
Korean J. Math. 25 (2017), No. 3, pp. 303–321
https://doi.org/10.11568/kjm.2017.25.3.303

STABILITY IN NONLINEAR NEUTRAL LEVIN-NOHEL

INTEGRO-DIFFERENTIAL EQUATIONS

Kamel Ali Khelil, Abdelouaheb Ardjouni∗, and
Ahcene Djoudi

Abstract. In this paper we use the Krasnoselskii-Burton’s fixed
point theorem to obtain asymptotic stability and stability results
about the zero solution for the following nonlinear neutral Levin-
Nohel integro-differential equation

x′(t) +

∫ t

t−τ(t)
a(t, s)g (x(s)) ds+ c(t)x′(t− τ(t)) = 0.

The results obtained here extend the work of Mesmouli, Ardjouni
and Djoudi [20].

1. Introduction

The Lyapunov direct method has been very effective in establishing
stability results and the existence of periodic solutions for wide variety
of ordinary, functional and partial differential equations. Nevertheless,
in the application of Lyapunov’s direct method to problems of stability
in delay differential equations, serious difficulties occur if the delay is
unbounded or if the equation has unbounded terms. In recent years,
several investigators have tried stability by using a new technique. Par-
ticularly, Burton, Furumochi, Zhang and others began a study in which
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they noticed that some of this difficulties vanish or might be overcome
by means of fixed point theory (see [1]– [22], [24]). The fixed point the-
ory does not only solve the problem on stability but has other significant
advantage over Lyapunov’s direct method. The conditions of the former
are often average but those of the latter are usually pointwise (see [8]).

In paper, we consider the following nonlinear neutral Levin-Nohel
integro-differential equation with variable delay

(1) x′(t) +

∫ t

t−τ(t)
a(t, s)g (x(s)) ds+ c(t)x′(t− τ(t)) = 0, t ≥ t0,

with an assumed initial condition

x (t) = φ (t) , t ∈ [m (t0) , t0] ,

where φ ∈ C ([m (t0) , t0] ,R) and

m (t0) = inf {t− τ (t) : t ∈ [t0,∞)} .

Throughout this paper, we assume that c ∈ C1 ([t0,∞) ,R), a ∈ C([t0,∞)×
[m (t0) ,∞) ,R+) and g : R → R is continuous with respect to its argu-
ment. We assume that g (0) = 0 and τ ∈ C2 ([t0,∞) ,R+) such that

(2) τ ′ (t) 6= 1, t ∈ [t0,∞) .

Our purpose here is to use the Krasnoselskii-Burton’s fixed point the-
orem to show the asymptotic stability and stability of the zero solution
for (1). In the special case c = 0, Mesmouli, Ardjouni and Djoudi [20]
show the zero solution of (1) is asymptotically stable with a necessary
and sufficient condition by using the contraction mapping theorem in a
weighted Banach space. The results presented in this paper extend the
main results in [20].

2. The inversion and the fixed point theorem

One crucial step in the investigation of an equation using fixed point
theory involves the construction of a suitable fixed point mapping. For
that end we must invert (1) to obtain an equivalent integral equation
from which we derive the needed mapping. During the process, an inte-
gration by parts has to be performed on the neutral term x′(t − τ(t)).
Unfortunately, when doing this, a derivative τ ′(t) of the delay appears
on the way, and so we have to support it.
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Lemma 2.1. Suppose that (2) holds. Then x is a solution of equation
(1) if and only if

x(t) = (φ(t0) + γ(t0)φ(t0 − τ(t0))) e
−

∫ t
t0
A(z)dz

+

∫ t

t0

(∫ s

s−τ(s)
a(s, u) (Gx) (u)du

)
e−

∫ t
s A(z)dzds− γ(t)x(t− τ(t))

−
∫ t

t0

[Lx(s)− µ(s)x(s− τ(s))] e−
∫ t
s A(z)dzds, t ≥ t0,(3)

where

Lx(t) =

∫ t

t−τ(t)
a(t, s)

(∫ t

s

(∫ u

u−τ(u)
a(u, v)x(v)dv − r(u)x(u− τ(u))

)
du

+γ(t)x(t− τ(t))− γ(s)x(s− τ(s))) ds
(4)

(5) r(t) =
c′(t)(1− τ ′(t)) + τ ′′(t)c(t)

(1− τ ′(t))2
, γ(t) =

c(t)

1− τ ′(t)
,

(6) (Gx)(t) = x(t)− g(x(t)),

and
(7)

µ(t) =
(c′(t) + c(t)A(t))(1− τ ′(t)) + τ ′′(t)c(t)

(1− τ ′(t))2
, A(t) =

∫ t

t−τ(t)
a(t, s)ds.

Proof. Let x be a solution of (1). Rewrite (1) as

x′(t) +

∫ t

t−τ(t)
a(t, s)x(s)ds

−
∫ t

t−τ(t)
a(t, s) (x(s)− g(x(s))) ds+ c(t)x′(t− τ(t)) = 0, t ≥ t0.

Obviously, we have

x(s) = x(t)−
∫ t

s

x′(u)du.
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Inserting this relation into (1), we get

x′(t) +

∫ t

t−r(t)
a(t, s)

(
x(t)−

∫ t

s

x′(u)du

)
ds

−
∫ t

t−τ(t)
a(t, s)(Gx) (s) ds+ c(t)x′(t− τ(t)) = 0, t ≥ t0,

or equivalently

x′(t) + x(t)

∫ t

t−τ(t)
a(t, s)ds−

∫ t

t−τ(t)
a(t, s)

(∫ t

s

x′(u)du

)
ds

−
∫ t

t−τ(t)
a(t, s)(Gx) (s) ds+ c(t)x′(t− τ(t)) = 0, t ≥ t0.

After substituting x′ from (1), we obtain

x′(t) + x(t)

∫ t

t−τ(t)
a(t, s)ds

(8)

+

∫ t

t−τ(t)
a(t, s)

(∫ t

s

(∫ u

u−τ(u)
a(u, v)x(v)dv + c(u)x′(u− τ(u))

)
du

)
ds

−
∫ t

t−τ(t)
a(t, s)(Gx) (s) ds+ c(t)x′(t− τ(t)) = 0, t ≥ t0.

By performing the integration by parts, we have∫ t

s

c(u)x′(u− τ(u))du

=

∫ t

s

c(u)

1− τ ′(u)
dx(u− τ(u))

= γ (t)x(t− τ(t))− γ (s)x(s− τ(s))−
∫ t

s

r(u)x(u− τ(u))du,(9)

where r and γ are given by (5). After substituting (9) into (8), we have

x′(t) + A(t)x(t) + Lx(t)

−
∫ t

t−τ(t)
a(t, s)(Gx) (s) ds+ c(t)x′(t− τ(t)) = 0, t ≥ t0,
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where A and Lx are given by (7) and (4), respectively. By the variation
of constants formula, we get

x(t) = φ(t0)e
−

∫ t
t0
A(z)dz

+

∫ t

t0

(∫ s

s−τ(s)
a(s, u) (Gx) (u)du

)
e−

∫ t
s A(z)dzds

−
∫ t

t0

[Lx(s) + c(s)x′(s− τ(s))] e−
∫ t
s A(z)dzds, t ≥ t0.(10)

Letting∫ t

t0

c(s)x′(s− τ(s))e−
∫ t
s A(z)dzds =

∫ t

t0

c(s)

1− τ ′(s)
e−

∫ t
s A(z)dzdx(s− τ(s)).

By using the integration by parts, we obtain∫ t

t0

c(s)x′(s− τ(s))e−
∫ t
s A(z)dzds

=
c(t)

1− τ ′(t)
x(t− τ(t))− c(t0)

1− τ ′(t0)
x(t0 − τ(t0))e

−
∫ t
t0
A(z)dz

−
∫ t

t0

µ(s)x(s− τ(s))e−
∫ t
s A(z)dzds,(11)

where µ is given by (7). Finally, we obtain (3) by substituting (11)
in (10). Since each step is reversible, the converse follows easily. This
completes the proof.

Burton studied the theorem of Krasnoselskii and observed (see [9])
that Krasnoselskii result can be more interesting in applications with
certain changes and formulated the Theorem 2.4 below (see [9] for its
proof).

Definition 2.2. Let (M,d) be a metric space and F : M → M .
F is said to be a large contraction if ϕ, ψ ∈ M with ϕ 6= ψ, then
d(Fϕ, Fψ) < d(ϕ, ψ), and if for all ε > 0, there exists η < 1 such that

[ϕ, ψ ∈M, d(ϕ, ψ) ≥ ε]⇒ d(Fϕ, Fψ) ≤ ηd(ϕ, ψ).

Theorem 2.3 (Burton). Let (M,d) be a complete metric space and
F be a large contraction. Suppose there is x ∈ M and ρ > 0 such that
d(x, F nx) ≤ ρ for all n ≥ 1. Then F has a unique fixed point in M .

Below, we state Krasnoselskii-Burton’s hybrid fixed point theorem
which enables us to establish a stability result of the trivial solution of
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(1). For more details on Krasnoselskii’s captivating theorem we refer to
Smart [23] or [8].

Theorem 2.4 (Krasnoselskii-Burton). Let M be a closed bounded
convex nonempty subset of a Banach space (S, ‖.‖). Suppose that A, B
map M into M and that

(i) for all x, y ∈M ⇒ Ax+ By ∈M ,
(ii) A is continuous and AM is contained in a compact subset of M ,
(iii) B is a large contraction.

Then there is z ∈M with z = Az + Bz.

Here we manipulate function spaces defined on infinite t-intervals. So
for compactness, we need an extension of Arzela-Ascoli theorem. This
extension is taken from [ [8], Theorem 1.2.2, p. 20 ] and is as follows.

Theorem 2.5. Let q : R+ → R+ be a continuous function such that
q(t) → 0 as t → ∞. If {ϕn(t)} is an equicontinuous sequence of Rm-
valued functions on R+ with |ϕn(t)| ≤ q(t) for t ∈ R+, then there is a
subsequence that converges uniformly on R+ to a continuous function
ϕ(t) with |ϕ(t)| ≤ q(t) for t ∈ R+, where |.| denotes the Euclidean norm
on Rm.

3. Stability by Krasnoselskii-Burton’s theorem

From the existence theory which can be found in [8], we conclude
that for each continuous initial function φ : [m0, t0] → R, there exists a
continuous solution x(t, t0, φ) which satisfies (1) on an interval [0, σ) for
some σ > 0 and x(t, t0, φ) = φ(t) for t ∈ [m0, t0].

We need the following stability definitions taken from [8].

Definition 3.1. The zero solution of (1) is said to be stable at t = t0
if for each ε > 0, there exists a δ > 0 such that φ : [m0, t0] → (−δ, δ)
implies that |x(t, t0, φ)| < ε for all t ≥ m0.

Definition 3.2. The zero solution of (1) is said to be asymptotically
stable if it is stable at t = t0 and δ > 0 exists such that for any contunuos
function φ : [m0, t0] → (−δ, δ) the solution x(t, t0, φ) with x(t, t0, φ) =
φ(t) on [m0, t0] tends to zero as t→∞.

To apply Theorem 2.4, we have to choose carefully a Banach space
depending on the initial function φ and construct two mappings, a large
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contraction and a compact operator which obey the conditions of the
theorem. So let S be the Banach space of continuous bounded functions
ϕ : [m0,∞] → R with the supremum norm ‖.‖. Let L > 0 and define
the set

Sφ = {ϕ ∈ S : ϕ is Lipschitzian, |ϕ(t)| ≤ L, t ∈ [m0,∞),

ϕ(t) = φ(t) if t ∈ [m0, t0] and ϕ(t)→ 0 as t→∞} .
Clearly, if {ϕn} is a sequence of k-Lipschitzian functions converging to
a function ϕ then

|ϕ(u)− ϕ(v)| ≤ |ϕ(u)− ϕn(u)|+ |ϕn(u)− ϕn(v)|+ |ϕn(v)− ϕ(v)|
≤ ‖ϕ− ϕn‖+ k |u− v|+ ‖ϕ− ϕn‖ .

Consequently, as n→∞, we see that ϕ is k-Lipschitzian. It is clear that
Sφ is convex, bounded and complete endowed with ‖.‖.

For ϕ ∈ Sφ and t ≥ t0, define the maps A, B and H on Sφ as follows

(Aϕ)(t) = −γ(t)ϕ(t− τ(t))−
∫ t

t0

Lϕ(s)e−
∫ t
s A(z)dzds

+

∫ t

t0

µ(s)ϕ(s− τ(s))e−
∫ t
s A(z)dzds,(12)

(Bϕ)(t) = (φ(t0) + γ(t0)φ(t0 − τ(t0))) e
−

∫ t
t0
A(z)dz

+

∫ t

t0

(∫ s

s−τ(s)
a(s, u) (Gϕ) (u)du

)
e−

∫ t
s A(z)dzds,(13)

and

(14) (Hϕ)(t) = (Aϕ)(t) + (Bϕ)(t).

If we are able to prove that H possesses a fixed point ϕ on the set Sφ,
then x(t, t0, φ) = ϕ(t) for t ≥ t0, x(t, t0, φ) = φ(t) on [m0, t0], x(t, t0, φ)
satisfies (1) when its derivative exists and x(t, t0, φ)→ 0 as t→∞.

Let

ω(t) =

∫ t

t−τ(t)
|a(t, s)|

(∫ t

s

(∫ u

u−τ(u)
|a(u, v)| dv + |r(u)|

)
du+ |γ(t)|+ |γ(s)|

)
ds,

and assume that there are constants k1, k2, k3 > 0 such that for t0 ≤
t1 ≤ t2,

(15)

∣∣∣∣∫ t2

t1

A(z)dz

∣∣∣∣ ≤ k1 |t2 − t1| ,
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(16) |τ(t2)− τ(t1)| ≤ k2 |t2 − t1| ,
and

(17) |γ(t2)− γ(t1)| ≤ k3 |t2 − t1| .
Suppose for t ≥ t0,

(18) |µ(t)| ≤ δA(t),

(19) ω(t) ≤ λA(t),

(20) sup
t≥t0
|γ(t)| = α0,

and that

(21) J(α0 + λ+ δ) < 1,

(22) max (|G(−L)| , |G(L)|) ≤ 2L

J
,

where α0, δ, λ, J are positive constants with J > 3.
Choose ρ > 0 small enough and such that

(23) (1 + γ(t0))ρ+
3L

J
≤ L.

The chosen ρ in the relation (23) is used below in Lemma 3.5 to show
that if ε = L and if ‖φ‖ < ρ, then the solutions satisfy x(t, t0, φ) < ε.

Assume further that

(24) t− τ(t)→∞ as t→∞ and

∫ t

0

A(z)dz →∞ as t→∞,

(25) γ(t)→ 0 as t→∞,

(26)
µ(t)

A(t)
→ 0 as t→∞,

and

(27)
ω(t)

A(t)
→ 0 as t→∞.

We begin by showing that G given by (6) is a large contraction on
the set Sφ. So, we suppose that g : R → R satisfying the following
conditions.

(H1) g : R → R is continuous on [−L,L] and differentiable on
(−L,L),



Stability in nonlinear neutral Levin-Nohel integro-differential equations 311

(H2) the function g is strictly increasing on [−L,L],

(H3) supt∈(−L,L) g
′(t) ≤ 1.

Theorem 3.3 ( [1]). Let g : R→ R be a function satisfying (H1)−
(H3). Then the mapping G in (6) is a large contraction on the set Sφ.

By step we will prove the fulfillment of (i), (ii) and (iii) in Theorem
2.4.

Lemma 3.4. Suppose that (18)–(21) and (24) hold. For A defined in
(12), if ϕ ∈ Sφ, then |(Aϕ) (t)| ≤ L/J ≤ L. Moreover, (Aϕ) (t) → 0 as
t→∞.

Proof. Using the conditions (18)–(21) and the expression (12) of the
map A, we get

|(Aϕ) (t)| ≤ |γ(t)| |ϕ(t− τ(t))|+
∫ t

t0

|Lϕ(s)| e−
∫ t
s A(z)dzds

+

∫ t

t0

|µ(s)| |ϕ(s− τ(s))| e−
∫ t
s A(z)dzds

≤ α0L+ L

∫ t

t0

ω(s)e−
∫ t
s A(z)dzds+ L

∫ t

t0

|µ(s)| e−
∫ t
s A(z)dzds

≤ α0L+ λL

∫ t

t0

A(s)e−
∫ t
s A(z)dzds+ δL

∫ t

t0

A(s)e−
∫ t
s A(z)dzds

≤ (α0 + λ+ δ)L ≤ L

J
< L.

So ASφ is bounded by L as required.

Let ϕ ∈ Sφ be fixed. We will prove that (Aϕ) (t)→ 0 as t→∞. Due
to the conditions t− τ(t)→∞ as t→∞ in (24) and (20), it is obvious
that the first term on the right hand side of A tends to 0 as t → ∞.
That is

|γ(t)ϕ(t− τ(t))| ≤ α0 |ϕ(t− τ(t))| → 0 as t→∞.

It is left to show that the two remaining integral terms of A go to zero
as t → ∞. Let ε > 0 be given. Find T such that |ϕ(t− τ(t))| < ε for
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t ≥ T . Then we have

∣∣∣∣∫ t

t0

Lϕ(s)e−
∫ t
s A(z)dzds

∣∣∣∣
≤
∫ T

t0

|Lϕ(s)| e−
∫ t
s A(z)dzds+

∫ t

T

|Lϕ(s)| e−
∫ t
s A(z)dzds

≤ Le−
∫ t
T A(z)dz

∫ T

t0

ω(s)e−
∫ T
s A(z)dzds+ ε

∫ t

T

ω(s)e−
∫ t
s A(z)dzds

≤ Lλe−
∫ t
T A(z)dz + ελ,

and ∣∣∣∣∫ t

t0

µ(s)ϕ(s− τ(s))e−
∫ t
s A(z)dzds

∣∣∣∣
≤
∫ T

t0

|µ(s)| |ϕ(s− τ(s))| e−
∫ t
s A(z)dzds

+

∫ t

T

|µ(s)| |ϕ(s− τ(s))| e−
∫ t
s A(z)dzds

≤ Le−
∫ t
T A(z)dz

∫ T

t0

|µ(s)| e−
∫ T
s A(z)dzds+ ε

∫ t

T

|µ(s)| e−
∫ t
s A(z)dzds

≤ Lδe−
∫ t
T A(z)dz + εδ.

The terms Lλe−
∫ t
T A(z)dz and Lδe−

∫ t
T A(z)dz are arbitrarily smalls as t →

∞, because of (24). This ends the proof.

Lemma 3.5. Let (18)–(22) and (24) hold. For A, B defined in (12)
and (13), if ϕ, ψ ∈ Sφ are arbitrary, then

‖Aϕ+ Bψ‖ ≤ L.

Moreover, B is a large contraction on Sφ with a unique fixed point in Sφ
and (Bψ) (t)→ 0 as t→∞.
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Proof. Using the definitions (12), (13) of A and B and applying (18)–
(22), we obtain

|(Aϕ) (t) + (Bψ) (t)|
≤ |(Aϕ) (t)|+ |(Bψ) (t)|

≤ α0L+ λL

∫ t

t0

A(s)e−
∫ t
s A(z)dzds+ L

∫ t

t0

|µ(s)| e−
∫ t
s A(z)dzds

+ (1 + γ(t0)) ‖φ‖ e−
∫ t
t0
A(z)dz

+
2L

J

∫ t

t0

A(s)e−
∫ t
s A(z)dzds

≤ (1 + γ(t0)) ‖φ‖+ (α0 + λ+ δ)L+
2L

J

≤ (1 + γ(t0)) ‖φ‖+
L

J
+

2L

J
,

by the monotonicity of the mapping G. So from the above inequality,
by choosing the initial function φ having small norm, say ‖φ‖ ≤ ρ, then,
and referring to (23), we obtain

‖Aϕ+ Bψ‖ ≤ (1 + γ(t0))ρ+
3L

J
≤ L.

Since 0 ∈ Sφ, we have also proved that |(Bψ)(t)| ≤ L. The proof that
Bψ is Lipschitzian is similar to that of the map Aϕ below. To see that
B is a large contraction on Sφ with a unique fixed point, we know from
Theorem 3.3 that G(ϕ) = ϕ − g(ϕ) is a large contraction within the
integrand. Thus, for any ε, from the proof of that Theorem 3.3, we have
found η < 1 such that

|(Bϕ) (t)− (Bψ) (t)|

≤
∫ t

t0

(∫ s

s−τ(s)
|a(s, u)| |(Gϕ) (u)− (Gψ) (u)| du

)
e−

∫ t
s A(z)dzds

≤ η

∫ t

t0

(∫ s

s−τ(s)
a(s, u) ‖ϕ− ψ‖ du

)
e−

∫ t
s A(z)dzds

≤ η

∫ t

t0

A(s) ‖ϕ− ψ‖ e−
∫ t
s A(z)dzds

≤ η ‖ϕ− ψ‖ .

To prove that (Bψ) (t) → 0 as t → ∞, we use (24) for the first term,
and for the second term, we argue as above for the map A.



314 K. Ali Khelil, A. Ardjouni, and A. Djoudi

Lemma 3.6. Suppose (18)–(21) hold. Then the mapping A is contin-
uous on Sφ.

Proof. Let ϕ, ψ ∈ Sφ, then

|(Aϕ)(t)− (Aψ)(t)|

≤ α0 |ϕ(t− τ(t))− ψ(t− τ(t))|+
∫ t

t0

|Lϕ(s)− Lψ(s)| e−
∫ t
s A(z)dzds

+

∫ t

t0

|µ(s)| |ϕ(s− τ(s))− ψ(s− τ(s))| e−
∫ t
s A(z)dzds

≤ α0 ‖ϕ− ψ‖+ ‖ϕ− ψ‖
∫ t

t0

ω(s)e−
∫ t
s A(z)dzds

+ ‖ϕ− ψ‖
∫ t

t0

|µ(s)| e−
∫ t
s A(z)dzds

≤ α0 ‖ϕ− ψ‖+ λ ‖ϕ− ψ‖
∫ t

t0

A(s)e−
∫ t
s A(z)dzds

+ δ ‖ϕ− ψ‖
∫ t

t0

A(s)e−
∫ t
s A(z)dzds

≤ (α0 + λ+ δ) ‖ϕ− ψ‖ ≤ 1

J
‖ϕ− ψ‖ .

Let ε > 0 be arbitrary. Define η = εJ . Then for ‖ϕ− ψ‖ ≤ η, we obtain

‖Aϕ−Aψ‖ ≤ 1

J
‖ϕ− ψ‖ ≤ ε.

Therefore, A is continuous.

Lemma 3.7. Let (15)–(20) and (25)–(27) hold. The function Aϕ is
Lipschitzian and the operator A maps Sφ into a compact subset of Sφ.

Proof. Let ϕ ∈ Sφ and let 0 ≤ t1 < t2. Then

|(Aϕ)(t2)− (Aϕ)(t1)|

(28)

≤ |γ(t2)ϕ(t2 − τ(t2))− γ(t1)ϕ(t1 − τ(t1))|

+

∣∣∣∣∫ t2

t0

Lϕ(s)e−
∫ t2
s A(z)dzds−

∫ t1

t0

Lϕ(s)e−
∫ t1
s A(z)dzds

∣∣∣∣
+

∣∣∣∣∫ t2

t0

µ(s)ϕ(s− τ(s))e−
∫ t2
s A(z)dzds−

∫ t1

t0

µ(s)ϕ(s− τ(s))e−
∫ t1
s A(z)dzds

∣∣∣∣ .
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By hypotheses (16)–(17), we have

|γ(t2)ϕ(t2 − τ(t2))− γ(t1)ϕ(t1 − τ(t1))|
(29)

≤ |γ(t2)| |ϕ(t2 − τ(t2))− ϕ(t1 − τ(t1))|+ |ϕ(t1 − τ(t1))| |γ(t2)− γ(t1)|
≤ α0k |(t2 − t1)− (τ(t2)− τ(t1))|+ Lk3 |t2 − t1|
≤ (α0k + α0kk2 + Lk3) |t2 − t1| ,

where k is the Lipschitz constant of ϕ. By hypotheses (15) and (18), we
have

∣∣∣∣∫ t2

t0

µ(s)ϕ(s− τ(s))e−
∫ t2
s A(z)dzds−

∫ t1

t0

µ(s)ϕ(s− τ(s))e−
∫ t1
s A(z)dzds

∣∣∣∣
(30)

≤
∣∣∣∣∫ t1

t0

µ(s)ϕ(s− τ(s))e−
∫ t1
s A(z)dz

(
e−

∫ t2
t1
A(z)dz − 1

)
ds

+

∫ t2

t1

µ(s)ϕ(s− τ(s))e−
∫ t2
s A(z)dzds

∣∣∣∣
≤ L

∣∣∣e− ∫ t2
t1
A(z)dz − 1

∣∣∣ ∫ t1

t0

δA(s)e−
∫ t1
s A(z)dzds+ L

∫ t2

t1

|µ(s)| e−
∫ t2
s A(z)dzds

≤ Lδ

∫ t2

t1

A(s)ds+ L

∫ t2

t1

e−
∫ t2
s A(z)dzd

(∫ s

t1

|µ(v)| dv
)

≤ Lδ

∫ t2

t1

A(s)ds+ L

{[
e−

∫ t2
s A(z)dz

∫ s

t1

|µ(v)| dv
]t2
t1

+

∫ t2

t1

A(s)e−
∫ t2
s A(z)dz

∫ s

t1

|µ(v)| dvds
}

≤ Lδ

∫ t2

t1

A(s)ds+ L

∫ t2

t1

|µ(v)| dv
(

1 +

∫ t2

t1

A(s)e−
∫ t2
s A(z)dzds

)
≤ Lδ

∫ t2

t1

A(s)ds+ 2L

∫ t2

t1

|µ(v)| dv

≤ Lδ

∫ t2

t1

A(s)ds+ 2Lδ

∫ t2

t1

A(v)dv

≤ 3Lδk1 |t2 − t1| .
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Similarly, by (15) and (19), we deduce

∣∣∣∣∫ t2

t0

Lϕ(s)e−
∫ t2
s A(z)dzds−

∫ t1

t0

Lϕ(s)e−
∫ t1
s A(z)dzds

∣∣∣∣
(31)

=

∣∣∣∣∫ t1

t0

Lϕ(s)e−
∫ t1
s A(z)dz

(
e−

∫ t2
t1
A(z)dz − 1

)
ds+

∫ t2

t1

Lϕ(s)e−
∫ t2
s A(z)dzds

∣∣∣∣
≤ L

∣∣∣e− ∫ t2
t1
A(z)dz − 1

∣∣∣ ∫ t1

t0

ω(s)e−
∫ t1
s A(z)dzds+ L

∫ t2

t1

ω(s)e−
∫ t2
s A(z)dzds

≤ L
∣∣∣e− ∫ t2

t1
A(z)dz − 1

∣∣∣ ∫ t1

t0

λA(s)e−
∫ t1
s A(z)dzds+ L

∫ t2

t1

ω(s)e−
∫ t2
s A(z)dzds

≤ λL

∫ t2

t1

A(z)dz + L

∫ t2

t1

e−
∫ t2
s A(z)dzd

(∫ s

t1

ω(v)dv

)
≤ λL

∫ t2

t1

A(z)dz + L

{[
e−

∫ t2
s A(z)dz

∫ s

t1

ω(v)dv

]t2
t1

+

∫ t2

t1

A(s)e−
∫ t2
s A(z)dz

∫ s

t1

ω(v)dvds

}
≤ λL

∫ t2

t1

A(z)dz + L

∫ t2

t1

ω(v)dv

(
1 +

∫ t2

t1

A(s)e−
∫ t2
s A(z)dzds

)
≤ λL

∫ t2

t1

A(z)dz + 2L

∫ t2

t1

ω(v)dv

≤ λL

∫ t2

t1

A(z)dz + 2Lλ

∫ t2

t1

A(v)dv

≤ 3λLk1 |t2 − t1| .

Thus, by substituting (29)–(31) in (28), we obtain

|(Aϕ)(t2)− (Aϕ)(t1)|
(32)

≤ (α0k + α0kk2 + Lk3) |t2 − t1|+ 3Lδk1 |t2 − t1|+ 3Lλk1 |t2 − t1|
≤ K |t2 − t1| ,

for a constant K > 0. This shows Aϕ that is Lipschitzian if ϕ is and
that ASφ is equicontinuous. Next, we notice that for arbitrary ϕ ∈ Sφ,
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we have

|(Aϕ)(t)|

≤ |γ(t)ϕ(t− τ(t))|+
∫ t

t0

|Lϕ(s)| e−
∫ t
s A(z)dzds

+

∫ t

t0

|µ(s)| |ϕ(s− τ(s))| e−
∫ t
s A(z)dzds

≤ L |γ(t)|+ L

∫ t

t0

ω(s)e−
∫ t
s A(z)dzds+ L

∫ t

t0

|µ(s)| e−
∫ t
s A(z)dzds

≤ L |γ(t)|+ L

∫ t

t0

A(s)
ω(s)

A(s)
e−

∫ t
s A(z)dzds+ L

∫ t

t0

A(s)
|µ(s)|
A(s)

e−
∫ t
s A(z)dzds

:= q(t),

because of (25)–(27). Using a method like the one used for the map A,
we see that q(t)→ 0 as t→∞. By Theorem 2.5, we conclude that the
set ASφ resides in a compact set.

Theorem 3.8. Let L > 0. Suppose that the conditions (H1)− (H3),
(2) and (25)–(27) hold. If φ is a given initial function which is sufficiently
small, then there is a solution x(t, t0, φ) of (1) with |x(t, t0, φ)| ≤ L and
x(t, t0, φ)→ 0 as t→∞.

Proof. From Lemmas 3.4 and 3.7 we have A is bounded by L, Lip-
schitzian and (Aϕ)(t) → 0 as t → ∞. So A maps Sφ into Sφ. From
Lemmas 3.5 and 3.7 for arbitrary, we have ϕ, ψ ∈ Sφ, Aϕ + Bψ since
both Aϕ and Bψ are Lipschitzian bounded by L and (Bψ)(t) → 0 as
t → ∞. From Lemmas 3.6 and 3.7, we have proved that A is con-
tinuous and ASφ resides in a compact set. Thus, all the conditions of
Theorem 2.4 are satisfied. Therefore, there exists a solution of (1) with
|x(t, t0, φ)| ≤ L and x(t, t0, φ)→ 0 as t→∞.

4. Stability in weighted Banach spaces

Referring to Burton [8], except for the fixed point method, we know of
no other way proving that solutions of (1) converge to zero. Nevertheless,
if all we need is stability and not asymptotic stability, then we can avoid
conditions (25)–(27) and still use Krasnoselskii-Burton’s theorem on a
Banach space endowed with a weighted norm.
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Let h : [m0,∞) → [1,∞) be any strictly increasing and continuous
function with h(m0) = 1, h(s) → ∞ as s → ∞. Let (S, |.|h) be the
Banach space of continuous ϕ : [m0,∞)→ R for which

|ϕ|h = sup
t≥m0

∣∣∣∣ϕ(t)

h(t)

∣∣∣∣ <∞,
exists. We continue to use ‖.‖ as the supremum norm of any ϕ ∈ S pro-
vided ϕ bounded. Also, we use ‖φ‖ as the bound of the initial function.
Further, in a similar way as Theorem 3.3, we can prove that the function
G(ϕ) = ϕ− g(ϕ) is still a large contraction with the norm |.|h.

Theorem 4.1. If the conditions of Theorem 3.8 hold, except for (25)–
(27), then the zero solution of (1) is stable.

Proof. We prove the stability starting at t0. Let ε > 0 be given such
that 0 < ε < L, then for |x| ≤ ε, find α∗ with |x− g(x)| ≤ α∗ and choose
a number α such that

(33) α + α∗ +
ε

J
≤ ε.

In fact, since x − g(x) is increasing on (−L,L), we may take α∗ = 2ε
J

.
Thus, inequality (33) allows α > 0. Now, remove the condition ϕ(t)→ 0
as t→∞ from Sφ defined previously and consider the set

Eφ = {ϕ ∈ S : ϕ Lipshitzian, |ϕ(t)| ≤ ε, t ∈ [m0,∞)

and ϕ(t) = φ(t) for t ∈ [m0, t0]} .

Define A, B on Eφ as before by (12), (13). We easily check that if
ϕ ∈ Eφ, then |(Aϕ)(t)| ≤ ε, and B is a large contraction on Eφ. Also,
by choosing ‖φ‖ ≤ α and referring to (33), we verify that for ϕ, ψ ∈ Eφ,
|(Aϕ)(t) + (Bψ)(t)| ≤ ε and |(Bψ)(t)| ≤ ε. AEφ is an equicontinuous
set. According to [ [8], Theorem 4.0.1], in the space (S, |.|h) the set AEφ
resides in a compact subset of Eφ. Moreover, the operator A : Eφ → Eφ
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is countinuous. Indeed, for ϕ, ψ ∈ Sφ,

|(Aϕ)(t)− (Aψ)(t)|
h(t)

≤ 1

h(t)
{|γ(t)| |ϕ(t− τ(t))− ψ(t− τ(t))|

+

∣∣∣∣∫ t

t0

(Lϕ(s)− Lψ(s)) e−
∫ t
s A(z)dzds

∣∣∣∣
+

∣∣∣∣∫ t

t0

µ(s) (ϕ(s− τ(s))− ψ(s− τ(s))) e−
∫ t
s A(z)dzds

∣∣∣∣}
≤ α0 |ϕ− ψ|h + |ϕ− ψ|h

∫ t

t0

ω(s)
h(s)

h(t)
e−

∫ t
s A(z)dzds

+ |ϕ− ψ|h
∫ t

t0

|µ(s)| h(s− τ(s))

h(t)
e−

∫ t
s A(z)dzds

≤ α0 |ϕ− ψ|h + λ |ϕ− ψ|h
∫ t

t0

A(s)e−
∫ t
s A(z)dzds

+ δ |ϕ− ψ|h
∫ t

t0

A(s)e−
∫ t
s A(z)dzds

≤ (α0 + λ+ δ) |ϕ− ψ|h ≤
1

J
|ϕ− ψ|h .

The conditions of Theorem 2.4 are satisfied on Eφ, and so there exists a
fixed point lying in Eφ and solving (1).
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