
Korean J. Math. 25 (2017), No. 3, pp. 335–347
https://doi.org/10.11568/kjm.2017.25.3.335

SHIFTING AND MODULATION FOR

FOURIER-FEYNMAN TRANSFORM OF FUNCTIONALS

IN A GENERALIZED FRESNEL CLASS

Byoung Soo Kim

Abstract. Time shifting and frequency shifting proprerties for the
Fourier-Feynman transform of functionals in a generalized Fresnel
class FA1,A2 are given. We discuss scaling and modulation propre-
rties for the Fourier-Feynman transform. These properties help us
to obtain Fourier-Feynman transforms of new functionals from the
Fourier-Feynman transforms of old functionals which we know their
Fourier-Feynman transforms.

1. Introduction

Let (H,B, ν) be an abstract Wiener space and let {ej} be a complete
orthonormal system in H such that the ej’s are in B∗, the dual of B.
For each h ∈ H and x ∈ B, we define a stochastic inner product (h, x)∼

as follows:

(1.1) (h, x)∼ =

 lim
n→∞

n∑
j=1

〈h, ej〉(x, ej), if the limit exists

0, otherwise,
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where (·, ·) denotes the natural dual pairing between B and B∗. It is well
known [12, 13] that for each h(6= 0) in H, (h, ·)∼ is a Gaussian random
variable on B with mean zero and variance |h|2, that is,

(1.2)

∫
B

exp{i(h, x)∼} dν(x) = exp
{
−1

2
|h|2
}
.

A subset E of a product abstract Wiener space B2 is said to be
scale-invariant measurable provided {(αx1, βx2) : (x1, x2) ∈ E} is ab-
stract Wiener measurable for every α > 0 and β > 0, and a scale-
invariant measurable set N is said to be scale-invariant null provided
(ν × ν)({(αx1, βx2) : (x1, x2) ∈ N}) = 0 for every α > 0 and β > 0. A
property that holds except on a scale-invariant null set is said to hold
scale-invariant almost everywhere (s-a.e.) [11].

Let C denote the set of complex numbers and let

(1.3) Ω = {~λ = (λ1, λ2) ∈ C2 : Reλk > 0 for k = 1, 2}
and

(1.4) Ω̃ = {~λ = (λ1, λ2) ∈ C2 : λk 6= 0,Reλk ≥ 0 for k = 1, 2}.
Let F be a complex-valued function on B2 such that the integral

(1.5) JF (λ1, λ2) =

∫
B2

F (λ
−1/2
1 x1, λ

−1/2
2 x2) d(ν × ν)(x1, x2)

exists as a finite number for all real numbers λ1 > 0 and λ2 > 0. If
there exists a function J∗F (λ1, λ2) analytic on Ω such that J∗F (λ1, λ2) =
JF (λ1, λ2) for all λ1 > 0 and λ2 > 0, then J∗F (λ1, λ2) is defined to be the

analytic Wiener integral of F over B2 with parameter ~λ = (λ1, λ2), and

for ~λ ∈ Ω we write

(1.6)

∫ anw~λ

B2

F (x1, x2) d(ν × ν)(x1, x2) = J∗F (λ1, λ2).

Let q1 and q2 be nonzero real numbers and F be a functional on B2

such that
∫ anw~λ
B2 F (x1, x2) d(ν × ν)(x1, x2) exists for all ~λ ∈ Ω. If the

following limit exists, then we call it the analytic Feynman integral of F
over B2 with parameter ~q = (q1, q2) and we write
(1.7)∫ anf~q

B2

F (x1, x2) d(ν×ν)(x1, x2) = lim
~λ→−i~q

∫ anw~λ

B2

F (x1, x2) d(ν×ν)(x1, x2),

where ~λ = (λ1, λ2) approaches (−iq1,−iq2) through Ω.



Shifting and modulation for Fourier-Feynman transform 337

Let M(H) denote the space of complex-valued countably additive
Borel measures on H. Under the total variation norm ‖ · ‖ and with
convolution as multiplication, M(H) is a commutative Banach algebra
with identity [2].

Now we state a generalized Fresnel class FA1,A2 introduced by Kallian-
pur and Bromley [12]. Let A1 and A2 be bounded, non-negative self-
adjoint operators on H. Let FA1,A2 be the space of all s-equivalence
classes of functionals F on B2 which have the form

(1.8) F (x1, x2) =

∫
H

exp
{
i

2∑
j=1

(A
1/2
j h, xj)

∼
}
dσ(h)

for some complex-valued countably additive Borel measure σ on H.
As is customary, we will identify a functional with its s-equivalence

class and think of FA1,A2 as a collection of functionals on B2 rather than
as a collection of equivalence classes. Moreover the map σ 7→ [F ] defined
by (1.8) sets up an algebra isomorphism between M(H) and FA1,A2 if the
range of A1 + A2 is dense in H. In this case, FA1,A2 becomes a Banach
algebra under the norm ‖F‖ = ‖σ‖ [12].

Remark 1.1. Let F(B) denote the Fresnel class of functions F on B
of the form

(1.9) F (x) =

∫
H

exp{i(h, x)∼} dσ(h)

for some σ ∈ M(H). If A1 is the identity operator on H and A2 = 0,
then FA1,A2 is essentially the Fresnel class F(B).

The concept of L1 analytic Fourier-Feynman transform for functionals
on Wiener space was introduced by Brue in [3]. In [4], Cameron and
Storvick introduced L2 analytic Fourier-Feynman transform. In [10],
Johnson and Skoug developed Lp analytic Fourier-Feynman transform
for 1 ≤ p ≤ 2 that extended the results in [4].

In [8, 9], Huffman, Park and Skoug defined a convolution product
for functionals on Wiener space and showed that the Fourier-Feynman
transform of a convolution product is a product of Fourier-Feynman
transforms. Recently, Chang, Kim, Song and Yoo [7, 15, 17] extended
the above results for functionals on a product abstract Wiener space.

Also in [14], the author studied shifting, scaling, modulation and
variational properties for Fourier-Feynman transform of functionals on
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Wiener space. In this paper we extend the results in [14] for some func-
tionals on a product abstract Wiener space.

In this paper, we develop shifting, scaling and modulation properties
for the Fourier-Feynman transform of functionals in a generalized Fresnel
class FA1,A2 . Since the class FA1,A2 is a generalization of the Fresnel class
F(B) which is an abstract Wiener space version of the Banach algebras
S introduced by Cameron and Storvick [5], the results in Section 2 of [14]
can be obtained as corollaries of our results.

2. Shifting for the Fourier-Feynman transform

In this section we develop some of important properties relevant to
shifting (translating) and computational rules for Fourier-Feynman trans-
form of functionals in the generalized Fresnel class FA1,A2 . Let us begin
with the definition of Fourier-Feynman transform of functionals on a
product of abstract Wiener space.

Let 1 ≤ p <∞ and let ~q = (q1, q2), where q1 and q2 are nonzero real
numbers throughout this paper.

Definition 2.1. Let F be a functional on B2. For ~λ = (λ1, λ2) ∈ Ω
and (y1, y2) ∈ B2, let

(2.1) T~λ[F ](y1, y2) =

∫ anw~λ

B2

F (x1 + y1, x2 + y2) d(ν × ν)(x1, x2).

For 1 < p < ∞, we define the Lp analytic Fourier-Feynman transform

T
(p)
~q [F ] of F on B2 by the formula (~λ ∈ Ω)

(2.2) T
(p)
~q [F ](y1, y2) = l. i.m.

~λ→−i~q
T~λ[F ](y1, y2),

whenever this limit exists; that is, for each α > 0 and β > 0,

lim
~λ→−i~q

∫
B2

|T~λ[F ](αx1, βx2)− T (p)
~q [F ](αx1, βx2)|p

′
d(ν × ν)(x1, x2) = 0

where 1/p+1/p′ = 1. We define the L1 analytic Fourier-Feynman trans-

form T
(1)
~q [F ] of F by (~λ ∈ Ω)

(2.3) T
(1)
~q [F ](y1, y2) = lim

~λ→−i~q
T~λ[F ](y1, y2),

for s-a.e. (y1, y2) ∈ B2, whenever this limit exists [4, 7–10,15,17].
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Since T~λ is linear, obviously T
(p)
~q is also linear, that is,

(2.4) T
(p)
~q [aF + bG](y1, y2) = aT

(p)
~q [F ](y1, y2) + bT

(p)
~q [G](y1, y2)

for all constants a, b and functionals F,G on B2, whenever each trans-
forms exist.

By the definitions (1.7) of the analytic Feynman integral and the L1

analytic Fourier-Feynman transform (2.3), it is easy to see that

(2.5) T
(1)
~q [F ](y1, y2) =

∫ anf~q

B2

F (x1 + y1, x2 + y2) d(ν × ν)(x1, x2).

In particular, if F ∈ FA1,A2 , then F is analytic Feynman integrable and

(2.6) T
(1)
~q [F ](0, 0) =

∫ anf~q

B2

F (x1, x2) d(ν × ν)(x1, x2).

Now we will introduce a result by Chang, Kim and Yoo [7], on the
existence of Fourier-Feynman transform of functionals in FA1,A2 .

Theorem 2.2 (Theorem 3.1 of [7]). Let F ∈ FA1,A2 be given by (1.8).

Then the Fourier-Feynman transform T
(p)
~q [F ] exists, belongs to FA1,A2

and is given by
(2.7)

T
(p)
~q [F ](y1, y2) =

∫
H

exp
{
i

2∑
j=1

[
(A

1/2
j h, yj)

∼ − 1

2qj
|A1/2

j h|2
]}

dσ(h)

for s-a.e. (y1, y2) ∈ B2.

In the classical Fourier analysis, the Fourier transform F turns a
function f into a new function F [f ]. Because the transform is used in
signal analysis, we usually use t for time as the variable of the function
f , and ω as the variable of the transform F [f ], that is,

F [f ](ω) =

∫ ∞
−∞

f(t)e−iωt dt.

Engineers refer to the variable ω in the transformed function as the
frequency of the signal f [16].

We will use the same convention in this paper, that is, for a Fourier-

Feynman transform T
(p)
~q [F ](y1, y2) of F (x1, x2), we call the variable (x1, x2)

as a time and the variable (y1, y2) as a freqeuency.
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Our first result in this section shows that the time shifting of the
Fourier-Feynman transform is equal to the frequency shifting of the
Fourier-Feynman transform.

Theorem 2.3. Let F be a functional on B2 and let (w1, w2) ∈ B2.
Then we have

(2.8) T
(p)
~q [F (· − w1, · − w2)](y1, y2) = T

(p)
~q [F ](y1 − w1, y2 − w2)

if each sides exist.

Proof. For all λ1, λ2 > 0 and for s-a.e. (y1, y2) ∈ B2,

T~λ[F (· − w1, · − w2)](y1, y2)

=

∫
B2

F (λ
−1/2
1 x1 − w1 + y1, λ

−1/2
2 x2 − w2 + y2) d(ν × ν)(x1, x2)

= T~λ[F ](y1 − w1, y2 − w2)

if the abstract Wiener integral exists. Extending analytically each sides

and taking limits as ~λ→ −i~q, we have the result.

In the Fourier analysis, if we shift time back t0, then the Fourier
transform of this shifted function is the transform of f(t) multiplied by
the exponential factor e−iωt0 [16], that is,

F [f(t− t0)](ω) = e−iωt0F [f(t)](ω).

The following theorem is reminiscent of the time shifting theorem
for the Fourier transform. Hence we call the following theorem as time
shifting formula for Fourier-Feynman transform on a product abstract
Wiener space. It says that if we shift back (w1, w2) and replace F (x1, x2)
by F (x1 −w1, x2 −w2), then Fourier-Feynman transform of this shifted
function is equal to the Fourier-Feynman transform of

F (x1, x2) exp
{
i

2∑
j=1

qj(wj, xj)
∼
}

multiplied by an exponential factor.
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Theorem 2.4 (time shifting). Let F ∈ FA1,A2 be given by (1.8) and
let (w1, w2) ∈ H2. Then we have

T
(p)
~q [F (· − w1, · − w2)](y1, y2)

= exp
{
−i

2∑
j=1

[
qj(wj, yj)

∼ − qj
2
|wj|2

]}
T

(p)
~q

[
F (·, ·) exp

{
i

2∑
j=1

qj(wj, ·)∼
}]

(y1, y2)

(2.9)

for s-a.e. (y1, y2) ∈ B2.

Proof. Let

G(x1, x2) = F (x1, x2) exp
{
i

2∑
j=1

qj(wj, xj)
∼
}
.

Using (1.8) we write G(x1, x2) as

G(x1, x2) =

∫
H

exp
{
i

2∑
j=1

(A
1/2
j h+ qjwj, xj)

∼
}
dσ(h).

For all λ1 > 0, λ2 > 0 and s-a.e. (y1, y2) ∈ B2,

T~λ[G](y1, y2) =

∫
B2

G(λ
−1/2
1 x1 + y1, λ

−1/2
2 x2 + y2) d(ν × ν)(x1, x2)

=

∫
B2

∫
H

exp
{
i

2∑
j=1

(A
1/2
j h+ qjwj, λ

−1/2
j xj + yj)

∼
}

dσ(h) d(ν × ν)(x1, x2).

Using the Fubini theorem and (1.2), we obtain

T~λ[G](y1, y2) =

∫
H

exp
{ 2∑
j=1

[
i(A

1/2
j h+ qjwj, yj)

∼

− 1

2λj
|A1/2

j h+ qjwj|2
]}

dσ(h).
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Extending analytically and using the dominated convergence theorem,
we obtain

T
(p)
~q [G](y1, y2) =

∫
H

exp
{
i

2∑
j=1

[
(A

1/2
j h+ qjwj, yj)

∼

− 1

2qj
|A1/2

j h+ qjwj|2
]}

dσ(h)

= exp
{
i

2∑
j=1

[
qj(wj, yj)

∼ − qj
2
|wj|2

]}
∫
H

exp
{
i

2∑
j=1

[
(A

1/2
j h, yj)

∼ − 〈A1/2
j h,wj〉

− 1

2qj
|A1/2

j h|2
]}

dσ(h).

But since A
1/2
j h ∈ H and wj ∈ H, we know that the inner product

〈A1/2
j h,wj〉 is equal to the stochastic inner product (A

1/2
j h,wj)

∼ and so

by (2.7) we see that the last integral is equal to T
(p)
~q [F ](y1−w1, y2−w2).

Finally by (2.8) the proof is completed.

Cameron and Storvick [6] presented a new translation theorem for
the analytic Feynman integral on Wiener space. Moreover Ahn, Chang,
Kim and Yoo [1] gave a simple proof of an abstract Wiener space version
of the translation theorem. Taking p = 1 and y1 = y2 = 0 in (2.9) and
considering (2.6) we obtain Cameron and Storvick’s translation theorem
as follows. Hence Theorem 2.4 above can be viewed as a generalized
Cameron and Storvick’s translation theorem for the Fourier-Feynman
transform for functionals in FA1,A2 .

Corollary 2.5. Let F ∈ FA1,A2 be given by (1.8) and let (w1, w2) ∈
H2. Then we have∫ anf~q

B2

F (x1 − w1, x2 − w2) d(ν × ν)(x1, x2)

= exp
{
i

2∑
j=1

qj
2
|wj|2

}∫ anf~q

B2

F (x1, x2) exp
{
i

2∑
j=1

qj(wj, xj)
∼
}

d(ν × ν)(x1, x2).

(2.10)
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The Fourier transform of eiω0tf(t) is nothing more than the Fourier
transform of f(t) shifted ω0 units to the right [16], that is,

F [f(t)](ω − ω0) = F [eiω0tf(t)](ω).

Next thoerem is reminiscent of the frequency shifting theorem for the
Fourier transform. Using Theorem 2.3 we have the following property
for the frequency shifting of the Fourier-Feynman transform.

Theorem 2.6 (frequency shifting). Let F ∈ FA1,A2 be given by (1.8)
and let (w1, w2) ∈ H2. Then we have

T
(p)
~q [F ](y1 − w1, y2 − w2) = exp

{
−i

2∑
j=1

[
qj(wj, yj)

∼ − qj
2
|wj|2

]}
T

(p)
~q

[
F (·, ·) exp

{
i

2∑
j=1

qj(wj, ·)∼
}]

(y1, y2)

(2.11)

for s-a.e. (y1, y2) ∈ B2.

3. Scaling and modulation for the Fourier-Feynman trans-
form

In this section we study scaling and modulation properties for the
Fourier-Feynman transform.

The following theorem is called a scaling theorem because we want
the transform not of F (x1, x2), but of F (a1x1, a2x2), in which a1 and a2
can be thought as scaling factors.

Theorem 3.1 (scaling). Let F ∈ FA1,A2 be given by (1.8) and let a1
and a2 be nonzero real numbers. Then we have

(3.1) T
(p)
~q [F (a1·, a2·)](y1, y2) = T

(p)

(q1/a21,q2/a
2
2)

[F ](a1y1, a2y2)

for s-a.e. (y1, y2) ∈ B2.

Proof. For all λ1 > 0, λ2 > 0 and s-a.e. (y1, y2) ∈ B2,

T~λ[F (a1·, a2·)](y1, y2) =

∫
B2

F (a1(λ
−1/2
1 x1 + y1), a2(λ

−1/2
2 x2 + y2))

d(ν × ν)(x1, x2)
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Using the expression (1.8), Fubini theorem and (1.2), we have

T~λ[F (a1·, a2·)](y1, y2)

=

∫
B2

∫
H

exp
{
i

2∑
j=1

(A
1/2
j h+ aj(λ

−1/2
j xj + yj))

∼
}
dσ(h) d(ν × ν(x1, x2)

=

∫
H

exp
{ 2∑
j=1

[
i(A

1/2
j h, ajyj)

∼ −
a2j
2λj
|A1/2

j h|2
]}

dσ(h).

Extending analytically and using the dominated convergence theorem,
we obtain

T
(p)
~q [F (a1·, a2·)](y1, y2)

=

∫
H

exp
{
i

2∑
j=1

[
(A

1/2
j h, ajyj)

∼ −
a2j
2qj
|A1/2

j h|2
]}

dσ(h).

Finally by (2.7) we see that the last expression is equal to the right hand
side of (3.1) which completes the proof.

Next corollary follows immediately from the scaling theorem above
by putting a1 = a2 = −1. This result is called time reversal because
we replace (x1, x2) by (−x1,−x2) in F (x1, x2) to get F (−x1,−x2). The
transform of this new functional is obtained by simply replacing (y1, y2)
by (−y1,−y2) in the transform of F (x1, x2).

Corollary 3.2 (time reversal). Let F ∈ FA1,A2 be given by (1.8).
Then we have

(3.2) T
(p)
~q [F (−·,−·)](y1, y2) = T

(p)
~q [F ](−y1,−y2)

for s-a.e. (y1, y2) ∈ B2.

Our next theorem is useful to obtain Fourier-Feynman transforms of
new functionals from the Fourier-Feynman transforms of old functionals
which we know their Fourier-Feynman transforms.

Theorem 3.3 (modulation). Let F ∈ FA1,A2 be given by (1.8) and
let (w1, w2) ∈ H2. Then we have
(3.3)

T
(p)
~q

[
F (·, ·) cos

( 2∑
j=1

qj(wj, ·)∼
)]

(y1, y2) =
1

2
(K(w1, w2) +K(−w1,−w2))
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and
(3.4)

T
(p)
~q

[
F (·, ·) sin

( 2∑
j=1

qj(wj, ·)∼
)]

(y1, y2) =
1

2i
(K(w1, w2)−K(−w1,−w2)),

where

K(w1, w2) = exp
{
i

2∑
j=1

[
qj(wj, yj)

∼ − qj
2
|wj|2

]}
T

(p)
~q [F (· − w1, · − w2)](y1, y2)

(3.5)

for s-a.e. (y1, y2) ∈ B2.

Proof. Using the identity cos θ = 1
2
(eiθ + e−iθ) and the linearity (2.4)

of the Fourier-Feynman transform T
(p)
~q , we get

T
(p)
~q

[
F (·, ·) cos

( 2∑
j=1

qj(wj, ·)∼
)]

(y1, y2)

=
1

2

(
T

(p)
~q

[
F (·, ·) exp

{
i

2∑
j=1

qj(wj, ·)∼
}]

(y1, y2)

+ T
(p)
~q

[
F (·, ·) exp

{
−i

2∑
j=1

qj(wj, ·)∼
}]

(y1, y2)
)
.

Now by the time shifting theorem or frequency shifting theorem we ob-
tain (3.3). Using the identity sin θ = 1

2i
(eiθ− e−iθ) the second conclusion

is proved similarly.

Since the Dirac measure concentrated at h = 0 in H is a complex
Borel measure, the constant function F ≡ 1 belongs to FA1,A2 . Hence
we have the following corollary.

Corollary 3.4. Let (w1, w2) ∈ B2. Then we have

T
(p)
~q

[
cos
( 2∑
j=1

qj(wj, ·)∼
)]

(y1, y2)

= cos
( 2∑
j=1

qj(wj, yj)
∼
)

exp
{
− i

2

2∑
j=1

qj|wj|2
}(3.6)
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and

T
(p)
~q

[
sin
( 2∑
j=1

qj(wj, ·)∼
)]

(y1, y2)

= sin
( 2∑
j=1

qj(wj, yj)
∼
)

exp
{
− i

2

2∑
j=1

qj|wj|2
}(3.7)

for s-a.e. (y1, y2) ∈ B2.

Proof. Since

T
(p)
~q [F (· − w1, · − w2)](y1, y2) = T

(p)
~q [F ](y1 − w1, y2 − w2) = 1

for F ≡ 1, by the modulation property Theorem 3.3 and Euler’s formula,
the results follow immediately.
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[14] B.S. Kim, Shifting and variational properties for Fourier-Feynman transform
and convolution, J. Funct. Space. 2015 (2015), 1–9.

[15] B.S. Kim, T.S. Song and I. Yoo, Analytic Fourier-Feynman transform and con-
volution of functionals in a generalized Fresnel class, J. Chungcheong Math. Soc.
22 (2009), 481–495.

[16] P.V. O’Neil, Advanced engineering mathematics, 5th ed. Thomson (2003).
[17] I. Yoo and B.S. Kim, Fourier-Feynman transforms for functionals in a general-

ized Fresnel class, Commun. Korean. Math. Soc. 22 (2007), 75–90.

Byoung Soo Kim
School of Liberal Arts
Seoul National University of Science and Technology
Seoul 01811, Korea
E-mail : mathkbs@seoultech.ac.kr


	1. Introduction
	2. Shifting for the Fourier-Feynman transform
	3. Scaling and modulation for the Fourier-Feynman transform
	References

