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GRADED INTEGRAL DOMAINS AND NAGATA RINGS, II

Gyu Whan Chang

Abstract. Let D be an integral domain with quotient field K,
X be an indeterminate over D, K[X] be the polynomial ring over
K, and R = {f ∈ K[X] | f(0) ∈ D}; so R is a subring of K[X]
containing D[X]. For f = a0 + a1X + · · ·+ anX

n ∈ R, let C(f) be
the ideal of R generated by a0, a1X, . . . , anX

n and N(H) = {g ∈
R | C(g)v = R}. In this paper, we study two rings RN(H) and

Kr(R, v) = { fg | f, g ∈ R, g 6= 0, and C(f) ⊆ C(g)v}. We then use

these two rings to give some examples which show that the results
of [4] are the best generalizations of Nagata rings and Kronecker
function rings to graded integral domains.

1. Introduction

Let D be an integral domain with quotient field K, X be an in-
determinate over D, D[X] be the polynomial ring over D, and Af be
the fractional ideal of D generated by the coefficients of a polynomial
f ∈ K[X]. There are three types of interesting overrings of D[X] two of
which are

D(X) = {f
g
| f, g ∈ D[X], g 6= 0, and Ag = D}

D[X]Nv = {f
g
| f, g ∈ D[X], g 6= 0, and (Ag)v = D}.
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Clearly, D[X] ⊆ D(X) ⊆ D[X]Nv ⊆ K(X), and we say that D(X)
(resp., D[X]Nv) is the Nagata ring (resp., (t-)Nagata ring) of D. (Defi-
nitions will be reviewed in the sequel.) For the third one, assume that
D is integrally closed, and let ∗ be an e.a.b. star operation on D and

Kr(D, ∗) = {f
g
| f, g ∈ D[X], g 6= 0, and Af ⊆ (Ag)∗}.

Then Kr(D, ∗), called the Kronecker function ring of D (with respect
to ∗), is a Bezout domain such that Kr(D, ∗) ∩ K = D and D(X) ⊆
Kr(D, ∗) ⊆ K(X) [12, Theorem 32.7].

Nagata ring has many interesting ring-theoretic properties. For exam-
ple, every invertible ideal of D(X) is principal, i.e., Pic(D(X)) = {0} [1,
Theorem 2]; Max(D(X)) = {M(X) | M ∈ Max(D)} [12, Proposition
33.1]; and if b is the b-operation on an integrally closed domain D,
then D is a Prüfer domain if and only if D(X) is a Prüfer domain,
if and only if D(X) = Kr(D, b) [5, Theorem 4], if and only if D(X)
is a Bezout domain [12, Theorem 33.4]. These results were general-
ized to t-Nagata rings via the t-operation as follows: Pic(D[X]Nv) =
Cl(D[X]Nv) = {0}; Max(D[X]Nv) = {P [X]Nv | P ∈ t-Max(D)}; D is a
Prüfer v-multiplication domain (PvMD) if and only if D[X]Nv is a Prüfer
domain, if and only if D[X]Nv is a Bezout domain, if and only if each
ideal of D[X]Nv is extended from D [13]; and if D is a v-domain (i.e.,
the v-operation on D is an e.a.b. star operation), then D is a PvMD if
and only if D[X]Nv = Kr(D, v) [11, Theorem 2.5]. For more on Nagata
rings and Kronecker function rings, the reader can refer to [12, Sections
32-34] or Fontana-Loper’s interesting survey article [10].

Let R =
⊕

α∈ΓRα be an integral domain graded by an arbitrary
torsionless grading monoid Γ, H be the set of nonzero homogeneous el-
ements of R, S(H) = {f ∈ R | C(f) = R}, and N(H) = {f ∈ R |
C(f)v = R}. It is clear that if R = D[X,X−1], then RS(H) = D(X)
and RN(H) = D[X]Nv [4, Proposition 3.1]. Motivated by these two facts,
in [4], the authors generalized the notions of (t-)Nagata rings and Kro-
necker function rings to graded integral domains. They proved several
properties of graded integral domain analogs of (t-)Nagata rings and
Kronecker function rings under assumptions that R satisfies property
(#) or R has a unit of nonzero degree (see Section 2 for definition
and results). In this paper, we give some examples which show that
the two assumptions are best for graded integral domain analogs of (t-
)Nagata rings and Kronecker function rings. More precisely, in Section
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2, we review some known results on (t-)Nagata rings and Kronecker
function rings of graded integral domains. Assume that D 6= K, and let
R = D+XK[X], i.e., R = {f ∈ K[X] | f(0) ∈ D}; so R is an N0-graded
integral domain with deg(aXn) = n for 0 6= a ∈ K and n ≥ 0 (a ∈ D
when n = 0), where N0 is the additive monoid of nonnegative integers.
In Section 3, we use the ring R = D+XK[X] to construct concrete ex-
amples why the results of [4] are the best generalizations of (t-)Nagata
rings and Kronecker function rings to graded integral domains.

Definitions related to star operations and graded integral do-
mains.
To facilitate the reading of this paper, we review some definitions on

star operations and graded integral domains. Let F(D) be the set of
nonzero fractional ideals of D. A map ∗ : F(D) → F(D), I 7→ I∗, is
called a star operation on D if the following three conditions are satisfied
for all 0 6= a ∈ K and I, J ∈ F(D): (i) (aD)∗ = aD and (aI)∗ = aI∗,
(ii) I ⊆ I∗ and if I ⊆ J , then I∗ ⊆ J∗, and (iii) (I∗)∗ = I∗. Given a
star operation ∗ on D, one can construct a new star operation ∗f by
setting I∗f =

⋃
{J∗ | J ∈ F(D) is finitely generated and J ⊆ I} for all

I ∈ F(D). Clearly, (∗f )f = ∗f and I∗ = I∗f for all finitely generated
I ∈ F(D). Examples of the most well-known star operations include
the v-, t-, and d-operations. The v-operation is defined by Iv = (I−1)−1,
where I−1 = {x ∈ K | xI ⊆ D}, the t-operation is defined by t = vf ,
and the d-operation is just the identity function on F(D), i.e., Id = I
for all I ∈ F(D); so df = d.

An I ∈ F(D) is called a ∗-ideal if I∗ = I. A ∗-ideal is called a
maximal ∗-ideal if it is maximal among proper integral ∗-ideals. Let
∗-Max(D) be the set of maximal ∗-ideals of D. It may happen that
∗-Max(D) = ∅ even though D is not a field (e.g., v-Max(D) = ∅ if D
is a rank-one nondiscrete valuation domain). However, it is well known
that ∗f -Max(D) 6= ∅ if D is not a field; each maximal ∗f -ideal is a
prime ideal; each proper integral ∗f -ideal is contained in a maximal ∗f -
ideal; and each prime ideal minimal over a ∗f -ideal is a ∗f -ideal. An
I ∈ F(D) is said to be ∗-invertible if (II−1)∗ = D, and D is a Prüfer
∗-multiplication domain (P∗MD) if each nonzero finitely generated ideal
of D is ∗f -invertible. Let T (D) (resp., Inv(D), Prin(D)) be the group of
t-invertible fractional t-ideals (resp., invertible fractional ideals, nonzero
principal fractional ideals) of D under the t-multiplication I ∗J = (IJ)t.
It is obvious that Prin(D) ⊆ Inv(D) ⊆ T (D). The t-class group of D
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is the abelian group Cl(D) = T (D)/Prin(D) and the Picard group (or
ideal class group) of D is the subgroup Pic(D) = Inv(D)/Prin(D) of
Cl(D). It is clear that if each maximal ideal of D is a t-ideal (e.g., D is
one-dimensional or a Prüfer domain), then Pic(D) = Cl(D). Also, if D
is a Krull domain, then Cl(D) is the usual divisor class group of D.

Let Γ be a nonzero torsionless grading monoid, that is, Γ is a nonzero
torsionless commutative cancellative monoid (written additively). It is
well known that a cancellative monoid Γ is torsionless if and only if Γ can
be given a total order compatible with the monoid operation [15, page
123]. By a Γ-graded integral domain R =

⊕
α∈ΓRα, we mean an integral

domain graded by Γ. That is, each nonzero x ∈ Rα has degree α, i.e.,
deg(x) = α, and deg(0) = 0. Thus, each nonzero f ∈ R can be written
uniquely as f = xα1 + · · · + xαn with deg(xαi

) = αi and α1 < · · · < αn.
An x ∈ Rα for every α ∈ Γ is said to be homogeneous. Let H be the
saturated multiplicative set of nonzero homogeneous elements of R. i.e.,
H =

⋃
α∈ΓRα \ {0}. Then RH , called the homogeneous quotient field of

R, is a graded integral domain whose nonzero homogeneous elements are
units. It is known that RH is a completely integrally closed GCD-domain
[2, Proposition 2.1]. For an ideal I of R, let I∗ be the ideal of R generated
by the homogeneous elements in I. We say that I is homogeneous if
I∗ = I and a homogeneous ideal is a maximal homogeneous ideal if it is
maximal among proper homogeneous ideals of R. Let h-Max(R) be the
set of maximal homogeneous ideals of R. It is easy to see that each ideal
in h-Max(R) is a prime ideal and each proper homogeneous ideal of R is
contained in at least one maximal homogeneous ideal of R. For f ∈ RH ,
let C(f) denote the fractional ideal of R generated by the homogeneous
components of f . For an ideal I of R, let C(I) =

∑
f∈I C(f). Clearly,

C(f) and C(I) are homogeneous ideals of R.

2. Review on the rings RN(H) and Kr(R, ∗)

Let Γ be a nonzero torsionless grading monoid, R =
⊕

α∈Γ Rα be a
Γ-graded integral domain with Rα 6= {0} for all α ∈ Γ, H be the set of
nonzero homogeneous elements of R, S(H) = {f ∈ R | C(f) = R}, and
N(H) = {0 6= f ∈ R | C(f)v = R}. Note that if R = D[X,X−1], then
R has a unit of nonzero degree, RS(H) = D(X), and RN(H) = D[X]Nv

where Nv = {f ∈ D[X] | (Af )v = D}. Hence, all results in this section
are true for the rings D(X) and D[X]Nv .
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Proposition 1. Let R =
⊕

α∈Γ Rα be a graded integral domain and
Ω be the set of maximal t-ideals Q of R with Q ∩H 6= ∅.

1. Every prime ideal in Ω is homogeneous.
2. N(H) = R \

⋃
Q∈Ω Q.

3. Max(RN(H)) = {QN(H) | Q ∈ Ω} if and only if R has property (#)
that if I is a nonzero ideal of R with C(I)t = R, then I∩N(H) 6= ∅.

Proof. (1) [3, Lemma 1.2]. (2) and (3) [4, Proposition 1.4].

We say that R =
⊕

α∈ΓRα is a graded-Prüfer v-multiplication domain
(graded PvMD) (resp., graded-Prüfer domain, graded-Bezout domain) if
every nonzero finitely generated homogeneous ideal of R is t-invertible
(resp., invertible, principal). Hence, graded-Bezout domain ⇒ graded-
Prüfer domain ⇒ graded PvMD ⇔ PvMD [2, Theorem 6.4], while a
graded-Prüfer domain need not be Prüfer [4, Example 3.6].

Theorem 2. [4, Corollaries 1.10 and 1.11] If R satisfies property (#),
then R is a PvMD if and only if RN(H) is a Prüfer domain. In this case,
each ideal of RN(H) is extended from a homogeneous ideal of R.

It is easy to see that R =
⊕

α∈ΓRα satisfies property (#) if R is one
of the following rings: (i) R has a unit of nonzero degree, (ii) R = D[Γ] is
the monoid domain of Γ over an integral doman D, or (iii) R = D[{Xα}]
is the polynomial ring [4, Example 1.6].

Theorem 3. [4, Theorem 3.3] Let R =
⊕

α∈Γ Rα be a graded integral
domain with a unit of nonzero degree. Then Cl(RN(H)) = Pic(RN(H)) =
{0}.

Theorem 4. [4, Theorem 3.4] The following statements are equiva-
lent for a graded integral domain R =

⊕
α∈ΓRα with a unit of nonzero

degree.

1. R is a PvMD.
2. Every ideal of RN(H) is extended from a homogeneous ideal of R.
3. RN(H) is a Prüfer domain.
4. RN(H) is a Bezout domain.

Let D be an integral domain with quotient field K. A star opera-
tion ∗ on D is said to be an endlish arithmetisch brauchbar (e.a.b.) star
operation if (AB)∗ ⊆ (AC)∗ implies B∗ ⊆ C∗ for all nonzero finitely gen-
erated A,B,C ∈ F(D). Clearly, ∗ is an e.a.b. star operation if and only
if ∗f is an e.a.b. star operation. We know that if D admits an e.a.b. star
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operation, then D is integrally closed [12, Corollary 32.8]. Conversely,
suppose that D is integrally closed, and for a star operation ∗ on D,
define

I∗c =
⋂
{IV | V is a ∗-linked valuation overring of D},

then ∗c is an e.a.b. star operation on D [6, Lemma 3.1]. (A subring T
of K containing D is said to be ∗-linked over D if I∗ = D for a finitely
generated I ∈ F(D) implies (IT )v = T .) As in [12, Theorem 32.5], we
say that dc = b.

Let ∗ be an e.a.b. star operation on an integrally closed domain D
and

Kr(D, ∗) = {f
g
| f, g ∈ D[X], g 6= 0, and Af ⊆ (Ag)∗}.

Then Kr(D, ∗) is a Bezout domain and Kr(D, ∗)∩K = D; D is a Prüfer
domain if and only if Kr(D, b) = D(X); and D is a PvMD if and only
if Kr(D, vc) = D[X]Nv [6, Corollary 3.8]. In [4], the authors introduced
and studied a graded integral domain analog as follows.

Theorem 5. Let R =
⊕

α∈ΓRα be an integrally closed graded inte-
gral domain, ∗ be an e.a.b. star operation on R, and

Kr(R, ∗) = {f
g
| f, g ∈ R, g 6= 0, and C(f) ⊆ C(g)∗}.

1. Kr(R, ∗) is an integral domain such that Kr(R, ∗) ∩ RH = R and
fKr(R, ∗) = C(f)Kr(R, ∗) for all f ∈ R.

2. Assume that R has a unit of nonzero degree.
(a) Kr(R, ∗) is a Bezout domain.
(b) If ∗f = t, then R is a PvMD if and only if RN(H) = Kr(R, t).
(c) R is a graded-Prüfer domain if and only if RS(H) = Kr(R, b),

if and only if C(fg) = C(f)C(g) for all 0 6= f, g ∈ R.

Proof. See [4, Theorem 2.9] (resp., [4, Theorem 3.5]; [4, Theorem 3.7]
and [16, Theorem 4.2]) for (1) (resp., (2) (a)-(b); (2) (c)).

It is known that if Γ = N0, then R =
⊕

α∈ΓRα is a Prüfer domain if
and only if R0 is a Prüfer domain and R ∼= R0 + yF [y], where F is the
quotient field of R0 and y is an indeterminate over F [9, Proposition 3.4].
The ring T = R0 + yF [y] is very helpful when we construct rings with
prescribed ring-theoretic properties, and this type of integral domains
was first introduced and studied by Costa, Mott, and Zafrullah [8]. In
the next section, we use rings of the type T = R0 + yF [y] to give some
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examples which show that the results of this section are best for general-
izations of Nagata rings and Kronecker function rings to graded integral
domains.

3. The ring R = D +XK[X]

Let D be an integral domain with quotient field K and D 6= K, X
be an indeterminate over D, K[X] be the polynomial ring over K, and
R = D + XK[X], i.e., R = {f ∈ K[X] | f(0) ∈ D}; so D[X] ( R (
K[X]. Clearly, R is an N0-graded integral domain with deg(aXn) = n
for 0 6= a ∈ K and n ≥ 0 (a ∈ D when n = 0). Let H be the set of
nonzero homogeneous elements of R, S(H) = {f ∈ R | C(f) = R} and
N(H) = {0 6= f ∈ R | C(f)v = R}; so S(H) ⊆ N(H), and equality
holds when each maximal homogeneous ideal of R is a t-ideal.

Lemma 6. Let R = D +XK[X].

1. If f = akX
k + ak+1X

k+1 + · · · + ak+nX
k+n ∈ R, ak 6= 0, then

C(f) = akX
kR.

2. If f, g ∈ R, then C(fg) = C(f)C(g).
3. N(H) = {f ∈ R | f(0) is a unit of D} = S(H).
4. h-Max(R) = {P +XK[X] | P ∈ Max(D)}.

Proof. (1) Note that if i > k, then aiX
i = akX

k( ai
ak
X i−k) and ai

ak
X i−k ∈

XK[X] ⊆ R. Thus, C(f) = (akX
k, ak+1X

k+1, · · · , ak+nX
k+n) = akX

kR.
(2) This follows directly from (1).
(3) Let 0 6= a ∈ D. Then (aR)v = aR; and aR = R if and only if

a is a unit of D. Thus, the result follows from (1) and the fact that
bXnR ⊆ XK[X] ( R for all bXn ∈ XK[X].

(4) This follows from the fact that if A is a homogeneous ideal of R,
then either A ⊆ XK[X] or A ∩D 6= (0) and A = (A ∩D) +XK[X] [8,
Proposition 4.12].

Proposition 7. For a star operation ∗ on R = D +XK[X], let

Kr(R, ∗) = {f
g
| f, g ∈ R, g 6= 0 and C(f) ⊆ C(g)∗}.

1. Kr(R, ∗) is an integral domain such that Kr(R, ∗) ∩ RH = R and
fKr(R, ∗) = C(f)Kr(R, ∗) for all f ∈ R.

2. Kr(R, d) = Kr(R, ∗) = Kr(R, v); hence R has a unique Kronecker
function ring of this type.

3. RN(H) = Kr(R, ∗).
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4. Kr(R, ∗) is integrally closed if and only if D is integrally closed, if
and only if R is integrally closed.

Proof. (1) Let 0 6= f, g ∈ R. Then C(fg) = C(f)C(g) by Lemma
6(2), and hence C(fg)∗ = (C(f)C(g))∗. Thus, the result can be proved
by the same argument as the proof of [4, Theorem 2.9].

(2) If 0 6= f ∈ R, then C(f) is a nonzero principal ideal of R by
Lemma 6(1), and so C(f) = C(f)∗ = C(f)v. Thus, the result follows.

(3) Let f, g ∈ R be such that g 6= 0 and C(f) ⊆ C(g). Note that
C(g) = uR for some u ∈ H by Lemma 6(1); so C(f

u
) ⊆ C( g

u
) = R and

f
g

= f
u
/ g
u
∈ RN(H). Thus, Kr(R, v) ⊆ RN(H). The reverse containment is

clear.
(4) It is clear that R is integrally closed if and only if D is integrally

closed (because K[X] is integrally closed and R ∩ K = D). Note that
RH is integrally closed and Kr(R, ∗) ∩ RH = R. So if Kr(R, ∗) is inte-
grally closed, then R is integrally closed. For the reverse, note that if
R is integrally closed, then RN(H) is integrally closed. Thus, Kr(R, ∗) is
integrally closed by (3).

Corollary 8. Let R = D +XK[X].

1. Every ideal of RN(H) is extended from a homogeneous ideal of R.
2. Max(RN(H)) = {PRN(H) | P ∈ Max(D)}.

Proof. (1) By Proposition 7, fRN(H) = C(f)RN(H) for all f ∈ R.
Thus, ifA is an ideal ofR, thenAN(H) =

∑
f∈A fRN(H) =

∑
f∈AC(f)RN(H)

= (
∑

f∈AC(f))RN(H) and
∑

f∈AC(f) is a homogeneous ideal of R.

(2) Let M be a maximal ideal of RN(H). Then M = QRN(H) for
some homogeneous ideal Q of R by (1). Also, since M is a maximal
ideal of RN(H), XK[X] ( Q, and hence Q ∩D is a maximal ideal of D.
Thus, Q = (Q ∩ D) + XK[X] = (Q ∩ D)R and M = (Q ∩ D)RN(H).
For the reverse containment, let P be a maximal ideal of D. Then
PR = P +XK[X] is a maximal ideal of R and PR ∩N(H) = ∅. Thus,
PRN(H) is a maximal ideal of RN(H).

It is easy to see that if I is a nonzero fractional ideal of D, then
(IR)−1 = I−1 + XK[X] = I−1R, (IR)v = Iv + XK[X] = (Iv)R, and
(IR)t = It + XK[X] = (It)R (cf. [8, Lemma 4.41]). From now on, we
use this result without further comments.

Corollary 9. R = D+XK[X] satisfies property (#) if and only if
each maximal ideal of D is a t-ideal.
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Proof. Let P be a nonzero prime ideal of D. Then PR = P +XK[X]
and (P + XK[X])t = Pt + XK[X], and thus PR is a maximal t-ideal
of R if and only if P is a maximal t-ideal of D. Also, if Q is a maximal
t-ideal of R that is homogeneous, then Q ∩ D 6= (0), and hence Q =
(Q ∩D) +XK[X]. Hence, {PR | P ∈ t-Max(D)} is the set of maximal
t-ideals of R that are homogeneous. Thus, R satisfies property (#) if
and only if Max(RN(H)) = {PRN(H) | P ∈ t-Max(D)} by Proposition 1,
if and only if Max(D) = t-Max(D) by Corollary 8(2), if and only if each
maximal ideal of D is a t-ideal.

Note that if D is a Prüfer domain, then each maximal ideal of D is a
t-ideal. Thus, R = D +XK[X] satisfies property (#) by Corollary 9.

Proposition 10. The following statements are equivalent for R =
D +XK[X].

1. R is a Prüfer (resp., Bezout) domain.
2. RN(H) is a Prüfer (resp., Bezout) domain.
3. D is a Prüfer (resp., Bezout) domain.
4. R is a graded-Prüfer (resp., graded-Bezout) domain.

Proof. (1) ⇒ (2) and (4) Clear.
(2) ⇒ (3) Let 0 6= a, b ∈ D. If RN(H) is a Prüfer domain, then

(a, b)RN(H) is invertible, and hence

RN(H) = ((a, b)RN(H))((a, b)RN(H))
−1

= ((a, b)RN(H))(((a, b)R)−1RN(H))

= (((a, b)R)((a, b)R)−1)RN(H)

(cf. [4, Proposition 1.3] for the second equality). Since (a, b) is an ideal
of D,

((a, b)R)((a, b)R)−1 = ((a, b) +XK[X])((a, b)−1 +XK[X])

= (a, b)(a, b)−1 +XK[X].

Note also that (P +XK[X])∩N(H) = ∅ for all P ∈ Max(D) by Lemma
6(3). Hence, (a, b)(a, b)−1 * P for all P ∈ Max(D), and thus (a, b) is
invertible. Thus, D is a Prüfer domain.

Next, if R is a Bezout domain, then (a, b)RN(H) = gRN(H) for some
g ∈ R. Since a, b ∈ D and gRN(H) = C(g)RN(H) by Proposition 7, we
may assume that g ∈ D. Then, it is clear that (a, b) = gD by Lemma 6.

(3) ⇒ (1) [8, Corollary 4.15] (resp., [8, Corollary 4.13]).
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(4) ⇒ (3) See the proof of “(2) ⇒ (3)” above because (a, b)R is a
homogeneous ideal of R.

Corollary 11. Let R = D+XK[X], and assume that D is a Prüfer
domain. Then Pic(RN(H)) = {0} if and only if D is a Bezout domain.

Proof. This follows directly from Proposition 10 because a Prüfer do-
main is a Bezout domain if and only if its Picard group is trivial.

We next give a PvMD (resp., GCD domain) analog of Proposition 10
and Corollary 11. Even though their proofs are word for word transla-
tions of their counterparts, we give them for completeness.

Proposition 12. The following statements are equivalent for R =
D +XK[X].

1. R is a PvMD (resp., GCD domain).
2. RN(H) is a PvMD (resp., GCD domain).
3. D is a PvMD (resp., GCD domain).

Proof. (1) ⇒ (2) Clear.
(2) ⇒ (3) For the PvMD property, it suffices to show that each

nonzero two generated ideal of D is t-invertible. For this, let 0 6= a, b ∈
D. If RN(H) is a PvMD, then (a, b)RN(H) is t-invertible, and hence
by [4, Proposition 1.3],

RN(H) = (((a, b)RN(H))((a, b)RN(H))
−1)t

= (((a, b)RN(H))(((a, b)R)−1RN(H)))t

= (((a, b)R)((a, b)R)−1)tRN(H).

Since (a, b) is an ideal of D,

(((a, b)R)((a, b)R)−1)t = (((a, b) +XK[X])((a, b)−1 +XK[X]))t

= ((a, b)(a, b)−1 +XK[X])t

= ((a, b)(a, b)−1)t +XK[X].

Note that (P + XK[X]) ∩ N(H) = ∅ for all P ∈ t-Max(D). Hence,
(a, b)(a, b)−1 * P for all P ∈ t-Max(D), and thus (a, b) is t-invertible.

Next, if RN(H) is a GCD domain, then

((a, b)tR)RN(H) = ((a, b)R)tRN(H) = ((a, b)RN(H))t = gRN(H)

for some g ∈ R. Since a, b ∈ D and gRN(H) = C(g)RN(H), we may
assume that g ∈ D. Then, it is clear that (a, b)t = gD.
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(3) ⇒ (1) [8, Theorem 4.43] (resp., [8, Theorem 1.1 and Corollary
1.3]).

Corollary 13. Let R = D+XK[X], and assume that D is a PvMD.
Then Cl(RN(H)) = {0} if and only if D is a GCD domain.

Proof. This follows directly from Proposition 12 because a PvMD is
a GCD domain if and only if its t-class group is trivial.

Let T =
⊕

α∈Γ Tα be a nontrivial graded Krull domain; equivalently,
every nonzero homogeneous ideal of T is t-invertible [3, Theorem 2.4].
Then T satisfies property (#), TN(H) is a PID, Cl(TN(H)) =Pic(TN(H)) =
{0}, and TN(H) = Kr(T, v) [4, Section 2]; so in this case, Theorems 3, 4
and 5 hold even though R does not contain a unit of nonzero degree. We
next give a remark which shows that the results of Section 1 are the best
generalizations of Nagata rings and Kronecker function rings to graded
integral domains.

Remark 14. (1) (cf. Proposition 1) If D = Z[y] is the polynomial
ring over Z, then (2, y) is a maximal ideal of D but not a t-ideal, and
hence R = D + XK[X] does not satisfy property (#) by Corollary 9.
Thus, a graded integral domain does not satisfy property (#) in general.

(2) If D = Z[y] is the polynomial ring over Z, then D is a PvMD but
not a Prüfer domain. Hence, R is a non-Prüfer PvMD, and thus RN(H)

is a non-Prüfer PvMD by Propositions 10 and 12. Thus, in Theorem 2,
the assumption that R satisfies property (#) cannot be deleted.

(3) Let D be a non-Bezout Prüfer domain. Then R satisfies prop-
erty (#) by Corollary 9 and RN(H) is a non-Bezout Prüfer domain by
Proposition 10, while Cl((RN(H))) =Pic(RN(H)) 6= {0} by Corollary 11
and Kr(R, ∗) = RN(H) by Proposition 7(3). Thus, in Theorems 3 and
5(2)(a), the assumption that R has a unit of nonzero degree cannot be
deleted.

(4) By Corollary 8, every (principal) ideal of RN(H) is extended from
a homogeneous ideal of R. But, if D is not a PvMD, then RN(H) is not
a PvMD by Proposition 12. Thus, in Theorem 4, the assumption that
R has a unit of nonzero degree cannot be deleted.

(5) It is well known that if an integral domain admits an e.a.b. star
operation, then it is integrally closed [12, Corollary 32.8]. But, Proposi-
tion 7(1) shows that we can define a Kronecker function ring of graded
integral domains even though it is not integrally closed (i.e., ∗ need not
be an e.a.b. star operation for Kronecker function rings Kr(R, ∗)). Note
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also that Kr(R, ∗) = RN(H) by Proposition 7(3); so Theorem 5(2)(b)
does not hold in general.

(6) Let D = Q[y2, y3], where y is an indeterminate over Q. Then D
is a one-dimension non-Prüfer domain and R satisfies property (#) by
Corollary 9. Hence, R is not a graded-Prüfer domain, while C(fg) =
C(f)C(g) for all 0 6= f, g ∈ R by Lemma 6(2). Thus, Theorem 5(2)(c)
does not hold in general.

We end this paper with an example which shows that Pic(RN(H)) 6=
Cl(RN(H)) in general (cf. Remark 14(3)).

Example 15. Let D be a quasi-local non-factorial Krull domain (see
[7, Corollary 2] for such a Krull domain); then Pic(D) = {0} but Cl(D) 6=
{0}.

Claim 1: Pic(RN(H)) = {0}. (Proof: Let A be an ideal of R such that
ARN(H) is invertible. By Corollary 8, we may assume that A is homoge-
neous. Then RN(H) = (ARN(H))(ARN(H))

−1 = (ARN(H))(A
−1RN(H)) =

(AA−1)RN(H) (see [4, Proposition 1.3] for the second equality), and hence
AA−1 ∩ N(H) 6= ∅. Note that AA−1 = R by Lemma 6(3) because
AA−1 is homogeneous; so we may assume that A ∩D 6= (0), and hence
A = (A ∩ D)R and A ∩ D is invertible. Since Pic(D) = {0}, A ∩ D is
principal. Thus, ARN(H) is principal.)

Claim 2. Cl(RN(H)) 6= {0}. (Proof: Let I be a nonzero non-principal
t-invertible ideal of D. Then IRN(H) is t-invertible. If IRN(H) is prin-
cipal, then there is an x ∈ I such that IRN(H) = xRN(H) by Lemma 6
because IR * XK[X]. Thus, I = IRN(H) ∩K = xRN(H) ∩K = xD, a
contradiction.)
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