THE RECURRENCE COEFFICIENTS OF THE ORTHOGONAL POLYNOMIALS WITH THE WEIGHTS

\[w_\alpha(x) = x^\alpha \exp(-x^3 + tx) \quad \text{AND} \quad W_\alpha(x) = |x|^{2\alpha+1} \exp(-x^6 + tx^2) \]

Haewon Joung

Abstract. In this paper we consider the orthogonal polynomials with weights \(w_\alpha(x) = x^\alpha \exp(-x^3 + tx) \) and \(W_\alpha(x) = |x|^{2\alpha+1} \exp(-x^6 + tx^2) \). Using the compatibility conditions for the ladder operators for these orthogonal polynomials, we derive several difference equations satisfied by the recurrence coefficients of these orthogonal polynomials. We also derive differential-difference equations and second order linear ordinary differential equations satisfied by these orthogonal polynomials.

1. Introduction

The compatibility conditions for the ladder operators for orthogonal polynomials have been derived by many authors. We refer to [2], [3], [5], [6] and references therein. In this section we derive the compatibility conditions for the ladder operators for orthogonal polynomials, for the sake of completeness of paper.

Let \(P_n(x) \) be the monic orthogonal polynomials of degree \(n \) in \(x \) with the weight \(w(x) \). Assume that the weight function \(w \) vanishes at the end points of the orthogonality interval. Then,

\[\int P_n(x)P_m(x)w(x)dx = h_n \delta_{n,m}, \quad h_n > 0, \]

Received May 1, 2017. Revised May 15, 2017. Accepted May 24, 2017.

2010 Mathematics Subject Classification: 42C05, 39A10.

Key words and phrases: Orthogonal polynomials, Recurrence coefficients, Ladder operators.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.
and P_n’s satisfy the three term recurrence relation

$$xP_n(x) = P_{n+1}(x) + \alpha_n P_n(x) + \beta_n P_{n-1}(x),$$

where

$$\alpha_n = \frac{1}{h_n} \int xP_n^2(x)w(x)dx,$$

$$\beta_n = \frac{1}{h_{n-1}} \int xP_n(x)P_{n-1}(x)w(x)dx = \frac{h_n}{h_{n-1}},$$

and the initial condition is $\beta_0 P_{-1} = 0$. Since $\frac{dP_n(x)}{dx}$ is a polynomial of degree $n-1$, it can be written as

$$\frac{dP_n(x)}{dx} = \sum_{k=0}^{n-1} c_{n,k} P_k(x)$$

where

$$c_{n,k}h_k = \int \frac{dP_n(y)}{dy} P_k(y)w(y)dy.$$

Using integration by parts and orthogonality relation, we have

$$c_{n,k} = \frac{1}{h_k} \int P_n(y)P_k(y)v'(y)w(y)dy,$$

where

$$v(y) := -\ln w(y).$$

Noting that

$$\int P_n(y) \sum_{k=0}^{n-1} \frac{P_k(y)P_k(x)}{h_k} v'(x)w(y)dy = 0,$$

from (1.5), we have

$$\frac{dP_n(x)}{dx} = \sum_{k=0}^{n-1} \frac{1}{h_k} \left\{ \int P_n(y)P_k(y)v'(y)w(y)dy \right\} P_k(x)$$

$$= \int P_n(y) \sum_{k=0}^{n-1} \frac{P_k(y)P_k(x)}{h_k} v'(y)w(y)dy$$

$$= \int P_n(y) \sum_{k=0}^{n-1} \frac{P_k(y)P_k(x)}{h_k} [v'(y) - v'(x)]w(y)dy.$$
By the Christoffel-Darboux formula
\[\sum_{k=0}^{n-1} \frac{P_k(y)P_k(x)}{h_k} = \frac{P_n(x)P_{n-1}(y) - P_n(y)P_{n-1}(x)}{(x-y)h_{n-1}}, \]
it follows that

(1.6) \[\frac{dP_n(x)}{dx} = -B_n(x)P_n(x) + \beta_n A_n(x)P_{n-1}(x), \]

where

(1.7) \[A_n(x) := \frac{1}{h_n} \int P_n^2(y) \frac{v'(x) - v'(y)}{x-y} w(y) dy, \]

(1.8) \[B_n(x) := \frac{1}{h_{n-1}} \int P_n(y)P_{n-1}(y) \frac{v'(x) - v'(y)}{x-y} w(y) dy. \]

Now we derive the compatibility conditions for the ladder operators to the orthogonal polynomials.

Lemma 1.1. The functions \(A_n(x) \) and \(B_n(x) \) satisfy

(1.9) \[B_{n+1}(x) + B_n(x) = (x - \alpha_n)A_n(x) - v'(x), \]

and

(1.10) \[B_{n+1}(x) - B_n(x) = \frac{\beta_{n+1}A_{n+1}(x) - \beta_n A_{n-1}(x) - 1}{x - \alpha_n}. \]

Proof. By (1.8), (1.2) and using that \(h_n = h_{n-1} \beta_n \), we obtain

\[B_{n+1}(x) + B_n(x) = \frac{1}{h_n} \int P_{n+1}(y)P_n(y) \frac{v'(x) - v'(y)}{x-y} w(y) dy \]
\[+ \frac{1}{h_{n-1}} \int P_n(y)P_{n-1}(y) \frac{v'(x) - v'(y)}{x-y} w(y) dy \]
\[= \frac{1}{h_n} \int P_n(y)[P_{n+1}(y) + \beta_n P_{n-1}(y)] \frac{v'(x) - v'(y)}{x-y} w(y) dy \]
\[= \frac{1}{h_n} \int P_n(y)[yP_n(y) - \alpha_n P_n(y)] \frac{v'(x) - v'(y)}{x-y} w(y) dy \]
\[= \frac{1}{h_n} \int P_n^2(y) y \frac{v'(x) - v'(y)}{x-y} w(y) dy - \alpha_n A_n(x). \]

Now, using \(\frac{y}{x-y} = \frac{x}{x-y} - 1 \), we have

\[B_{n+1}(x) + B_n(x) = (x - \alpha_n)A_n(x) - v'(x) + \frac{1}{h_n} \int P_n^2(y) v'(y) w(y) dy. \]
Using integration by parts and orthogonality relation, we have

\[\int P_n^2(y)v'(y)w(y)dy = -\int P_n^2(y)\frac{dw(y)}{dy}dy \]

\[= -[P_n^2(y)w(y)]_0^\infty + 2\int P_n(y)P_n'(y)w(y)dy \]

\[= 0, \]

which proves (1.9). Similarly

\[(x - \alpha_n)(B_{n+1}(x) - B_n(x)) \]

\[= \frac{1}{h_n} \int (x - \alpha_n)P_n(y)[P_{n+1}(y) - \beta_nP_{n-1}(y)]\frac{v'(x) - v'(y)}{x - y}w(y)dy \]

\[= \frac{1}{h_n} \int P_n(y)[P_{n+1}(y) - \beta_nP_{n-1}(y)]\frac{v'(x) - v'(y)}{x - y}w(y)dy \]

\[+ \frac{1}{h_n} \int (y - \alpha_n)P_n(y)[P_{n+1}(y) - \beta_nP_{n-1}(y)]\frac{v'(x) - v'(y)}{x - y}w(y)dy \]

\[= -1 + \frac{1}{h_n} \int [P_{n+1}(y) + \beta_nP_{n-1}(y)][P_{n+1}(y) - \beta_nP_{n-1}(y)]\frac{v'(x) - v'(y)}{x - y}w(y)dy \]

\[= -1 + \beta_{n+1}A_{n+1}(x) - \beta_nA_{n-1}(x). \]

Remark 1.2. From (1.6), (1.9), and (1.2), we can derive the following.

(1.11) \(\frac{dP_{n-1}(x)}{dx} = [B_n(x) + v'(x)]P_{n-1}(x) - A_{n-1}(x)P_n(x). \)

Also, from (1.9) and (1.10), we obtain

(1.12) \(B_n^2(x) + v'(x)B_n(x) + \sum_{k=0}^{n-1} A_k(x) = \beta_nA_n(x)A_{n-1}(x). \)

Equations (1.9), (1.10), and (1.12) are called the compatibility conditions for the ladder operators (see [5]).

Lemma 1.3. The monic orthogonal polynomials \(P_n(x) \) satisfy the differential equation

(1.13) \(\frac{d^2P_n(x)}{dx^2} + C_n(x)\frac{dP_n(x)}{dx} + D_n(x)P_n(x) = 0, \)
where

\begin{equation}
C_n(x) = -\frac{dv(x)}{dx} - \frac{1}{A_n(x)} \frac{dA_n(x)}{dx},
\end{equation}

and

\begin{equation}
D_n(x) = \beta_n A_n(x) A_{n-1}(x) - B_n^2(x) - B_n(x) \frac{dv(x)}{dx} + \frac{dB_n(x)}{dx} - \frac{B_n(x) dA_n(x)}{A_n(x) dx}.
\end{equation}

Proof. Differentiating both sides of (1.6) with respect to \(x\), we have

\begin{equation}
\frac{d^2 P_n(x)}{dx^2} = -B_n(x) \frac{dP_n(x)}{dx} - \frac{dA_n(x)}{dx} P_n(x) + \beta_n \frac{dA_n(x)}{dx} P_{n-1}(x) + \beta_n A_n(x) \frac{dP_{n-1}(x)}{dx}.
\end{equation}

Substituting (1.11) into (1.16) yields

\begin{equation}
\frac{d^2 P_n(x)}{dx^2} = -B_n(x) \frac{dP_n(x)}{dx} - \left(\beta_n A_n(x) A_{n-1}(x) + \frac{dB_n(x)}{dx} \right) P_n(x) + \beta_n \left(A_n(x) B_n(x) + A_n(x) \frac{dv(x)}{dx} + \frac{dA_n(x)}{dx} \right) P_{n-1}(x),
\end{equation}

and the lemma follows by substituting \(P_{n-1}(x)\) in (1.17) using (1.6).

\(\square\)

2. Orthogonal polynomials with the weight \(w_\alpha(x) = x^\alpha \exp(-x^3 + tx)\)

In this section we consider the weight \(w_\alpha(x) = x^\alpha \exp(-x^3 + tx)\) \((\alpha > 0, \ t \in \mathbb{R})\) on the positive real axis \(\mathbb{R}^+\). It satisfies the Pearson equation

\[[x w_\alpha(x)]' = (-3x^3 + tx + \alpha + 1)w_\alpha(x). \]

Now for the weight \(w_\alpha(x) = x^\alpha \exp(-x^3 + tx)\) we have

\begin{equation}
v(x) = -\ln w_\alpha(x) = -\alpha \ln x + x^3 - tx,
\end{equation}

hence,

\[\frac{v'(x) - v'(y)}{x - y} = 3(x + y) + \frac{\alpha}{xy}. \]
From (1.7) and (1.8), we obtain

\begin{equation}
A_n(x) = 3(x + \alpha_n) + \frac{M_n}{x}, \quad B_n(x) = 3\beta_n + \frac{m_n}{x},
\end{equation}

where

\begin{equation}
M_n = \frac{\alpha}{h_n} \int_0^\infty \frac{P_n^2(y)}{y} w_\alpha(y) dy,
\end{equation}

and

\begin{equation}
m_n = \frac{\alpha}{h_{n-1}} \int_0^\infty \frac{P_n(y)P_{n-1}(y)}{y} w_\alpha(y) dy.
\end{equation}

Substituting (2.2) into (1.9) and comparing the coefficients of x^0 and x^{-1}, we obtain

\begin{equation}
M_n = 3(\beta_{n+1} + \alpha_n^2 + \beta_n) - t, \quad (2.5)
\end{equation}

\begin{equation}
m_{n+1} + m_n = \alpha - \alpha_n M_n. \quad (2.6)
\end{equation}

Similarly, from (1.10) and (1.12), we have six more conditions.

\begin{equation}
1 + m_{n+1} - m_n = 3\beta_{n+1}(\alpha_{n+1} + \alpha_n) - 3\beta_n(\alpha_n + \alpha_{n-1}), \quad (2.7)
\end{equation}

\begin{equation}
\alpha_n(m_n - m_{n+1}) = \beta_{n+1}M_{n+1} - \beta_n M_{n-1}, \quad (2.8)
\end{equation}

\begin{equation}
m_n = 3\beta_n(\alpha_n + \alpha_{n-1}) - n, \quad (2.9)
\end{equation}

\begin{equation}
3\beta_n^2 - t\beta_n + \sum_{j=0}^{n-1} \alpha_j = \beta_n(M_{n-1} + 3\alpha_n\alpha_{n-1} + M_n), \quad (2.10)
\end{equation}

\begin{equation}
\sum_{j=0}^{n-1} M_j - tm_n = 3\beta_n(\alpha_n M_{n-1} + \alpha_{n-1} M_n - 2m_n + \alpha), \quad (2.11)
\end{equation}

\begin{equation}
m_n^2 - \alpha m_n = \beta_n M_n M_{n-1}. \quad (2.12)
\end{equation}

Substituting (2.5) and (2.9) into (2.6), (2.8), (2.10), (2.11), and (2.12), we have the following nonlinear difference equations for the recurrence coefficients.
Theorem 2.1. Recurrence coefficients α_n and β_n in (1.2) with the weight $w_\alpha(x) = x^n \exp(-x^3 + tx)$ satisfy

\begin{equation}
2n + 1 + \alpha + \alpha_n t = 3\beta_{n+1}(\alpha_{n+1} + \alpha_n) + 3\beta_n(\alpha_n + \alpha_{n-1}) + 3\alpha_n(\beta_{n+1} + \alpha_n^2 + \beta_n),
\end{equation}

\begin{equation}
\alpha_n + t(\beta_{n+1} - \beta_n) = 3\beta_{n+1}(\alpha_{n+1}^2 + \alpha_{n+1}\alpha_n + \alpha_n^2 + \beta_{n+2} + \beta_{n+1}) - 3\beta_n(\alpha_n^2 + \alpha_n\alpha_{n-1} + \alpha_{n-1}^2 + \beta_n + \beta_{n-1}),
\end{equation}

\begin{equation}
\sum_{j=0}^{n-1} \alpha_j = \beta_n(3\beta_{n+1} + 3\beta_n + 3\beta_{n-1} + 3\alpha_n^2 + 3\alpha_n\alpha_{n-1} + 3\alpha_{n-1}^2 - t),
\end{equation}

\begin{equation}
\sum_{j=0}^{n-1} (\alpha_j^2 + \beta_{j+1} + \beta_j) = \beta_n[\alpha_n(3\alpha_{n-1}^2 - 3\beta_n + 3\beta_{n-1}) + \alpha_{n-1}(3\alpha_n^2 + 3\beta_{n+1} - 3\beta_n) + 2n + \alpha],
\end{equation}

\begin{equation}
[3\beta_n(\alpha_n + \alpha_{n-1}) - n][3\beta_n(\alpha_n + \alpha_{n-1}) - n - \alpha] = \beta_n(3\alpha_n^2 + 3\beta_n + 3\beta_n - t)(3\alpha_{n-1}^2 + 3\beta_n + 3\beta_{n-1} - t).
\end{equation}

Remark 2.2. The quantities M_n in (2.3), (2.5) and m_n in (2.4), (2.9) can be computed directly as follows. Using the orthogonality relation and integration by parts, we have

$$0 = \int_0^\infty \frac{dP_n(y)}{dy} P_n(y) w_\alpha(y)dy = - \int_0^\infty P_n^2(y) \left(\frac{\alpha}{y} - 3y^2 + t \right) w_\alpha(y)dy,$$

hence,

$$M_n = \frac{\alpha}{h_n} \int_0^\infty \frac{P_n^2(y)}{y} w_\alpha(y)dy = \frac{1}{h_n} \int_0^\infty (3y^2 - t)P_n^2(y) w_\alpha(y)dy = 3(\beta_{n+1} + \alpha_n^2 + \beta_n) - t.$$
Similarly, we have
\[
\begin{align*}
 n h_{n-1} &= \int_0^\infty \frac{dP_n(y)}{dy} P_{n-1}(y) w_\alpha(y) dy \\
 &= -\int_0^\infty P_n(y) P_{n-1} \left(\frac{\alpha}{y} - 3y^2 + t \right) w_\alpha(y) dy,
\end{align*}
\]
therefore,
\[
\begin{align*}
 m_n &= \frac{\alpha}{h_{n-1}} \int_0^\infty \frac{P_n(y) P_{n-1}(y)}{y} w_\alpha(y) dy - n \\
 &= \frac{1}{h_{n-1}} \int_0^\infty \left(3y^2 - t \right) P_n(y) P_{n-1}(y) w_\alpha(y) dy - n \\
 &= 3\beta_n(\alpha_n + \alpha_{n-1}) - n.
\end{align*}
\]

Note that the coefficients \(\alpha_n\) and \(\beta_n\) in the recurrence relation (1.2) with the weight \(w_\alpha\) are now functions of \(t\). It is well known that the coefficients \(\alpha_n(t)\) and \(\beta_n(t)\) with the weight \(w_\alpha(x) = \exp(tx)x^\alpha\exp(-x^3)\) satisfy the Toda system (see [1])
\[
\begin{align*}
 \frac{d\alpha_n}{dt} &= \beta_{n+1} - \beta_n, \quad \frac{d\beta_n}{dt} = \beta_n(\alpha_n - \alpha_{n-1}).
\end{align*}
\]

And the \(k\)th moment is
\[
\begin{align*}
 \mu_k &= \int_0^\infty x^k w_\alpha(x) dx = \frac{d^k}{dt^k} \left(\int_0^\infty w_\alpha(x) dx \right) = \frac{d^k \mu_0}{dt^k}.
\end{align*}
\]

Theorem 2.3. The quantities \(M_n = M_n(t)\) in (2.5) and \(m_n = m_n(t)\) in (2.9) satisfy the following.
\[
\begin{align*}
 \frac{dM_n}{dt} &= m_{n+1} - m_n, \quad \frac{dm_n}{dt} = \beta_n(M_n - M_{n-1}),
\end{align*}
\]
and
\[
\begin{align*}
 \frac{d^2M_n}{dt^2} &= \frac{1}{2M_n} \left(\frac{dM_n}{dt} \right)^2 - \frac{M_n^2}{3} + \left(\frac{3\alpha_n^2}{2} - \frac{t}{3} \right) M_n - \frac{\alpha_n^2}{2M_n}.
\end{align*}
\]
Proof. From (2.5), (2.18), and (2.9), we have
\[
\frac{dM_n}{dt} = \frac{d}{dt}[3(\beta_{n+1} + \alpha_n^2 + \beta_n) - t]
\]
\[= 3 \left(\frac{d\beta_{n+1}}{dt} + 2\alpha_n \frac{d\alpha_n}{dt} + \frac{d\beta_n}{dt} \right) - 1 \]
\[= 3[\beta_{n+1}(\alpha_{n+1} - \alpha_n) + 2\alpha_n(\beta_{n+1} - \beta_n + \beta_n(\alpha_n - \alpha_{n-1})] - 1 \]
\[= 3\beta_{n+1}(\alpha_{n+1} + \alpha_n) - 3\beta_n(\alpha_n + \alpha_{n-1}) - 1 \]
\[= m_{n+1} - m_n, \]
similarly
\[
\frac{dm_n}{dt} = \frac{d}{dt}[3\beta_n(\alpha_n + \alpha_{n-1}) - n] \]
\[= 3 \frac{d\beta_n}{dt}(\alpha_n + \alpha_{n-1}) + 3\beta_n \left(\frac{d\alpha_n}{dt} + \frac{d\alpha_{n-1}}{dt} \right) \]
\[= 3\beta_n(\alpha_n - \alpha_{n-1})(\alpha_n + \alpha_{n-1}) + 3\beta_n(\beta_{n+1} - \beta_n + \beta_n - \beta_{n-1}) \]
\[= \beta_n(M_n - M_{n-1}), \]
which proves (2.20). Now from (2.6) and (2.12), we have
\[
m_{n+1} = \alpha - \alpha_n M_n - m_n, \]
\[M_{n-1} = \frac{m_n^2 - \alpha m_n}{\beta_n M_n}. \]
Substituting these into (2.20) yields
\[
(2.22) \quad \frac{dM_n}{dt} = \alpha - \alpha_n M_n - 2m_n, \]
\[
(2.23) \quad \frac{dm_n}{dt} = \beta_n M_n - \frac{m_n^2 - \alpha m_n}{M_n}. \]
Solving (2.22) for m_n yields
\[
m_n = \frac{1}{2} \left(\alpha - \alpha_n M_n - \frac{dM_n}{dt} \right). \]
Substituting this into (2.23) and using (2.18), we have
\[
(2.24) \quad \frac{d^2M_n}{dt^2} = \frac{1}{2M_n} \left(\frac{dM_n}{dt} \right)^2 - (\beta_{n+1} + \beta_n) M_n + \frac{\alpha_n^2}{2} M_n - \frac{\alpha^2}{2M_n}. \]
From (2.5), we have
\[\beta_{n+1} + \beta_n = \frac{M_n + t}{3} - \alpha_n^2. \]
Substituting this into (2.24) yields (2.21).

Let \(\kappa_n \) be the coefficient of \(x^{n-1} \) in the monic orthogonal polynomials \(P_n(x) \), that is, \(P_n(x) = x^n + \kappa_n x^{n-1} + \cdots \). Comparing the coefficients of \(x^n \) in (1.2), we have
\[\kappa_{n+1} - \kappa_n = -\alpha_n. \]
Taking a telescope sum, we have
\[\kappa_n = -\sum_{j=0}^{n-1} \alpha_j. \]

Theorem 2.4. Let \(\kappa_n \) be the coefficient of \(x^{n-1} \) in the monic orthogonal polynomials \(P_n(x) \) with the weight \(w_\alpha \). Then
\[\kappa_n = -\beta_n(3\beta_{n+1} + 3\beta_n + 3\beta_{n-1} + 3\alpha_n + 3\alpha_{n-1} + 3\alpha_{n-1}^2 - t), \]
and
\[\frac{d\kappa_n}{dt} = -\beta_n. \]

Proof. From (2.26), (2.15), and (2.18), we have
\[
\kappa_n = -\sum_{j=0}^{n-1} \alpha_j \\
= -\beta_n(3\beta_{n+1} + 3\beta_n + 3\beta_{n-1} + 3\alpha_n + 3\alpha_{n-1} + 3\alpha_{n-1}^2 - t), \\
\frac{d\kappa_n}{dt} = -\sum_{j=0}^{n-1} \frac{d\alpha_j}{dt} = -\sum_{j=0}^{n-1} (\beta_{j+1} - \beta_j) = -\beta_n.
\]

The sum of all the zeros of the monic orthogonal polynomials \(P_n(x) \) is \(-\kappa_n \), therefore, by Theorem 2.4, we have the following.

Corollary 2.5. Let \(P_n(x) \) be the monic orthogonal polynomials with the weight \(w_\alpha \). Then the sum of all the zeros of \(P_n(x) \) is
\[\sum_{j=0}^{n-1} \alpha_j = \beta_n(3\beta_{n+1} + 3\beta_n + 3\beta_{n-1} + 3\alpha_n + 3\alpha_{n-1} + 3\alpha_{n-1}^2 - t). \]
Substituting (2.5) and (2.9) into (2.2), we have

\begin{align}
A_n(x) & = 3(x + \alpha_n) + \frac{3(\beta_{n+1} + \alpha_n^2 + \beta_n)}{x} - t, \\
B_n(x) & = 3\beta_n + \frac{3\beta_n(\alpha_n + \alpha_{n-1}) - n}{x},
\end{align}

hence, from (1.6) we have the following differential-difference equations.

Theorem 2.6. The monic orthogonal polynomials \(P_n(x)\) with the weight \(w\) satisfy the differential-difference equation

\begin{equation}
\frac{dP_n(x)}{dx} = -[3\beta_n x + 3\beta_n(\alpha_n + \alpha_{n-1}) - n]P_n(x)
+ \beta_n \left[3x(x + \alpha_n) + 3(\beta_{n+1} + \alpha_n^2 + \beta_n) - t\right]P_{n-1}(x).
\end{equation}

Theorem 2.7. The monic orthogonal polynomials \(P_n(x)\) with the weight \(w\) satisfy the differential equation

\begin{equation}
\frac{d^2P_n(x)}{dx^2} + C_n(x)\frac{dP_n(x)}{dx} + D_n(x)P_n(x) = 0,
\end{equation}

where

\begin{align}
C_n(x) & = -3x^2 + t + \frac{\alpha}{x} - \frac{3x^2 - [3(\beta_{n+1} + \alpha_n^2 + \beta_n) - t]}{3x^2(x + \alpha_n) + [3(\beta_{n+1} + \alpha_n^2 + \beta_n) - t]x}, \\
D_n(x) & = \beta_n \left(3(x + \alpha_n) + \frac{3(\beta_{n+1} + \alpha_n^2 + \beta_n) - t}{x}\right)
- \left(3x^2 - t + 3\beta_n + \frac{3\beta_n(\alpha_n + \alpha_{n-1}) - n - \alpha}{x}\right)
\times \left(3\beta_n + \frac{3\beta_n(\alpha_n + \alpha_{n-1}) - n}{x}\right)
- \frac{3x^2 - [3(\beta_{n+1} + \alpha_n^2 + \beta_n) - t]}{3x^2(x + \alpha_n) + [3(\beta_{n+1} + \alpha_n^2 + \beta_n) - t]x}
\times \left(3\beta_n + \frac{3\beta_n(\alpha_n + \alpha_{n-1}) - n}{x}\right)
- \frac{3\beta_n(\alpha_n + \alpha_{n-1}) - n}{x^2}.
\end{align}
Proof. From (2.1), (2.30) and (2.31), we have
\[v(x) = -\ln w_\alpha(x) = -\alpha \ln x + x^3 - tx, \]
\[A_n(x) = 3(x + \alpha_n) + \frac{3(\beta_{n+1} + \alpha_n^2 + \beta_n) - t}{x}, \]
\[B_n(x) = 3\beta_n + \frac{3\alpha_n + \alpha_{n-1} - n}{x}, \]
hence, Lemma 1.3 with (1.14) and (1.15) yields the result.

3. Orthogonal polynomials with the weight
\[W_\alpha(x) = |x|^{2\alpha+1} \exp(-x^6 + tx^2) \]

In this section we consider the weight
\[W_\alpha(x) = |x|^{2\alpha+1} \exp(-x^6 + tx^2) \quad (\alpha > -1, \ t \in \mathbb{R}) \]
in the real line \(\mathbb{R} \). First we show that symmetrizing the weight \(w_\alpha(x) = x^\alpha \exp(-x^3 + tx) \) gives rise to the weight \(W_\alpha(x) \). Let \(P_n(x) \) be the monic orthogonal polynomials with the weight \(w_\alpha \). It is proved in [4, Theorem 7.1] that the kernel function \(Q_n(x) \) are monic orthogonal polynomials of degree \(n \) with respect to the weight \(w_{\alpha+1}(x) = x^{\alpha+1} \exp(-x^3 + tx) \).

Define
\[
(3.1) \quad R_{2n}(x) = P_n(x^2), \quad R_{2n+1}(x) = xQ_n(x^2).
\]

Then
\[
l_n \delta_{n,m} = \int_{0}^{\infty} P_n(x)P_m(x)x^\alpha \exp(-x^3 + tx)dx
\]
\[
= 2 \int_{0}^{\infty} P_n(x^2)P_m(x^2)x^{2\alpha+1} \exp(-x^6 + tx^2)dx
\]
\[
= \int_{-\infty}^{\infty} P_n(x^2)P_m(x^2)|x|^{2\alpha+1} \exp(-x^6 + tx^2)dx
\]
\[
= \int_{-\infty}^{\infty} R_{2n}(x)R_{2m}(x)|x|^{2\alpha+1} \exp(-x^6 + tx^2)dx,
\]
which show that \(\{R_{2n}(x)\}_{n=0}^{\infty} \) is a orthogonal sequence with respect to the even weight \(W_{\alpha}(x) = |x|^{2\alpha+1} \exp(-x^6 + tx^2) \) on \(\mathbb{R} \). Similarly

\[
k_n \delta_{n,m} = \int_{-\infty}^{\infty} R_n(x)R_m(x)dx = h_n \delta_{n,m}, \quad h_n > 0.
\]

And

\[
\int_{-\infty}^{\infty} R_{2n+1}(x)R_{2m+1}(x)|x|^{2\alpha+1} \exp(-x^6 + tx^2)dx = 0,
\]

because the integrand is odd. Therefore \(\{R_{n}(x)\}_{n=0}^{\infty} \) is a sequence of monic orthogonal polynomials with respect to the even weight \(W_{\alpha}(x) = |x|^{2\alpha+1} \exp(-x^6 + tx^2) \) on \(\mathbb{R} \). That is,

\[
(3.2) \quad \int_{-\infty}^{\infty} R_{n}(x)R_{m}(x)W_{\alpha}(x)dx = h_n \delta_{n,m}, \quad h_n > 0.
\]

Since the weight \(W_{\alpha} \) is even, the three term recurrence relation has the form

\[
(3.3) \quad xR_{n}(x) = R_{n+1}(x) + \beta_n R_{n-1}(x),
\]

where

\[
(3.4) \quad \beta_n = \frac{1}{h_{n-1}} \int_{-\infty}^{\infty} xR_{n}(x)R_{n-1}(x)W_{\alpha}(x)dx,
\]

and the initial condition is \(R_{-1}(x) = 0 \). By the three term recurrence relation (3.3), we have

\[
(3.5) \quad y^2 R_{n}(y) = R_{n+2}(y) + (\beta_{n+1} + \beta_n) R_{n}(y) + \beta_n \beta_{n-2} R_{n-2}(y),
\]

\[
(3.6) \quad y^3 R_{n}(y) = R_{n+3}(y) + (\beta_{n+2} + \beta_{n-1} + \beta_n) R_{n+1}(y) + \beta_n (\beta_{n+1} + \beta_n + \beta_{n-1}) R_{n-1}(y) + \beta_n \beta_{n-1} \beta_{n-2} R_{n-3}(y),
\]
and

\[(3.7)\]

\[y^4 R_n(y) = R_{n+4}(y) + (\beta_{n+3} + \beta_{n+2} + \beta_{n+1} + \beta_n)R_{n+2}(y) + [\beta_{n+1}(\beta_{n+2} + \beta_{n+1} + \beta_n) + \beta_n(\beta_{n+1} + \beta_n + \beta_{n-1})]R_n(y) + \beta_n\beta_{n-1}(\beta_{n+1} + \beta_n + \beta_{n-1} + \beta_{n-2})R_{n-2}(y) + \beta_n\beta_{n-1}\beta_{n-2}\beta_{n-3}R_{n-4}(y).\]

Now for the weight \(W_{\alpha}(x) = |x|^{2\alpha+1}\exp(-x^6 + tx^2)\), we have

\[(3.8)\]

\[v(x) = -\ln W_{\alpha}(x) = -(2\alpha + 1)\ln |x| + x^6 - tx^2,\]

hence,

\[\frac{v'(x) - v'(y)}{x - y} = 6(x^4 + x^3y + x^2y^2 + xy^3 + y^4) - 2t + \frac{2\alpha + 1}{xy}.\]

From (1.7) we obtain

\[A_n(x) = \frac{1}{h_n} \int_{-\infty}^{\infty} R_n^2(y) \frac{v'(x) - v'(y)}{x - y} W_{\alpha}(y) dy\]

\[= \frac{6x^4 - 2t}{h_n} \int_{-\infty}^{\infty} R_n^2(y) W_{\alpha}(y) dy + \frac{6x^3}{h_n} \int_{-\infty}^{\infty} y R_n^2(y) W_{\alpha}(y) dy + \frac{6x^2}{h_n} \int_{-\infty}^{\infty} y^2 R_n^2(y) W_{\alpha}(y) dy + \frac{6x}{h_n} \int_{-\infty}^{\infty} y^3 R_n^2(y) W_{\alpha}(y) dy + \frac{2\alpha + 1}{xh_n} \int_{-\infty}^{\infty} \frac{R_n^2(y)}{y} W_{\alpha}(y) dy.\]

Noting that

\[\int_{-\infty}^{\infty} \frac{R_n^2(y)}{y} W_{\alpha}(y) dy = 0,\]

because the integrand is odd, and using (3.3), (3.5), (3.6), and (3.7), we have

\[(3.9)\]

\[A_n(x) = 6x^4 + 6x^2(\beta_{n+1} + \beta_n) + 6(s_{n+1} + s_n) - 2t,\]

where

\[(3.10)\]

\[s_n := \beta_n(\beta_{n+1} + \beta_n + \beta_{n-1}).\]

Similarly, noting that

\[\frac{1}{h_{n-1}} \int_{-\infty}^{\infty} \frac{R_n(y) R_{n-1}(y)}{y} W_{\alpha}(y) dy = \frac{[1 - (-1)^n]}{2},\]
from (1.8), we obtain
\begin{equation}
B_n(x) = \frac{1}{h_{n-1}} \int_{-\infty}^{\infty} R_n(y) R_{n-1}(y) \frac{v'(x) - v'(y)}{x-y} W_\alpha(y) dy
= 6\beta_n x^3 + 6s_n x + \frac{m_n}{x},
\end{equation}
where
\begin{equation}
m_n := (2\alpha + 1) \frac{[1 - (-1)^n]}{2}.
\end{equation}

Theorem 3.1. Recurrence coefficients β_n in (3.3) with the weight W_α satisfy the following difference equations.
\begin{equation}
1 + (2\alpha + 1) \frac{(-1)^n}{n+1} = \beta_{n+1}(6s_{n+2} + 6s_{n+1} - 2t) - \beta_n(6s_n + 6s_{n-1} - 2t),
\end{equation}
\begin{equation}
n + \left(\alpha + \frac{1}{2}\right) [1 - (-1)^n] + 2\beta_n t
= 6\beta_n (s_{n+1} + s_n + s_{n-1}) + 6\beta_{n+1}\beta_n\beta_{n-1},
\end{equation}
\begin{equation}
\beta_n(2\alpha + 1) \frac{(-1)^{n+1}}{n+1} + s_n(6s_n - 2t) + \sum_{j=0}^{n-1} (\beta_{j+1} + \beta_j)
= \beta_n [(\beta_{n+1} + \beta_n)(6s_n + 6s_{n-1} - 2t) + (\beta_n + \beta_{n-1})(6s_{n+1} + 6s_n - 2t)],
\end{equation}
and
\begin{equation}
\beta_n(6s_n + 6s_{n-1} - 2t)(6s_{n+1} + 6s_n - 2t)
= 6s_n(2\alpha + 1) \frac{(-1)^{n+1}}{n+1} - \{2n + (2\alpha + 1)[1 - (-1)^n]} + \sum_{j=0}^{n-1} (s_{j+1} + s_j),
\end{equation}
where s_n is defined in (3.10).

Proof. Substituting (3.9) and (3.11) into (1.10) with $\alpha_n = 0$, and comparing the constant terms, we obtain (3.13). Similarly, substituting (3.9) and (3.11) into (1.12) with (3.8), and comparing the coefficients of x^4, x^2, and x^0, we have (3.14), (3.15), and (3.16). □
Theorem 3.2. Let $\beta_n = \beta_n(t)$ be recurrence coefficients in (3.3) with the weight W_α. Then

\[
\frac{d\beta_n}{dt} = \beta_n(\beta_{n+1} - \beta_{n-1}),
\]

\[
\frac{d^2\beta_n}{dt^2} = \frac{1}{6} \left(n + \left(\alpha + \frac{1}{2} \right) [1 - (-1)^n] \right) - \beta_n \left(3\beta_{n+1}\beta_n + 3\beta_{n+1}\beta_{n-1} + 3\beta_n\beta_{n-1} + \beta_n^2 - \frac{t}{3} \right).
\]

Proof. Differentiating (3.2) for $m = n$ with respect to t yields

\[
\frac{dh_n}{dt} = 2 \int_{-\infty}^{\infty} R_n(x) \frac{dR_n(x)}{dt} W_\alpha(x) dx + \int_{-\infty}^{\infty} x^2 R_n^2(x) W_\alpha(x) dx.
\]

Since $\frac{dR_n(x)}{dt}$ is a polynomial in x of degree $n - 1$,

\[
2 \int_{-\infty}^{\infty} R_n(x) \frac{dR_n(x)}{dt} W_\alpha(x) dx = 0,
\]

hence, by (3.5),

\[
\frac{dh_n}{dt} = \int_{-\infty}^{\infty} x^2 R_n^2(x) W_\alpha(x) dx = (\beta_{n+1} + \beta_n) h_n.
\]

Thus, from (1.4), we have

\[
\frac{d\beta_n}{dt} = \frac{d}{dt} \left(\frac{h_n}{h_{n-1}} \right) = \beta_n(\beta_{n+1} - \beta_{n-1}).
\]

And

\[
\frac{d^2\beta_n}{dt^2} = \frac{d\beta_n}{dt}(\beta_{n+1} - \beta_{n-1}) + \beta_n \left(\frac{d\beta_{n+1}}{dt} - \frac{d\beta_{n-1}}{dt} \right)
\]

\[
= \beta_n(\beta_{n+2}\beta_{n+1} + \beta_{n+1}^2 + \beta_{n-1}^2 + \beta_{n-1}\beta_{n-2})
- \beta_n(\beta_{n+1}\beta_n + 2\beta_{n+1}\beta_{n-1} + \beta_n\beta_{n-1}).
\]

From (3.14), we have

\[
\beta_n(\beta_{n+2}\beta_{n+1} + \beta_{n+1}^2 + \beta_{n-1}^2 + \beta_{n-1}\beta_{n-2})
\]

\[
= \frac{1}{6} \left(n + \left(\alpha + \frac{1}{2} \right) [1 - (-1)^n] \right)
- \beta_n \left(2\beta_{n+1}\beta_n + \beta_{n+1}\beta_{n-1} + \beta_n^2 + 2\beta_n\beta_{n-1} - \frac{t}{3} \right).
\]
Substituting this into (3.19) yields (3.18).

Let \(\lambda_n \) be the coefficient of \(x^{n-2} \) in the monic orthogonal polynomials \(R_n(x) \) with the weight \(W_\alpha \). Comparing the coefficients of \(x^{n-1} \) in (3.3), we obtain

\[
\lambda_{n+1} - \lambda_n = -\beta_n \quad (n \geq 1, \ \lambda_1 = 0).
\]

Taking a telescope sum, we have

\[
\lambda_n = -\sum_{j=1}^{n-1} \beta_j.
\]

Theorem 3.3. Let \(\lambda_n \) be the coefficient of \(x^{n-2} \) in the monic orthogonal polynomials \(R_n(x) \) with the weight \(W_\alpha \). Then

\[
\lambda_n = \frac{\beta_n}{2} [1 - (2\alpha + 1)(-1)^n] + (t - 3s_n)\beta_n^2
- 3\beta_n[(\beta_{n+1} + \beta_n)s_{n-1} + (\beta_n + \beta_{n-1})s_{n+1}],
\]

and

\[
\frac{d\lambda_n}{dt} = -\beta_n\beta_{n-1}.
\]

Proof. From (3.15), we have

\[
\sum_{j=0}^{n-1} (\beta_{j+1} + \beta_j) = -\beta_n(2\alpha + 1)(-1)^{n+1} - s_n(6s_n - 2t)
+ \beta_n(\beta_{n+1} + \beta_n)(6s_n + 6s_{n-1} - 2t)
+ \beta_n(\beta_n + \beta_{n-1})(6s_{n+1} + 6s_n - 2t)
= \beta_n(2\alpha + 1)(-1)^n + (6s_n - 2t)\beta_n^2
+ 6\beta_n[(\beta_{n+1} + \beta_n)s_{n-1} + (\beta_n + \beta_{n-1})s_{n+1}].
\]

Since

\[
\sum_{j=0}^{n-1} (\beta_{j+1} + \beta_j) = -\lambda_{n+1} - \lambda_n,
\]

we have

\[
\lambda_{n+1} - \lambda_n = \beta_n(2\alpha + 1)(-1)^n + (6s_n - 2t)\beta_n^2
+ 6\beta_n[(\beta_{n+1} + \beta_n)s_{n-1} + (\beta_n + \beta_{n-1})s_{n+1}].
\]

Solving for \(\lambda_n \) in (3.20) and (3.24) yields (3.22). Differentiating (3.21) with respect to \(t \) and using (3.17), we obtain (3.23). \(\square \)
Substituting (3.9) and (3.11) into (1.6) we have the following differential-difference equations.

Theorem 3.4. The monic orthogonal polynomials \(R_n(x) \) with the weight \(W_\alpha \) satisfy the differential-difference equation

\[
(3.25) \quad x \frac{dR_n(x)}{dx} = - \left(6\beta_n x^4 + 6s_n x^2 + (2\alpha + 1) \frac{[1 - (-1)^n]}{2} \right) R_n(x) + \beta_n [6x^5 + 6(\beta_{n+1} + \beta_n)x^3 + 6(s_{n+1} + s_n)x - 2tx]R_{n-1}(x).
\]

Theorem 3.5. The monic orthogonal polynomials \(R_n(x) \) with the weight \(W_\alpha \) satisfy the differential equation

\[
(3.26) \quad \frac{d^2R_n(x)}{dx^2} + C_n(x) \frac{dR_n(x)}{dx} + D_n(x) R_n(x) = 0,
\]

where

\[
C_n(x) = -6x^5 + 2tx + \frac{2\alpha + 1}{x} - \frac{12x^3 + 6x(\beta_{n+1} + \beta_n)}{3x^4 + 3x^2(\beta_{n+1} + \beta_n) + 3(s_{n+1} + s_n) - t},
\]

\[
D_n(x) = \beta_n \left[6x^4 + 6x^2(\beta_{n+1} + \beta_n) + 6(s_{n+1} + s_n) - 2t \right] \times \left[6x^4 + 6x^2(\beta_n + \beta_{n-1}) + 6(s_n + s_{n-1}) - 2t \right] - \left(6\beta_n x^3 + 6s_n x + \frac{1}{x} \left(\alpha + \frac{1}{2} \right) [1 - (-1)^n] \right) \times \left(6x^5 + 6\beta_n x^3 + (6s_n - 2t)x - \frac{1}{x} \left(\alpha + \frac{1}{2} \right) [1 + (-1)^n] \right) - 18\beta_n x^2 + 6s_n - \frac{1}{x^2} \left(\alpha + \frac{1}{2} \right) [1 - (-1)^n] - \left(6\beta_n x^3 + 6s_n x + \frac{1}{x} \left(\alpha + \frac{1}{2} \right) [1 - (-1)^n] \right) \times \left(\frac{12x^3 + 6x(\beta_{n+1} + \beta_n)}{3x^4 + 3x^2(\beta_{n+1} + \beta_n) + 3(s_{n+1} + s_n) - t} \right).
\]
Proof. From (3.8), (3.9) and (3.11), we have

\[v(x) = -\ln W_\alpha(x) = -(2\alpha + 1) \ln |x| + x^6 - tx^2, \]
\[A_n(x) = 6x^4 + 6x^2(\beta_{n+1} + \beta_n) + 6(s_{n+1} + s_n) - 2t, \]
\[B_n(x) = 6\beta_n x^3 + 6s_n x + \frac{1}{x} \left(\alpha + \frac{1}{2} \right) [1 - (-1)^n], \]

hence, substituting these into Lemma 1.3 yields the result.

References

Haewon Joung
Department of mathematics
Inha University
Incheon 22212, Korea
E-mail: hwjoung@inha.ac.kr