ON SOME INEQUALITIES FOR NUMERICAL RADIUS OF OPERATORS IN HILBERT SPACES

Silvestru Sever Dragomir

Abstract

By the use of inequalities for nonnegative Hermitian forms some new inequalities for numerical radius of bounded linear operators in complex Hilbert spaces are established.

1. Introduction

Let \mathbb{K} be the field of real or complex numbers, i.e., $\mathbb{K}=\mathbb{R}$ or \mathbb{C} and X be a linear space over \mathbb{K}.

Definition 1. A functional $(\cdot, \cdot): X \times X \rightarrow \mathbb{K}$ is said to be a Hermitian form on X if
(H1) $(a x+b y, z)=a(x, z)+b(y, z)$ for $a, b \in \mathbb{K}$ and $x, y, z \in X$;
(H2) $(x, y)=\overline{(y, x)}$ for all $x, y \in X$.
The functional (\cdot, \cdot) is said to be positive semi-definite on a subspace Y of X if
(H3) $(y, y) \geq 0$ for every $y \in Y$,
and positive definite on Y if it is positive semi-definite on Y and (H4) $(y, y)=0, y \in Y$ implies $y=0$.

The functional (\cdot, \cdot) is said to be definite on Y provided that either (\cdot, \cdot) or $-(\cdot, \cdot)$ is positive semi-definite on Y.

[^0]When a Hermitian functional (\cdot, \cdot) is positive-definite on the whole space X, then, as usual, we will call it an inner product on X and will denote it by $\langle\cdot, \cdot\rangle$.

We use the following notations related to a given $\operatorname{Hermitian}$ form (\cdot, \cdot) on X :

$$
X_{0}:=\{x \in X \mid(x, x)=0\}, K:=\{x \in X \mid(x, x)<0\}
$$

and, for a given $z \in X$,

$$
X^{(z)}:=\{x \in X \mid(x, z)=0\} \quad \text { and } \quad L(z):=\{a z \mid a \in \mathbb{K}\} .
$$

The following fundamental facts concerning Hermitian forms hold:
Theorem 1 (Kurepa, 1968 [28]). Let X and (\cdot, \cdot) be as above.

1. If $e \in X$ is such that $(e, e) \neq 0$, then we have the decomposition

$$
\begin{equation*}
X=L(e) \bigoplus X^{(e)} \tag{1.1}
\end{equation*}
$$

where \bigoplus denotes the direct sum of the linear subspaces $X^{(e)}$ and $L(e)$;
2. If the functional (\cdot, \cdot) is positive semi-definite on $X^{(e)}$ for at least one $e \in K$, then (\cdot, \cdot) is positive semi-definite on $X^{(f)}$ for each $f \in K$;
3. The functional (\cdot, \cdot) is positive semi-definite on $X^{(e)}$ with $e \in K$ if and only if the inequality

$$
\begin{equation*}
|(x, y)|^{2} \geq(x, x)(y, y) \tag{1.2}
\end{equation*}
$$

holds for all $x \in K$ and all $y \in X$;
4. The functional (\cdot, \cdot) is semi-definite on X if and only if the Schwarz's inequality

$$
\begin{equation*}
|(x, y)|^{2} \leq(x, x)(y, y) \tag{1.3}
\end{equation*}
$$

holds for all $x, y \in X$;
5. The case of equality holds in (1.3) for $x, y \in X$ and in (1.2), for $x \in K, y \in X$, respectively; if and only if there exists a scalar $a \in \mathbb{K}$ such that

$$
y-a x \in X_{0}^{(x)}:=X_{0} \cap X^{(x)} .
$$

Let X be a linear space over the real or complex number field \mathbb{K} and let us denote by $\mathcal{H}(X)$ the class of all positive semi-definite Hermitian forms on X, or, for simplicity, nonnegative forms on X.

If $(\cdot, \cdot) \in \mathcal{H}(X)$, then the functional $\|\cdot\|=(\cdot, \cdot)^{\frac{1}{2}}$ is a semi-norm on X and the following equivalent versions of Schwarz's inequality hold:

$$
\begin{equation*}
\|x\|^{2}\|y\|^{2} \geq|(x, y)|^{2} \quad \text { or } \quad\|x\|\|y\| \geq|(x, y)| \tag{1.4}
\end{equation*}
$$

for any $x, y \in X$.
Now, let us observe that $\mathcal{H}(X)$ is a convex cone in the linear space of all mappings defined on X^{2} with values in \mathbb{K}, i.e.,
(e) $(\cdot, \cdot)_{1},(\cdot, \cdot)_{2} \in \mathcal{H}(X)$ implies that $(\cdot, \cdot)_{1}+(\cdot, \cdot)_{2} \in \mathcal{H}(X)$;
(ee) $\alpha \geq 0$ and $(\cdot, \cdot) \in \mathcal{H}(X)$ implies that $\alpha(\cdot, \cdot) \in \mathcal{H}(X)$.
The following simple result is of interest in itself as well:
Lemma 1. Let X be a linear space over the real or complex number field \mathbb{K} and (\cdot, \cdot) a nonnegative Hermitian form on X. If $y \in X$ is such that $(y, y) \neq 0$, then

$$
\begin{equation*}
p_{y}: H \times H \rightarrow \mathbb{K}, p_{y}(x, z)=(x, z)\|y\|^{2}-(x, y)(y, z) \tag{1.5}
\end{equation*}
$$

is also a nonnegative Hermitian form on X.
We have the inequalities

$$
\begin{align*}
& \left(\|x\|^{2}\|y\|^{2}-|(x, y)|^{2}\right)\left(\|y\|^{2}\|z\|^{2}-|(y, z)|^{2}\right) \tag{1.6}\\
& \geq\left|(x, z)\|y\|^{2}-(x, y)(y, z)\right|^{2}
\end{align*}
$$

and

$$
\begin{align*}
& \left(\|x+z\|^{2}\|y\|^{2}-|(x+z, y)|^{2}\right)^{\frac{1}{2}} \tag{1.7}\\
& \leq\left(\|x\|^{2}\|y\|^{2}-|(x, y)|^{2}\right)^{\frac{1}{2}}+\left(\|y\|^{2}\|z\|^{2}-|(y, z)|^{2}\right)^{\frac{1}{2}}
\end{align*}
$$

for any $x, y, z \in X$.
Remark 1. The case when (\cdot, \cdot) is an inner product in Lemma 1 was obtained in 1985 by S. S. Dragomir, [2].

Remark 2. Putting $z=\lambda y$ in (1.7), we get:

$$
\begin{equation*}
0 \leq\|x+\lambda y\|^{2}\|y\|^{2}-|(x+\lambda y, y)|^{2} \leq\|x\|^{2}\|y\|^{2}-|(x, y)|^{2} \tag{1.8}
\end{equation*}
$$

and, in particular,

$$
\begin{equation*}
0 \leq\|x \pm y\|^{2}\|y\|^{2}-|(x \pm y, y)|^{2} \leq\|x\|^{2}\|y\|^{2}-|(x, y)|^{2} \tag{1.9}
\end{equation*}
$$

for every $x, y \in H$.

We note here that the inequality (1.8) is in fact equivalent to the following statement

$$
\begin{equation*}
\sup _{\lambda \in \mathbb{K}}\left[\|x+\lambda y\|^{2}\|y\|^{2}-|(x+\lambda y, y)|^{2}\right]=\|x\|^{2}\|y\|^{2}-|(x, y)|^{2} \tag{1.10}
\end{equation*}
$$

for each $x, y \in H$.
The following result holds (see [11, p. 38] for the case of inner product):

Theorem 2. Let X be a linear space over the real or complex number field \mathbb{K} and (\cdot, \cdot) a nonnegative Hermitian form on X. For any $x, y, z \in X$, the following refinement of the Schwarz inequality holds:

$$
\begin{align*}
\|x\|\|z\|\|y\|^{2} & \geq\left|(x, z)\|y\|^{2}-(x, y)(y, z)\right|+|(x, y)(y, z)| \tag{1.11}\\
& \geq|(x, z)|\|y\|^{2} .
\end{align*}
$$

Corollary 1. For any $x, y, z \in X$ we have

$$
\begin{equation*}
\frac{1}{2}[\|x\|\|z\|+|(x, z)|]\|y\|^{2} \geq|(x, y)(y, z)| \tag{1.12}
\end{equation*}
$$

The inequality (1.12) follows from the first inequality in (1.11) and the triangle inequality for modulus

$$
\left|(x, z)\|y\|^{2}-(x, y)(y, z)\right| \geq|(x, y)(y, z)|-\|y\|^{2}|(x, z)|
$$

for any $x, y, z \in X$.
Remark 3. We observe that if (\cdot, \cdot) is an inner product, then (1.12) reduces to Buzano's inequality obtained in 1974 [1] in a different way.

For some inequalities in inner product spaces and operators on Hilbert spaces see [3]- [26] and the references therein.

The numerical radius $w(T)$ of an operator T on H is given by [27, p. 8]:

$$
\begin{equation*}
w(T)=\sup \{|\lambda|, \lambda \in W(T)\}=\sup \{|\langle T x, x\rangle|,\|x\|=1\} \tag{1.13}
\end{equation*}
$$

It is well known that $w(\cdot)$ is a norm on the Banach algebra $\mathcal{B}(H)$ of all bounded linear operators $T: H \rightarrow H$. This norm is equivalent with the operator norm. In fact, the following more precise result holds [27, p. 9]:

Theorem 3 (Equivalent norm). For any $T \in \mathcal{B}(H)$ one has

$$
\begin{equation*}
w(T) \leq\|T\| \leq 2 w(T) \tag{1.14}
\end{equation*}
$$

Utilising Buzano's inequality we obtained the following inequality for the numerical radius [12] or [13]:

Theorem 4. Let $(H ;\langle\cdot, \cdot\rangle)$ be a Hilbert space and $T: H \rightarrow H$ a bounded linear operator on H. Then

$$
\begin{equation*}
w^{2}(T) \leq \frac{1}{2}\left[w\left(T^{2}\right)+\|T\|^{2}\right] . \tag{1.15}
\end{equation*}
$$

The constant $\frac{1}{2}$ is best possible in (1.15).
The following general result for the product of two operators holds [27, p. 37]:

Theorem 5. If U, V are two bounded linear operators on the Hilbert space $(H,\langle\cdot, \cdot\rangle)$, then $w(U V) \leq 4 w(U) w(V)$. In the case that $U V=$ $V U$, then $w(U V) \leq 2 w(U) w(V)$. The constant 2 is best possible here.

The following results are also well known [27, p. 38].
Theorem 6. If U is a unitary operator that commutes with another operator V, then

$$
\begin{equation*}
w(U V) \leq w(V) \tag{1.16}
\end{equation*}
$$

If U is an isometry and $U V=V U$, then (1.16) also holds true.
We say that U and V double commute if $U V=V U$ and $U V^{*}=V^{*} U$. The following result holds [27, p. 38].

Theorem 7. If the operators U and V double commute, then

$$
\begin{equation*}
w(U V) \leq w(V)\|U\| . \tag{1.17}
\end{equation*}
$$

As a consequence of the above, we have [27, p. 39]:
Corollary 2. Let U be a normal operator commuting with V. Then

$$
\begin{equation*}
w(U V) \leq w(U) w(V) \tag{1.18}
\end{equation*}
$$

For a recent survey of inequalities for numerical radius, see [21] and the references therein.

Motivated by the above facts we establish in this paper some new numerical radius inequalities concerning four operators A, B, C and P on a Hilbert space with P nonnegative in the operator order. Some particular cases of interest that generalize and improve an earlier result are also provided.

2. Main Results

The following result holds for $(H,\langle.,\rangle$.$) a Hilbert space over the real$ or complex numbers field \mathbb{K}.

Theorem 8. Let P be a nonnegative operator on H and A, B, C three bounded operators on H. Then for any $e \in H$ we have the inequalities

$$
\begin{equation*}
\left\|A^{*} P C e\right\|\left\|B^{*} P C e\right\| \leq \frac{1}{2}\left\|P^{1 / 2} C e\right\|^{2}\left[\left\|P^{1 / 2} A\right\|\left\|P^{1 / 2} B\right\|+\left\|B^{*} P A\right\|\right] . \tag{2.1}
\end{equation*}
$$

Moreover, we have
(2.2) $w\left(C^{*} P A B^{*} P C\right) \leq \frac{1}{2}\left\|P^{1 / 2} C\right\|^{2}\left[\left\|P^{1 / 2} A\right\|\left\|P^{1 / 2} B\right\|+\left\|B^{*} P A\right\|\right]$.

Proof. We observe that if $P \geq 0$, then the mapping (.,.) : $H \times H \rightarrow \mathbb{K}$ defined by

$$
(x, y)_{P}:=\langle P x, y\rangle
$$

is a hermitian form on H and by (1.12) we have the inequality

$$
\begin{equation*}
\frac{1}{2}\left[\|x\|_{P}\|y\|_{P}+\left|(x, y)_{P}\right|\right]\|e\|_{P}^{2} \geq\left|(x, e)_{P}(y, e)_{P}\right| \tag{2.3}
\end{equation*}
$$

for any $x, y, e \in H$.
This can be written as

$$
\begin{equation*}
\frac{1}{2}\left[\langle P x, x\rangle^{1 / 2}\langle P y, y\rangle^{1 / 2}+|\langle P x, y\rangle|\right]\langle P e, e\rangle \geq|\langle P x, e\rangle\langle P y, e\rangle| \tag{2.4}
\end{equation*}
$$

for any $x, y, e \in H$.
Now if we replace x by $A x, y$ by $B y$ and e by $C e$ we get

$$
\begin{align*}
& \frac{1}{2}\left[\langle P A x, A x\rangle^{1 / 2}\langle P B y, B y\rangle^{1 / 2}+|\langle P A x, B y\rangle|\right]\langle P C e, C e\rangle \tag{2.5}\\
& \geq|\langle P A x, C e\rangle\langle P B y, C e\rangle|
\end{align*}
$$

for any $x, y, e \in H$, which is equivalent to

$$
\begin{align*}
& \frac{1}{2}\left[\left\langle A^{*} P A x, x\right\rangle^{1 / 2}\left\langle B^{*} P B y, y\right\rangle^{1 / 2}+\left|\left\langle B^{*} P A x, y\right\rangle\right|\right]\left\langle C^{*} P C e, e\right\rangle \tag{2.6}\\
& \geq\left|\left\langle x, A^{*} P C e\right\rangle\left\langle y, B^{*} P C e\right\rangle\right|
\end{align*}
$$

for any $x, y, e \in H$.

Taking the supremum over $x, y \in H$ with $\|x\|=\|y\|=1$ we have

```
\(\left\|A^{*} P C e\right\|\left\|B^{*} P C e\right\|\)
\(=\sup _{\|x\|=1}\left|\left\langle x, A^{*} P C e\right\rangle\right| \sup _{\|y\|=1}\left|\left\langle y, B^{*} P C e\right\rangle\right|\)
\(=\sup _{\|x\|=\|y\|=1}\left\{\left|\left\langle x, A^{*} P C e\right\rangle\left\langle y, B^{*} P C e\right\rangle\right|\right\}\)
\(\leq \frac{1}{2}\left\langle C^{*} P C e, e\right\rangle\)
\(\times \sup _{\|x\|=\|y\|=1}\left[\left\langle A^{*} P A x, x\right\rangle^{1 / 2}\left\langle B^{*} P B y, y\right\rangle^{1 / 2}+\left|\left\langle B^{*} P A x, y\right\rangle\right|\right]\)
\(\leq \frac{1}{2}\left\langle C^{*} P C e, e\right\rangle\)
\(\times\left[\sup _{\|x\|=1}\left\langle A^{*} P A x, x\right\rangle^{1 / 2} \sup _{\|y\|=1}\left\langle B^{*} P B y, y\right\rangle^{1 / 2}+\sup _{\|x\|=\|y\|=1}\left|\left\langle B^{*} P A x, y\right\rangle\right|\right]\)
\(=\frac{1}{2}\left\langle C^{*} P C e, e\right\rangle\left[\left\|A^{*} P A\right\|^{1 / 2}\left\|B^{*} P B\right\|^{1 / 2}+\left\|B^{*} P A\right\|\right]\)
```

for any $e \in H$.
Since

$$
A^{*} P A=\left|P^{1 / 2} A\right|^{2}, B^{*} P B=\left|P^{1 / 2} B\right|^{2}
$$

and

$$
C^{*} P C=\left|P^{1 / 2} C\right|^{2}
$$

then by (2.7) we get the desired inequality in (2.1).
By Schwarz inequality we have

$$
\begin{equation*}
\left|\left\langle C^{*} P B A^{*} P C e, e\right\rangle\right| \leq\left\|A^{*} P C e\right\|\left\|B^{*} P C e\right\| \tag{2.8}
\end{equation*}
$$

for any $e \in H$.
Using inequality (2.1) we then have

$$
\begin{equation*}
\left|\left\langle C^{*} P B A^{*} P C e, e\right\rangle\right| \leq \frac{1}{2}\left\|P^{1 / 2} C e\right\|^{2}\left[\left\|P^{1 / 2} A\right\|\left\|P^{1 / 2} B\right\|+\left\|B^{*} P A\right\|\right] \tag{2.9}
\end{equation*}
$$

for any $e \in H$.
Taking the supremum over $e \in H,\|e\|=1$ in (2.9) we get

$$
\begin{equation*}
w\left(C^{*} P B A^{*} P C\right) \leq \frac{1}{2}\left\|P^{1 / 2} C\right\|^{2}\left[\left\|P^{1 / 2} A\right\|\left\|P^{1 / 2} B\right\|+\left\|B^{*} P A\right\|\right] \tag{2.10}
\end{equation*}
$$

and since

$$
w\left(C^{*} P B A^{*} P C\right)=w\left(C^{*} P A B^{*} P C\right)
$$

then by (2.10) we get the desired result (2.2).
The following result also holds.
Theorem 9. Let P be a nonnegative operator on H and A, B, C three bounded operators on H such that $B^{*} P C=C^{*} P A$, then

$$
\begin{equation*}
w^{2}\left(C^{*} P A\right) \leq \frac{1}{2}\left\|P^{1 / 2} C\right\|^{2}\left[\left\|P^{1 / 2} A\right\|\left\|P^{1 / 2} B\right\|+w\left(B^{*} P A\right)\right] \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
w^{2}\left(C^{*} P A\right) \leq \frac{1}{2}\left\|P^{1 / 2} C\right\|^{2}\left[\left\|\frac{\left|P^{1 / 2} A\right|^{2}+\left|P^{1 / 2} B\right|^{2}}{2}\right\|+w\left(B^{*} P A\right)\right] \tag{2.12}
\end{equation*}
$$

Proof. From the inequality (2.6) we have

$$
\begin{align*}
& \frac{1}{2}\left[\left\langle A^{*} P A e, e\right\rangle^{1 / 2}\left\langle B^{*} P B e, e\right\rangle^{1 / 2}+\left|\left\langle B^{*} P A e, e\right\rangle\right|\right]\left\langle C^{*} P C e, e\right\rangle \tag{2.13}\\
& \geq\left|\left\langle e, A^{*} P C e\right\rangle\left\langle e, B^{*} P C e\right\rangle\right|
\end{align*}
$$

for any $e \in H$.
Since

$$
B^{*} P C=C^{*} P A=\left(A^{*} P C\right)^{*}
$$

then

$$
\begin{align*}
\left|\left\langle e, A^{*} P C e\right\rangle\left\langle e, B^{*} P C e\right\rangle\right| & =\left|\left\langle e, A^{*} P C e\right\rangle\left\langle e,\left(A^{*} P C\right)^{*} e\right\rangle\right| \tag{2.14}\\
& =\left|\left\langle A^{*} P C e, e\right\rangle\right|^{2}=\left|\left\langle C^{*} P A e, e\right\rangle\right|^{2}
\end{align*}
$$

for any $e \in H$.
By (2.13) and (2.14) we then have
(2.15) $\left|\left\langle C^{*} P A e, e\right\rangle\right|^{2}$

$$
\leq \frac{1}{2}\left[\left\langle A^{*} P A e, e\right\rangle^{1 / 2}\left\langle B^{*} P B e, e\right\rangle^{1 / 2}+\left|\left\langle B^{*} P A e, e\right\rangle\right|\right]\left\langle C^{*} P C e, e\right\rangle
$$

for any $e \in H$. This inequality is of interest in itself.

Taking the supremum over $e \in H,\|e\|=1$ in (2.15) we have

$$
\begin{aligned}
& w^{2}\left(C^{*} P A\right) \\
& =\sup _{\|e\|=1}\left|\left\langle C^{*} P A e, e\right\rangle\right|^{2} \\
& \leq \frac{1}{2} \sup _{\|e\|=1}\left\{\left[\left\langle A^{*} P A e, e\right\rangle^{1 / 2}\left\langle B^{*} P B e, e\right\rangle^{1 / 2}+\left|\left\langle B^{*} P A e, e\right\rangle\right|\right]\left\langle C^{*} P C e, e\right\rangle\right\} \\
& \leq \frac{1}{2} \sup _{\|e\|=1}\left[\left\langle A^{*} P A e, e\right\rangle^{1 / 2}\left\langle B^{*} P B e, e\right\rangle^{1 / 2}+\left|\left\langle B^{*} P A e, e\right\rangle\right|\right] \sup _{\|e\|=1}\left\langle C^{*} P C e, e\right\rangle \\
& \leq \frac{1}{2}\left[\sup _{\|e\|=1}\left\langle A^{*} P A e, e\right\rangle^{1 / 2} \sup _{\|e\|=1}\left\langle B^{*} P B e, e\right\rangle^{1 / 2}+\sup _{\|e\|=1}\left|\left\langle B^{*} P A e, e\right\rangle\right|\right] \\
& \times \sup _{\|e\|=1}\left\langle C^{*} P C e, e\right\rangle \\
& =\frac{1}{2}\left[\left\|A^{*} P A\right\|^{1 / 2}\left\|B^{*} P B\right\|^{1 / 2}+w\left(B^{*} P A\right)\right]\left\|C^{*} P C\right\|,
\end{aligned}
$$

which proves the inequality (2.11).
Using the arithmetic mean - geometric mean inequality we also have

$$
\begin{aligned}
\left\langle A^{*} P A e, e\right\rangle^{1 / 2}\left\langle B^{*} P B e, e\right\rangle^{1 / 2} & \leq \frac{1}{2}\left[\left\langle A^{*} P A e, e\right\rangle+\left\langle B^{*} P B e, e\right\rangle\right] \\
& =\left\langle\frac{A^{*} P A+B^{*} P B}{2} e, e\right\rangle
\end{aligned}
$$

for any $e \in H$.
By (2.15) we then have
$\left|\left\langle C^{*} P A e, e\right\rangle\right|^{2} \leq \frac{1}{2}\left[\left\langle\frac{A^{*} P A+B^{*} P B}{2} e, e\right\rangle+\left|\left\langle B^{*} P A e, e\right\rangle\right|\right]\left\langle C^{*} P C e, e\right\rangle$
for any $e \in H$.
Taking the supremum over $e \in H,\|e\|=1$ in (2.16) we obtain the desired result (2.12).

3. Some Particular Inequalities

In this section we explore some particular inequalities of interest that can be obtained from the main results stated above.

If we take in (2.1) and (2.2) $B=A^{*}$, then we get

$$
\begin{equation*}
\left\|A^{*} P C e\right\|\|A P C e\| \leq \frac{1}{2}\left\|P^{1 / 2} C e\right\|^{2}\left[\left\|P^{1 / 2} A\right\|\left\|A P^{1 / 2}\right\|+\|A P A\|\right] \tag{3.1}
\end{equation*}
$$

for any $e \in H$ and
(3.2) $\quad w\left(C^{*} P A^{2} P C\right) \leq \frac{1}{2}\left\|P^{1 / 2} C\right\|^{2}\left[\left\|P^{1 / 2} A\right\|\left\|A P^{1 / 2}\right\|+\|A P A\|\right]$,
where A, C are bounded operators on H and P is a nonnegative operator on H.

If we put in (2.1) and (2.2) $P=1_{H}$, then we have

$$
\begin{equation*}
\left\|A^{*} C e\right\|\left\|B^{*} C e\right\| \leq \frac{1}{2}\|C e\|^{2}\left[\|A\|\|B\|+\left\|B^{*} A\right\|\right] \tag{3.3}
\end{equation*}
$$

for any $e \in H$ and

$$
\begin{equation*}
w\left(C^{*} A B^{*} C\right) \leq \frac{1}{2}\|C\|^{2}\left[\|A\|\|B\|+\left\|B^{*} A\right\|\right] \tag{3.4}
\end{equation*}
$$

where A, B, C are bounded operators on H.
Choosing $B=A^{*}$ in (3.3) and (3.4), we get

$$
\begin{equation*}
\left\|A^{*} C e\right\|\|A C e\| \leq \frac{1}{2}\|C e\|^{2}\left[\|A\|^{2}+\left\|A^{2}\right\|\right] \tag{3.5}
\end{equation*}
$$

for any $e \in H$ and

$$
\begin{equation*}
w\left(C^{*} A^{2} C\right) \leq \frac{1}{2}\|C\|^{2}\left[\|A\|^{2}+\left\|A^{2}\right\|\right] \tag{3.6}
\end{equation*}
$$

If we take in (2.1) and (2.2) $C=1_{H}$, then we get
(3.7) $\quad\left\|A^{*} P e\right\|\left\|B^{*} P e\right\| \leq \frac{1}{2}\left\|P^{1 / 2} e\right\|^{2}\left[\left\|P^{1 / 2} A\right\|\left\|P^{1 / 2} B\right\|+\left\|B^{*} P A\right\|\right]$
for any $e \in H$ and

$$
\begin{equation*}
w\left(P A B^{*} P\right) \leq \frac{1}{2}\|P\|\left[\left\|P^{1 / 2} A\right\|\left\|P^{1 / 2} B\right\|+\left\|B^{*} P A\right\|\right] \tag{3.8}
\end{equation*}
$$

where A, B are bounded operators on H and P is a nonnegative operator on H. Moreover, if in (3.7) and (3.8) we take $B=A^{*}$, then we get the inequalities
(3.9) $\quad\left\|A^{*} P e\right\|\|A P e\| \leq \frac{1}{2}\left\|P^{1 / 2} e\right\|^{2}\left[\left\|P^{1 / 2} A\right\|\left\|A P^{1 / 2}\right\|+\|A P A\|\right]$
for any $e \in H$ and

$$
\begin{equation*}
w\left(P A^{2} P\right) \leq \frac{1}{2}\|P\|\left[\left\|P^{1 / 2} A\right\|\left\|A P^{1 / 2}\right\|+\|A P A\|\right] \tag{3.10}
\end{equation*}
$$

Further, if we assume that $A P C=C^{*} P A$, then by taking $B=A^{*}$ in (2.11) and (2.12) we get

$$
\begin{equation*}
w^{2}(A P C) \leq \frac{1}{2}\left\|P^{1 / 2} C\right\|^{2}\left[\left\|P^{1 / 2} A\right\|\left\|A P^{1 / 2}\right\|+w(A P A)\right] \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
w^{2}(A P C) \leq \frac{1}{2}\left\|P^{1 / 2} C\right\|^{2}\left[\left\|\frac{\left|P^{1 / 2} A\right|^{2}+\left|P^{1 / 2} A^{*}\right|^{2}}{2}\right\|+w(A P A)\right] \tag{3.12}
\end{equation*}
$$

If $A C=C^{*} A$, then by taking $P=1_{H}$ in (3.11) and (3.12) we have

$$
\begin{equation*}
w^{2}(A C) \leq \frac{1}{2}\|C\|^{2}\left[\|A\|^{2}+w\left(A^{2}\right)\right] \tag{3.13}
\end{equation*}
$$

and

$$
\begin{equation*}
w^{2}(A C) \leq \frac{1}{2}\|C\|^{2}\left[\left\|\frac{|A|^{2}+\left|A^{*}\right|^{2}}{2}\right\|+w\left(A^{2}\right)\right] . \tag{3.14}
\end{equation*}
$$

Since

$$
\left\|\frac{|A|^{2}+\left|A^{*}\right|^{2}}{2}\right\| \leq \frac{1}{2}\left[\left\||A|^{2}\right\|+\left\|\left|A^{*}\right|^{2}\right\|\right]=\|A\|^{2},
$$

then the inequality (3.14) is better than (3.13).
If $A P=P A$, then by taking $C=1_{H}$ in (3.11) and (3.12) we also have

$$
\begin{equation*}
w^{2}(A P) \leq \frac{1}{2}\|P\|\left[\left\|P^{1 / 2} A\right\|\left\|A P^{1 / 2}\right\|+w\left(P A^{2}\right)\right] \tag{3.15}
\end{equation*}
$$

and

$$
\begin{equation*}
w^{2}(A P) \leq \frac{1}{2}\|P\|\left[\left\|\frac{\left|P^{1 / 2} A\right|^{2}+\left|P^{1 / 2} A^{*}\right|^{2}}{2}\right\|+w\left(P A^{2}\right)\right] \tag{3.16}
\end{equation*}
$$

Taking into account the above results, we can state the following two inequalities for an operator T, namely

$$
\begin{equation*}
w^{2}(T) \leq \frac{1}{2}\left[\|T\|^{2}+w\left(T^{2}\right)\right], \text { see }(1.15), \tag{3.17}
\end{equation*}
$$

and

$$
\begin{equation*}
w^{2}(T) \leq \frac{1}{2}\left[\left\|\frac{|T|^{2}+\left|T^{*}\right|^{2}}{2}\right\|+w\left(T^{2}\right)\right] \tag{3.18}
\end{equation*}
$$

The inequality (3.18) is better than (3.17).

References

[1] M. L. Buzano, Generalizzazione della diseguaglianza di Cauchy-Schwarz (Italian), Rend. Sem. Mat. Univ. e Politech. Torino 31 (1971/73), 405-409 (1974).
[2] S. S. Dragomir, Some refinements of Schwartz inequality, Simpozionul de Matematici şi Aplicaţii, Timişoara, Romania, 1-2 Noiembrie 1985, 13-16.
[3] S. S. Dragomir, Grüss inequality in inner product spaces, The Australian Math Soc. Gazette 26 (1999), No. 2, 66-70.
[4] S. S. Dragomir, A generalization of Grüss' inequality in inner product spaces and applications, J. Math. Anal. Appl. 237 (1999), 74-82.
[5] S. S. Dragomir, Some Grüss type inequalities in inner product spaces, J. Inequal. Pure \& Appl. Math. 4 (2) (2003), Article 42. (Online http://jipam.vu.edu.au/article.php?sid=280).
[6] S. S. Dragomir, Reverses of Schwarz, triangle and Bessel inequalities in inner product spaces, J. Inequal. Pure \& Appl. Math. 5(3) (2004), Article 76. (Online : http://jipam.vu.edu.au/article.php?sid=432).
[7] S. S. Dragomir, New reverses of Schwarz, triangle and Bessel inequalities in inner product spaces, Austral. J. Math. Anal. \& Applics. 1(1) (2004), Article 1. (Online: http://ajmaa.org/cgi-bin/paper.pl?string=nrstbiips.tex).
[8] S. S. Dragomir, On Bessel and Grüss inequalities for orthornormal families in inner product spaces, Bull. Austral. Math. Soc. 69(2) (2004), 327-340.
[9] S. S. Dragomir, Advances in Inequalities of the Schwarz, Grüss and Bessel Type in Inner Product Spaces, Nova Science Publishers Inc, New York, 2005, x+249 p.
[10] S. S. Dragomir, Reverses of the Schwarz inequality in inner product spaces generalising a Klamkin-McLenaghan result, Bull. Austral. Math. Soc. 73 (1) (2006), 69-78.
[11] S. S. Dragomir, Advances in Inequalities of the Schwarz, Triangle and Heisenberg Type in Inner Product Spaces. Nova Science Publishers, Inc., New York, 2007. xii+243 pp. ISBN: 978-1-59454-903-8; 1-59454-903-6 (Preprint http://rgmia.org/monographs/advancees2.htm)
[12] S. S. Dragomir, Inequalities for the norm and the numerical radius of linear operators in Hilbert spaces. Demonstratio Math. 40 (2007), no. 2, 411-417.
[13] S. S. Dragomir, Some inequalities for the norm and the numerical radius of linear operators in Hilbert spaces, Tamkang J. Math. 39 (2008), no. 1, 1-7.
[14] S. S. Dragomir, Some new Grüss' type inequalities for functions of selfadjoint operators in Hilbert spaces, RGMIA Res. Rep. Coll. 11(e) (2008), Art. 12.
[15] S. S. Dragomir, Inequalities for the Čebyšev functional of two functions of selfadjoint operators in Hilbert spaces, RGMIA Res. Rep. Coll. 11(e) (2008), Art. 17.
[16] S. S. Dragomir, Some inequalities for the Čebyšev functional of two functions of selfadjoint operators in Hilbert spaces, RGMIA Res. Rep. Coll. 11(e) (2008), Art. 8.
[17] S. S. Dragomir, Inequalities for the Čebyšev functional of two functions of selfadjoint operators in Hilbert spaces, Aust. J. Math. Anal. \& Appl. 6 (2009), Issue 1, Article 7, pp. 1-58.
[18] S. S. Dragomir, Some inequalities for power series of selfadjoint operators in Hilbert spaces via reverses of the Schwarz inequality, Integral Transforms Spec. Funct. 20 (2009), no. 9-10, 757-767.
[19] S. S. Dragomir, Operator Inequalities of the Jensen, Čebyšev and Grüss Type. Springer Briefs in Mathematics. Springer, New York, 2012. xii+121 pp. ISBN: 978-1-4614-1520-6.
[20] S. S. Dragomir, Operator Inequalities of Ostrowski and Trapezoidal Type. Springer Briefs in Mathematics. Springer, New York, 2012. x+112 pp. ISBN: 978-1-4614-1778-1.
[21] S. S. Dragomir, Inequalities for the Numerical Radius of Linear Operators in Hilbert Spaces. Springer Briefs in Mathematics. Springer, 2013. x+120 pp. ISBN: 978-3-319-01447-0; 978-3-319-01448-7.
[22] S. S. Dragomir, M. V. Boldea and C. Buşe, Norm inequalities of Čebyšev type for power series in Banach algebras, Preprint RGMIA Res. Rep. Coll. 16 (2013), Art. 73.
[23] S. S. Dragomir and B. Mond, On the superadditivity and monotonicity of Schwarz's inequality in inner product spaces, Contributions, Macedonian Acad. of Sci and Arts 15 (2) (1994), 5-22.
[24] S. S. Dragomir and B. Mond, Some inequalities for Fourier coefficients in inner product spaces, Periodica Math. Hungarica 32 (3) (1995), 167-172.
[25] S. S. Dragomir, J. Pečarić and J. Sándor, The Chebyshev inequality in preHilbertian spaces. II. Proceedings of the Third Symposium of Mathematics and its Applications (Timişoara, 1989), 75-78, Rom. Acad., Timişoara, 1990. MR1266442 (94m:46033)
[26] S. S. Dragomir and J. Sándor, The Chebyshev inequality in pre-Hilbertian spaces. I. Proceedings of the Second Symposium of Mathematics and its Applications (Timişoara, 1987), 61-64, Res. Centre, Acad. SR Romania, Timişoara, 1988. MR1006000 (90k:46048).
[27] K. E. Gustafson and D. K. M. Rao, Numerical Range, Springer-Verlag, New York, Inc., 1997.
[28] S. Kurepa, Note on inequalities associated with Hermitian functionals, Glasnik Matematčki 3 (x23) (1968), 196-205.

Silvestru Sever Dragomir

Mathematics, College of Engineering \& Science
Victoria University, PO Box 14428
Melbourne City, MC 8001, Australia
DST-NRF Centre of Excellence in the Mathematical and Statistical Sciences, University of the Witwatersrand Johannesburg 2050, South Africa
E-mail: sever.dragomir@vu.edu.au

[^0]: Received April 19, 2017. Revised June 2, 2017. Accepted June 2, 2017. 2010 Mathematics Subject Classification: 47A63; 47A99.
 Key words and phrases: Schwarz inequality, Buzano inequality, Numerical radius, Operator norm, Operator inequalities.
 © The Kangwon-Kyungki Mathematical Society, 2017.
 This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

