X]y, = Kr(D,v) [11, Theorem 2.5]. For more on Nagata
rings and Kronecker function rings, the reader can refer to [12, Sections
32-34] or Fontana-Loper’s interesting survey article [10].

Let R = @, cr Ra be an integral domain graded by an arbitrary
torsionless grading monoid I', H be the set of nonzero homogeneous el-
ements of R, S(H) = {f € R| C(f) = R}, and N(H) = {f € R |
C(f), = R}. It is clear that if R = D[X, X!], then Rgn) = D(X)
and Ry(gy = D[X]n, [4, Proposition 3.1]. Motivated by these two facts,
in [4], the authors generalized the notions of (¢-)Nagata rings and Kro-
necker function rings to graded integral domains. They proved several
properties of graded integral domain analogs of (¢-)Nagata rings and
Kronecker function rings under assumptions that R satisfies property
(#) or R has a unit of nonzero degree (see Section 2 for definition
and results). In this paper, we give some examples which show that
the two assumptions are best for graded integral domain analogs of (¢-
)Nagata rings and Kronecker function rings. More precisely, in Section
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2, we review some known results on (t-)Nagata rings and Kronecker
function rings of graded integral domains. Assume that D # K, and let
R=D+XK[X] ie, R={f € K[X]| f(0) € D}; so R is an Ny-graded
integral domain with deg(aX™) =n for 0 #a € K and n >0 (a € D
when n = 0), where Ny is the additive monoid of nonnegative integers.
In Section 3, we use the ring R = D + X K[X] to construct concrete ex-
amples why the results of [4] are the best generalizations of (t-)Nagata
rings and Kronecker function rings to graded integral domains.

Definitions related to star operations and graded integral do-
mains.

To facilitate the reading of this paper, we review some definitions on
star operations and graded integral domains. Let F(D) be the set of
nonzero fractional ideals of D. A map * : F(D) — F(D), [ — I, is
called a star operation on D if the following three conditions are satisfied
forall 0 # a € K and I,J € F(D): (i) (aD), = aD and (al), = al,,
(ii)) I C I, and if I C J, then I, C J,, and (iii) (L,). = I.. Given a
star operation * on D, one can construct a new star operation *; by
setting I, = (J{J. | J € F(D) is finitely generated and J C I} for all
I € F(D). Clearly, (*;); = #; and I, = I, for all finitely generated
I € F(D). Examples of the most well-known star operations include
the v-, t-, and d-operations. The v-operation is defined by I, = (I~1)71,
where It = {& € K | 2I C D}, the t-operation is defined by t = vy,
and the d-operation is just the identity function on F(D), ie., I; = I
for all I € F(D); so dy = d.

An I € F(D) is called a *-ideal if I, = I. A *-ideal is called a
maximal x-ideal if it is maximal among proper integral x-ideals. Let
x-Max (D) be the set of maximal #-ideals of D. It may happen that
#-Max(D) = ) even though D is not a field (e.g., v-Max(D) = 0 if D
is a rank-one nondiscrete valuation domain). However, it is well known
that *,-Max(D) # 0 if D is not a field; each maximal *-ideal is a
prime ideal; each proper integral *¢-ideal is contained in a maximal * -
ideal; and each prime ideal minimal over a *s-ideal is a *y-ideal. An
I € F(D) is said to be x-invertible if (II"1), = D, and D is a Priifer
x-multiplication domain (PxMD) if each nonzero finitely generated ideal
of D is *g-invertible. Let T'(D) (resp., Inv(D), Prin(D)) be the group of
t-invertible fractional ¢-ideals (resp., invertible fractional ideals, nonzero
principal fractional ideals) of D under the t-multiplication I *J = (I.J);.
It is obvious that Prin(D) C Inv(D) C T(D). The t-class group of D
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is the abelian group CIl(D) = T(D)/Prin(D) and the Picard group (or
ideal class group) of D is the subgroup Pic(D) = Inv(D)/Prin(D) of
Cl(D). It is clear that if each maximal ideal of D is a t-ideal (e.g., D is
one-dimensional or a Priifer domain), then Pic(D) = CI(D). Also, if D
is a Krull domain, then C1(D) is the usual divisor class group of D.

Let I" be a nonzero torsionless grading monoid, that is, I' is a nonzero
torsionless commutative cancellative monoid (written additively). It is
well known that a cancellative monoid T is torsionless if and only if I' can
be given a total order compatible with the monoid operation [15, page
123]. By a I'-graded integral domain R = @ . Ra, we mean an integral
domain graded by I'. That is, each nonzero x € R, has degree q, i.e.,
deg(z) = a, and deg(0) = 0. Thus, each nonzero f € R can be written
uniquely as f = z,, + -+ + 24, with deg(z,,) = ; and a3 < -+ < ay,.
An x € R, for every a € T is said to be homogeneous. Let H be the
saturated multiplicative set of nonzero homogeneous elements of R. i.e.,
H = J,er Ra \ {0}. Then Ry, called the homogeneous quotient field of
R, is a graded integral domain whose nonzero homogeneous elements are
units. It is known that Ry is a completely integrally closed GCD-domain
[2, Proposition 2.1]. For an ideal I of R, let I* be the ideal of R generated
by the homogeneous elements in I. We say that I is homogeneous if
I* = I and a homogeneous ideal is a mazrimal homogeneous ideal if it is
maximal among proper homogeneous ideals of R. Let h-Max(R) be the
set of maximal homogeneous ideals of R. It is easy to see that each ideal
in h-Max(R) is a prime ideal and each proper homogeneous ideal of R is
contained in at least one maximal homogeneous ideal of R. For f € Ry,
let C'(f) denote the fractional ideal of R generated by the homogeneous
components of f. For an ideal I of R, let C(I) = >_;.; C(f). Clearly,
C(f) and C(I) are homogeneous ideals of R.

2. Review on the rings Ryn) and Kr(R, *)

Let I be a nonzero torsionless grading monoid, R = @ . Ra be a
[-graded integral domain with R, # {0} for all « € I'; H be the set of
nonzero homogeneous elements of R, S(H) ={f € R| C(f) = R}, and
N(H) = {0 # f € R| C(f), = R}. Note that if R = D[X, X~], then
R has a unit of nonzero degree, Rgyy = D(X), and Ryy = D[X],
where N, = {f € D[X] | (Af), = D}. Hence, all results in this section
are true for the rings D(X) and D[X]y,.
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PROPOSITION 1. Let R = @, . R be a graded integral domain and
Q be the set of maximal t-ideals Q of R with Q N H # ().

1. Every prime ideal in §) is homogeneous.

2. N(H) = R\UQGQQ'

3. Max(Rnmy) = {@nm) | @ € Q} if and only if R has property (#)
that if I is a nonzero ideal of R with C(I); = R, then INN(H) #

0.
Proof. (1) [3, Lemma 1.2]. (2) and (3) [4, Proposition 1.4]. O

We say that R = @, Ra is a graded-Priifer v-multiplication domain
(graded PuMD) (resp., graded-Priifer domain, graded-Bezout domain) if
every nonzero finitely generated homogeneous ideal of R is t-invertible
(resp., invertible, principal). Hence, graded-Bezout domain = graded-
Priifer domain = graded PvMD < PuMD [2, Theorem 6.4], while a
graded-Priifer domain need not be Priifer [4, Example 3.6].

THEOREM 2. [4, Corollaries 1.10 and 1.11] If R satisfies property (#),
then R is a PvMD if and only if Ry is a Priifer domain. In this case,
each ideal of Ry gy is extended from a homogeneous ideal of R.

It is easy to see that R = @ . R satisfies property (#) if R is one
of the following rings: (i) R has a unit of nonzero degree, (ii) R = D[I'] is
the monoid domain of I' over an integral doman D, or (iii) R = D[{X,}]
is the polynomial ring [4, Example 1.6].

THEOREM 3. [4, Theorem 3.3] Let R = @ Ra be a graded integral
domain with a unit of nonzero degree. Then Cl(Rymy) = Pic(Ry(my) =

{0}.

THEOREM 4. [4, Theorem 3.4] The following statements are equiva-
lent for a graded integral domain R = @, Ro with a unit of nonzero
degree.

1. R is a PuMD.

2. Every ideal of Ry(my is extended from a homogeneous ideal of R.
3. Rn(my is a Priifer domain.

4. Ry(my Is a Bezout domain.

Let D be an integral domain with quotient field K. A star opera-
tion * on D is said to be an endlish arithmetisch brauchbar (e.a.b.) star
operation if (AB), C (AC), implies B, C C, for all nonzero finitely gen-
erated A, B,C € F(D). Clearly, x is an e.a.b. star operation if and only
if ¢ is an e.a.b. star operation. We know that if D admits an e.a.b. star
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operation, then D is integrally closed [12, Corollary 32.8]. Conversely,
suppose that D is integrally closed, and for a star operation % on D,
define

I = ﬂ{[ V' | V is a *-linked valuation overring of D},

then *. is an e.a.b. star operation on D [6, Lemma 3.1]. (A subring T
of K containing D is said to be x-linked over D if I, = D for a finitely
generated I € F(D) implies (IT), = T.) As in [12, Theorem 32.5], we
say that d. =b.

Let x be an e.a.b. star operation on an integrally closed domain D
and

Kr(D,x) = {g | f,g€ D[X],g#0, and Ay C (Ay).}.

Then Kr(D, %) is a Bezout domain and Kr(D,*)NK = D; D is a Priifer
domain if and only if Kr(D,b) = D(X); and D is a PvMD if and only
if Kr(D,v.) = D[X]n, [6, Corollary 3.8]. In [4], the authors introduced
and studied a graded integral domain analog as follows.

THEOREM 5. Let R = @, R. be an integrally closed graded inte-
gral domain, x be an e.a.b. star operation on R, and

Kr(R,%) = {g | f,9 € Rig 0, and C(f) € Clg).}.

1. Kr(R,*) is an integral domain such that Kr(R,*) N Ry = R and
fKr(R,x) = C(f)Kr(R,x) for all f € R.
2. Assume that R has a unit of nonzero degree.
(a) Kr(R,x) is a Bezout domain.
(b) If x; =t, then R is a PvMD if and only if Ryny = Kr(R,t).
(c) R is a graded-Priifer domain if and only if Rg(my = Kr(R,b),
if and only if C(fg) = C(f)C(g) for all 0 # f, g E R.

Proof. See [4, Theorem 2.9] (resp., [4, Theorem 3.5]; [4, Theorem 3.7]
and [16, Theorem 4.2]) for (1) (resp., (2) (a)-(b); (2) (c)). O

It is known that if I' = Ny, then R = @aEF R, is a Priifer domain if
and only if Ry is a Priifer domain and R = Ry + yF'[y], where F is the
quotient field of Ry and y is an indeterminate over F' [9, Proposition 3.4].
The ring T' = Ry + yF[y| is very helpful when we construct rings with
prescribed ring-theoretic properties, and this type of integral domains
was first introduced and studied by Costa, Mott, and Zafrullah [8]. In
the next section, we use rings of the type T'= Ry + yF[y] to give some
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examples which show that the results of this section are best for general-
izations of Nagata rings and Kronecker function rings to graded integral
domains.

3. The ring R=D + XK[X]

Let D be an integral domain with quotient field K and D # K, X
be an indeterminate over D, K[X] be the polynomial ring over K, and
R =D+ XK[X],ie, R={f € K[X]| f(0) € D}; so DIX] C R C
K[X]. Clearly, R is an Ny-graded integral domain with deg(aX") = n
for 0 #a € Kandn > 0 (a € D when n = 0). Let H be the set of
nonzero homogeneous elements of R, S(H) = {f € R| C(f) = R} and
NH)=1{0# f e R|C(f)y, = R}; so S(H) C N(H), and equality
holds when each maximal homogeneous ideal of R is a t-ideal.

LEMMA 6. Let R = D+ XK[X].

1If f = ap XF + ap XM+ oo 4+ apn XM € R, ai, # 0, then
2. If f,g € R, then C(fg) = C(f)C(g).

3. N(H)={f€R| f(0) is a unit of D} = S(H).

4. h-Max(R) = {P + XK[X] | P € Max(D)}.

Proof. (1) Note that if i > &, then a; X" = a; X*(£-X""*) and $: X"~ €
XK[X] C R. Thus, C(f) = (ax X%, ap 1 X, -+ apn X)) = @ X*R.

(2) This follows directly from (1).

(3) Let 0 # a € D. Then (aR), = aR; and aR = R if and only if
a is a unit of D. Thus, the result follows from (1) and the fact that
bX"R C XK[X] C R for all bX" € XK[X].

(4) This follows from the fact that if A is a homogeneous ideal of R,
then either A C XK[X]or AND # (0) and A= (AND)+ XKI[X] [8,
Proposition 4.12]. O

PROPOSITION 7. For a star operation x on R = D + X K[X], let
Kr(R,%) ={L| f,g € R,g # 0 and C(f) € C(g).}.
1. Kr(R,*) is an integral domain such that Kr(R,*) N Ry = R and
fKr(R,x) = C(f)Kr(R,*) for all f € R.
2. Kr(R,d) = Kr(R,*) = Kr(R,v); hence R has a unique Kronecker

function ring of this type.
3. RN(H) = KF(R, *)
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4. Kr(R, ) is integrally closed if and only if D is integrally closed, if
and only if R is integrally closed.

Proof. (1) Let 0 # f,g € R. Then C(fg) = C(f)C(g) by Lemma
6(2), and hence C(fg). = (C(f)C(g))+. Thus, the result can be proved
by the same argument as the proof of [4, Theorem 2.9].

(2) If 0 # f € R, then C(f) is a nonzero principal ideal of R by
Lemma 6(1), and so C(f) = C(f)« = C(f),. Thus, the result follows.

(3) Let f,g € R be such that ¢ # 0 and C(f) C C(g). Note that
(9) = uR for some v € H by Lemma 6(1); so C’(%) CC(%) =R and
= g/% € Ry Thus, Kr(R,v) € Ry(my. The reverse containment is
le

~ Q

(@IS
Q0

r.

(4) Tt is clear that R is integrally closed if and only if D is integrally
closed (because K[X] is integrally closed and RN K = D). Note that
Ry is integrally closed and Kr(R,*) N Ry = R. So if Kr(R, %) is inte-
grally closed, then R is integrally closed. For the reverse, note that if
R is integrally closed, then Ry is integrally closed. Thus, Kr(R, *) is
integrally closed by (3). O

COROLLARY 8. Let R =D + XK[X].

1. Every ideal of Ry my is extended from a homogeneous ideal of R.
2. Max(Ry(m)) = {PRnm) | P € Max(D)}.

Proof. (1) By Proposition 7, fRym)y = C(f)Rym) for all f € R.
Thus, if Ais anideal of R, then Ay(my = ZfeA fRny = ZfeA C(f)Rnm)
= (2_ea C(f))Bymy and 3¢, O(f) is a homogeneous ideal of R.

(2) Let M be a maximal ideal of Rym). Then M = QRy for
some homogeneous ideal @) of R by (1). Also, since M is a maximal
ideal of Ry(m), XK[X] C @, and hence @ N D is a maximal ideal of D.
Thus, @ = (@N D)+ XK[X] = (QND)R and M = (Q N D)Rnm).
For the reverse containment, let P be a maximal ideal of D. Then
PR = P+ XK[X] is a maximal ideal of R and PRN N(H) = (. Thus,
PRy is a maximal ideal of Ry (). O

It is easy to see that if I is a nonzero fractional ideal of D, then
(IR = I"' + XK[X] = I"'R, (IR), = I, + XK[X] = (I,)R, and
(IR); = I + XK[X] = (It)R (cf. [8, Lemma 4.41]). From now on, we
use this result without further comments.

COROLLARY 9. R = D+ X K[X] satisfies property (#) if and only if
each maximal ideal of D is a t-ideal.
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Proof. Let P be a nonzero prime ideal of D. Then PR = P+ X K[X]
and (P + XK[X]); = P, + XK[X], and thus PR is a maximal t-ideal
of R if and only if P is a maximal ¢t-ideal of D. Also, if ) is a maximal
t-ideal of R that is homogeneous, then @ N D # (0), and hence Q) =
(@N D)+ XK[X]. Hence, {PR | P € t-Max(D)} is the set of maximal
t-ideals of R that are homogeneous. Thus, R satisfies property (#) if
and only if Max(Rn ) = {PRnm) | P € t-Max(D)} by Proposition 1,
if and only if Max(D) = ¢t-Max(D) by Corollary 8(2), if and only if each
maximal ideal of D is a t-ideal. O

Note that if D is a Priifer domain, then each maximal ideal of D is a
t-ideal. Thus, R = D + X K[X] satisfies property (#) by Corollary 9.

ProrosiTION 10. The following statements are equivalent for R =
D+ XK[X].

1. R is a Priifer (resp., Bezout) domain.

2. Ry(m) is a Priifer (resp., Bezout) domain.

3. D is a Priifer (resp., Bezout) domain.

4. R is a graded-Priifer (resp., graded-Bezout) domain.

Proof. (1) = (2) and (4) Clear.
(2) = (3) Let 0 # a,b € D. If Ry is a Priifer domain, then
(a,b) Ry (my is invertible, and hence

= ((a,b)Rn(m)((a, ) Ryy) ™
= ((a,b)Rn(mn)(((a,b)R) ™ Rvm)
= (((a,0)R)((a,;b)R)™") R
(cf. [4, Proposition 1.3] for the second equality). Since (a,b) is an ideal
of D,
((a,0)R)((a,)R)™ = ((a,0) + XK[X])((a,;b)™" + X K[X])
— (@b)(ab) ! + XK[X]

Note also that (P+ X K[X])NN(H) = 0 for all P € Max(D) by Lemma
6(3). Hence, (a,b)(a,b)™" € P for all P € Max(D), and thus (a,b) is
invertible. Thus, D is a Priifer domain.

Next, if R is a Bezout domain, then (a,b)Ry)y = gRn ) for some
g € R. Since a,b € D and gRym) = C(g)Rn(m) by Proposition 7, we

may assume that g € D. Then, it is clear that (a,b) = gD by Lemma 6.
(3) = (1) [8, Corollary 4.15] (resp., [8, Corollary 4.13]).

Rn(m)



224 G. W. Chang

(4) = (3) See the proof of “(2) = (3)” above because (a,b)R is a
homogeneous ideal of R. ]

COROLLARY 11. Let R = D+ X K[X], and assume that D is a Priifer
domain. Then Pic(Rym)) = {0} if and only if D is a Bezout domain.

Proof. This follows directly from Proposition 10 because a Priifer do-
main is a Bezout domain if and only if its Picard group is trivial. O]

We next give a PuMD (resp., GCD domain) analog of Proposition 10
and Corollary 11. Even though their proofs are word for word transla-
tions of their counterparts, we give them for completeness.

PropPOSITION 12. The following statements are equivalent for R =
D+ XK[X].

1. R is a PvMD (resp., GCD domain).

2. Ry is a PuMD (resp., GCD domain).

3. D is a PuMD (resp., GCD domain).

Proof. (1) = (2) Clear.

(2) = (3) For the PuMD property, it suffices to show that each
nonzero two generated ideal of D is t-invertible. For this, let 0 # a,b €
D. If Ryy is a PuMD, then (a,b)Ry(m) is t-invertible, and hence
by [4, Proposition 1.3],

Ry = (((a,0)Ryn)((a;0) Ryqay) ™)
= (((a,b)Ry )(((a,b)R) "Ry(m)):
= (((a,0) )(( D)R)™ )tRN(H)-

Since (a, b) is an ideal of D,
(((a;0)R)((a,0)R) )¢ = (((a,b) + XK[X])((a,b) " + X K[X])),
= ((a,b)(a ) + XK[X])
= ((a,b)(a,b)™") + XK[X].

Note that (P + XK[X])NN(H) = 0 for all P € t-Max(D). Hence,
(a,b)(a,b)"t € P for all P € t-Max(D), and thus (a,b) is t-invertible.
Next 1f Ry (py is a GCD domain, then

((a, b)tR)RN(H) = ((a,0)R)¢Rn(y = ((a,b) By(my)e = RN

for some g € R. Since a,b € D and gRym) = C(g)Rnm), we may
assume that g € D. Then, it is clear that (a,b); = gD.
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(3) = (1) [8, Theorem 4.43] (resp., [8, Theorem 1.1 and Corollary
1.3]). O

COROLLARY 13. Let R = D+ X K|[X], and assume that D is a PuMD.
Then Cl(Ry(my) = {0} if and only if D is a GCD domain.

Proof. This follows directly from Proposition 12 because a PuMD is
a GCD domain if and only if its t-class group is trivial. m

Let T'= @, 1o be a nontrivial graded Krull domain; equivalently,
every nonzero homogeneous ideal of T is t-invertible [3, Theorem 2.4].
Then T satisfies property (#), Ty is a PID, Cl(Tn ) =Pic(Tnm)) =
{0}, and Ty = Kr(T,v) [4, Section 2]; so in this case, Theorems 3, 4
and 5 hold even though R does not contain a unit of nonzero degree. We
next give a remark which shows that the results of Section 1 are the best
generalizations of Nagata rings and Kronecker function rings to graded
integral domains.

REMARK 14. (1) (cf. Proposition 1) If D = Z|y] is the polynomial
ring over 7Z, then (2,y) is a maximal ideal of D but not a t-ideal, and
hence R = D + X K|[X] does not satisfy property (#) by Corollary 9.
Thus, a graded integral domain does not satisfy property (#) in general.

(2) If D = Z|y] is the polynomial ring over Z, then D is a PvMD but
not a Priifer domain. Hence, R is a non-Priifer PuMD, and thus Ry
is a non-Priifer PoMD by Propositions 10 and 12. Thus, in Theorem 2,
the assumption that R satisfies property (#) cannot be deleted.

(3) Let D be a non-Bezout Priifer domain. Then R satisfies prop-
erty (#) by Corollary 9 and Ry(x) is a non-Bezout Priifer domain by
Proposition 10, while CI((Rnm))) =Pic(Rn)) # {0} by Corollary 11
and Kr(R,*) = Rym) by Proposition 7(3). Thus, in Theorems 3 and
5(2)(a), the assumption that R has a unit of nonzero degree cannot be
deleted.

(4) By Corollary 8, every (principal) ideal of Ry is extended from
a homogeneous ideal of R. But, if D is not a PvMD, then Ry () is not
a PuMD by Proposition 12. Thus, in Theorem 4, the assumption that
R has a unit of nonzero degree cannot be deleted.

(5) It is well known that if an integral domain admits an e.a.b. star
operation, then it is integrally closed [12, Corollary 32.8]. But, Proposi-
tion 7(1) shows that we can define a Kronecker function ring of graded
integral domains even though it is not integrally closed (i.e., * need not
be an e.a.b. star operation for Kronecker function rings Kr(R, x)). Note
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also that Kr(R,*) = Ry(m) by Proposition 7(3); so Theorem 5(2)(b)
does not hold in general.

(6) Let D = Q[y?,y®], where y is an indeterminate over Q. Then D
is a one-dimension non-Priifer domain and R satisfies property (#) by
Corollary 9. Hence, R is not a graded-Priifer domain, while C'(fg) =
C(f)C(g) for all 0 # f,g € R by Lemma 6(2). Thus, Theorem 5(2)(c
does not hold in general.

We end this paper with an example which shows that Pic(Rym)) #
Cl(Ry(m)) in general (cf. Remark 14(3)).

EXAMPLE 15. Let D be a quasi-local non-factorial Krull domain (see
[7, Corollary 2] for such a Krull domain); then Pic(D) = {0} but CI(D) #
{0}

Claim 1: Pic(Rnm)) = {0}. (Proof: Let A be an ideal of R such that
ARN gy is invertible. By Corollary 8, we may assume that A is homoge-
neous. Then RN(H) = (ARN(H))(ARN(H))_l = (ARN(H))(A_IRN(H)) =
(AA™Y) Ry (see [4, Proposition 1.3] for the second equality), and hence
AAT' N N(H) # 0. Note that AA™' = R by Lemma 6(3) because
AA~! is homogeneous; so we may assume that AN D # (0), and hence
A= (AND)R and AN D is invertible. Since Pic(D) = {0}, AN D is
principal. Thus, ARN( o 1s principal.)

Claim 2. Cl(Rn(m)) # {0}. (Proof: Let I be a nonzero non-principal
t-invertible ideal of D. Then IRy is t-invertible. If IRy is prin-
cipal, then there is an x € I such that IRyy) = vRy(m) by Lemma 6
because IR ¢ XK|[X]. Thus, I = IRy N K = 2Ry N K = zD, a
contradiction.)
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