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SHIFTING AND MODULATION FOR
FOURIER-FEYNMAN TRANSFORM OF FUNCTIONALS
IN A GENERALIZED FRESNEL CLASS

Byoung Soo Kim

ABSTRACT. Time shifting and frequency shifting proprerties for the
Fourier-Feynman transform of functionals in a generalized Fresnel
class Fa, 4, are given. We discuss scaling and modulation propre-
rties for the Fourier-Feynman transform. These properties help us
to obtain Fourier-Feynman transforms of new functionals from the
Fourier-Feynman transforms of old functionals which we know their
Fourier-Feynman transforms.

1. Introduction

Let (H, B,v) be an abstract Wiener space and let {e;} be a complete
orthonormal system in H such that the e;’s are in B*, the dual of B.
For each h € H and = € B, we define a stochastic inner product (h,z)™
as follows:

lim " h,€< x,€;), if the limit exists
(11) (h,l’)N = n—>ooJ2< J>( ])

0, otherwise,
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where (-, -) denotes the natural dual pairing between B and B*. It is well
known [12,13] that for each h(# 0) in H, (h,-)~ is a Gaussian random
variable on B with mean zero and variance |h|?, that is,

(1.2) /Bexp{z'(h,x)w} dv(z) = exp{—%|h|2}.

A subset E of a product abstract Wiener space B? is said to be
scale-invariant measurable provided {(ax1, fz3) : (z1,22) € E} is ab-
stract Wiener measurable for every a > 0 and § > 0, and a scale-
invariant measurable set N is said to be scale-invariant null provided
(v x v)({(axy, Bxs) : (x1,29) € N}) =0 for every a > 0 and 5 > 0. A
property that holds except on a scale-invariant null set is said to hold
scale-invariant almost everywhere (s-a.e.) [11].

Let C denote the set of complex numbers and let

(1.3) Q={X=(A,X) €C?:Re), >0 for k=1,2}
and
(14)  Q={X=(\,\) €C?: A\ #0,Re), >0 for k =1,2}.

Let F be a complex-valued function on B? such that the integral

(1.5) JF()\l,)\g):/ FOY 220, 052 25) d(v x v) (21, 22)

B2
exists as a finite number for all real numbers A\ > 0 and Ay > 0. If
there exists a function Jj (A1, A2) analytic on Q such that Jj(Ay, A2) =
Jr(A1, A2) for all Ay > 0 and Ay > 0, then J5 (A1, \2) is defined to be the
analytic Wiener integral of F over B2 with parameter X = (A1, A2), and
for X € Q we write

anwx

(16) / F(ZL’l, 5(72) d(l/ X V)(l'l,ZL'Q) = J;;(/\l, /\2)
BQ

Let ¢; and ¢» be nonzero real numbers and F be a functional on B2

such that [, * F(z1,22) d(v x v)(z1,22) exists for all X € Q. If the

following limit exists, then we call it the analytic Feynman integral of F'

over B? with parameter ¢ = (q1, ¢2) and we write

(1.7)
anfg anw v
/ F(x1,2) d(v xv)(xq,22) = lim XF(gvl,:)cg)cl(u><u)(3cl,x2),
B? A——iq J B2

where X = (A1, Ag) approaches (—ig1, —igz) through €.
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Let M(H) denote the space of complex-valued countably additive
Borel measures on H. Under the total variation norm || - || and with
convolution as multiplication, M (H) is a commutative Banach algebra
with identity [2].

Now we state a generalized Fresnel class F4, 4, introduced by Kallian-
pur and Bromley [12]. Let A; and Ay be bounded, non-negative self-
adjoint operators on H. Let Fy4, 4, be the space of all s-equivalence
classes of functionals F' on B? which have the form

(1.8) F(xl,QJQ):/Hexp{z’i:(A;/Qh,xj)N}da(h)

j=1

for some complex-valued countably additive Borel measure o on H.

As is customary, we will identify a functional with its s-equivalence
class and think of F4, 4, as a collection of functionals on B? rather than
as a collection of equivalence classes. Moreover the map o — [F] defined
by (1.8) sets up an algebra isomorphism between M (H) and Fy, 4, if the
range of A; + A, is dense in H. In this case, F4, 4, becomes a Banach
algebra under the norm [|F|| = ||o]| [12].

REMARK 1.1. Let F(B) denote the Fresnel class of functions F on B
of the form

(1.9) F(z) = /Hexp{i(h,x)N}da(h)

for some o € M(H). If A; is the identity operator on H and As = 0,
then Fa, 4, is essentially the Fresnel class F(B).

The concept of Ly analytic Fourier-Feynman transform for functionals
on Wiener space was introduced by Brue in [3]. In [4], Cameron and
Storvick introduced Lo analytic Fourier-Feynman transform. In [10],
Johnson and Skoug developed L, analytic Fourier-Feynman transform
for 1 < p < 2 that extended the results in [4].

In [8,9], Huffman, Park and Skoug defined a convolution product
for functionals on Wiener space and showed that the Fourier-Feynman
transform of a convolution product is a product of Fourier-Feynman
transforms. Recently, Chang, Kim, Song and Yoo [7,15,17] extended
the above results for functionals on a product abstract Wiener space.

Also in [14], the author studied shifting, scaling, modulation and
variational properties for Fourier-Feynman transform of functionals on
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Wiener space. In this paper we extend the results in [14] for some func-
tionals on a product abstract Wiener space.

In this paper, we develop shifting, scaling and modulation properties
for the Fourier-Feynman transform of functionals in a generalized Fresnel
class Fa, 4,. Since the class Fa, 4, is a generalization of the Fresnel class
F(B) which is an abstract Wiener space version of the Banach algebras
S introduced by Cameron and Storvick [5], the results in Section 2 of [14]
can be obtained as corollaries of our results.

2. Shifting for the Fourier-Feynman transform

In this section we develop some of important properties relevant to
shifting (translating) and computational rules for Fourier-Feynman trans-
form of functionals in the generalized Fresnel class Fy, 4,. Let us begin
with the definition of Fourier-Feynman transform of functionals on a
product of abstract Wiener space.

Let 1 < p < oo and let ¢ = (¢, q2), where ¢; and g» are nonzero real
numbers throughout this paper.

DEFINITION 2.1. Let F be a functional on B2. For X = (A, \y) € Q
and (y1,y2) € B2, let

anwx

(2.1) T Fl(y1, y2) = / F(zy +y1, 20+ y2) d(v X v)(x1, 2).

B2
For 1 < p < oo, we define the L, analytic Fourier-Feynman transform
TWIF] of F on B? by the formula (X € Q)

q
(22) TP FI s p2) = Li o T[F) (g, o),
A——id
whenever this limit exists; that is, for each o > 0 and 8 > 0,
Jim [ |T5[F)(a@y, Ban) — T [Fl(awy, Bao) [P d(v x v)(x1,22) = 0
A——iq J B2
where 1/p+1/p’ = 1. We define the L; analytic Fourier-Feynman trans-
form TqEI)[F] of F'by (A€ Q)

(2.3) Tq('l)[F] (y1,92) = lim T5[F](y1, y2),

A——id

for s-a.e. (y1,y2) € B?, whenever this limit exists [4,7-10,15,17].
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)

Since T is linear, obviously T qu is also linear, that is,

(24)  TP[aF +bG)(y1, y2) = oI [F)(y1, yo) + VI [G) (w1, )

for all constants a,b and functionals F, G on B?, whenever each trans-
forms exist.

By the definitions (1.7) of the analytic Feynman integral and the L,
analytic Fourier-Feynman transform (2.3), it is easy to see that

anfq‘
(25)  TV[F)(yr o) = / F(zy + y1, 2 + yo) d(v x v)(z1, 22).
B2
In particular, if F' € Fa, a,, then F' is analytic Feynman integrable and
anf
(2.6) T [F)(0,0) = /B PG m) dw x ) w)

Now we will introduce a result by Chang, Kim and Yoo [7], on the
existence of Fourier-Feynman transform of functionals in Fa, 4,.

THEOREM 2.2 (Theorem 3.1 of [7]). Let F' € Fa, a, be given by (1.8).
Then the Fourier-Feynman transform T, qu )[F) exists, belongs to F. A1, Ag
and is given by
(2.7)

DIF) (g1, ) = /HeXp{iZ[(A;mh,yj)N - QquMJl'/Qhﬂ } do(h)

7j=1
for s-a.e. (y1,y2) € B2

In the classical Fourier analysis, the Fourier transform F turns a
function f into a new function F[f]. Because the transform is used in
signal analysis, we usually use ¢ for time as the variable of the function
f, and w as the variable of the transform F[f], that is,

Flf)w) = / e,

Engineers refer to the variable w in the transformed function as the
frequency of the signal f [16].

We will use the same convention in this paper, that is, for a Fourier-
Feynman transform Tqﬁp) [F](y1,y2) of F(z1,x5), we call the variable (z1, x2)
as a time and the variable (y;,y2) as a freqeuency.
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Our first result in this section shows that the time shifting of the
Fourier-Feynman transform is equal to the frequency shifting of the
Fourier-Feynman transform.

THEOREM 2.3. Let F' be a functional on B? and let (w;,w,) € B?.
Then we have

(28) TP —wi = w2l y2) = T Fln — wrp — w2)
if each sides exist.
Proof. For all A\, Ay > 0 and for s-a.e. (y;,42) € B?,
T3 F(- = w1, - — w2)](y1, 2)
= /32 F(/\l_1/2x1 —wy + Y1, /\2_1/2x2 —wy +y2)d(v X v)(z1, x2)
= T5[Fl(y1 — w1, y2 — ws)

if the abstract Wiener integral exists. Extending analytically each sides
and taking limits as A\ — —iq, we have the result. O

In the Fourier analysis, if we shift time back ty, then the Fourier
transform of this shifted function is the transform of f(¢) multiplied by
the exponential factor e~ [16], that is,

FLf(t —to)l(w) = e " F[f ()] (w).

The following theorem is reminiscent of the time shifting theorem
for the Fourier transform. Hence we call the following theorem as time
shifting formula for Fourier-Feynman transform on a product abstract
Wiener space. It says that if we shift back (wy,ws) and replace F'(xy, z3)
by F(z1 — wy, 3 — ws), then Fourier-Feynman transform of this shifted
function is equal to the Fourier-Feynman transform of

F(z1,x9) exp{i 22: q;(wj, xj)w}

J=1

multiplied by an exponential factor.
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THEOREM 2.4 (time shifting). Let F' € Fyu, a, be given by (1.8) and
let (w1, wy) € H?. Then we have

Tq(‘p) [F( — Wy, — U)2>](y17 y2)
2

= exp{—i Z [Qj(wjv vi)™ — %|wj|2] }

j=1

Ty [F(-, ) eXP{’i i g (w;, ')N}] (Y1, 92)

(2.9)

for s-a.e. (y1,y2) € B2

Proof. Let

G(z1,x9) = F(x1, 22) exp{i i q;(wj, xj)N}.

j
Using (1.8) we write G (1, x2) as

2

G(xl,xg):Lexp{iZ(A;/2h+quj,mj)N}da(h).

=1
For all A; > 0, Ay > 0 and s-a.e. (y1,y2) € B,
—1/2 —1/2
TG (1, y2) = / G\, Ty, Ay Txe +yp) d(v X v) (0, 22)

B
2

y 1/2 _1/9 N
:/Q/HGXP{ZZ(AJ/ h+ qjw;, A, /%’j+yj) }

B i
do(h)d(v x v)(z1,x9).
Using the Fubini theorem and (1.2), we obtain

2
T5Gl(y1, v2) Z/eXP{Z[Z’(A;/QthqJ‘wj,yj)N
H

j=1

1
— S 1A b+ gl | do(h).
J
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Extending analytically and using the dominated convergence theorem,
we obtain

2
TGy, ) = /exp{ZZ[ AJh + ;)

Jj=1

— T\A}/Qh + quj|2] } do(h)

2
q.
:exp{zZ[qj w;,y;)~ §]|wj|2}}

Jj=1

/HeXp{iZQ:[(Al/Qh i)~ — <A1/2h w;)

7=1
1
- 2—q|A}/2h|2] } do(h).
J

But since Ajl-/ ’h € H and w; € H, we know that the inner product
<A;/2h, w;) is equal to the stochastic inner product (A}ﬂh, w;)~ and so
by (2.7) we see that the last integral is equal to qup) [F(y1 — w1, Yo —w2).
Finally by (2.8) the proof is completed. O

Cameron and Storvick [6] presented a new translation theorem for
the analytic Feynman integral on Wiener space. Moreover Ahn, Chang,
Kim and Yoo [1] gave a simple proof of an abstract Wiener space version
of the translation theorem. Taking p =1 and y; = yo = 0 in (2.9) and
considering (2.6) we obtain Cameron and Storvick’s translation theorem
as follows. Hence Theorem 2.4 above can be viewed as a generalized
Cameron and Storvick’s translation theorem for the Fourier-Feynman
transform for functionals in Fa, 4,.

2COROLLARY 2.5. Let F' € Fu, a, be given by (1.8) and let (wy,ws) €
H?. Then we have

anfz
/ F(z1 —wy, g — wy) d(v X v)(x1, x2)

B2
2 anfz 2
(2.10) NGy e / g : N
— L F (w1
exp{z; 2|w]|} . (xl,xg)exp{z;q](wj,x]) }
d(v X v)(x1, x2).
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The Fourier transform of e™°!f(¢) is nothing more than the Fourier
transform of f(¢) shifted wy units to the right [16], that is,

FLAOw = wo) = Fle™ f(1)](w).

Next thoerem is reminiscent of the frequency shifting theorem for the
Fourier transform. Using Theorem 2.3 we have the following property
for the frequency shifting of the Fourier-Feynman transform.

THEOREM 2.6 (frequency shifting). Let F' € F4, a, be given by (1.8)
and let (w1, we) € H?. Then we have

(2.11)
TP F)(yn — w1,y — ws) = eXP{—i Z_: [qj(wja yi)" — %’W!Z] }
TP >exp{iiqj<wj, " Homw)

for s-a.e. (y1,y2) € B>

3. Scaling and modulation for the Fourier-Feynman trans-
form

In this section we study scaling and modulation properties for the
Fourier-Feynman transform.

The following theorem is called a scaling theorem because we want
the transform not of F'(z1,xs), but of F(aixy, asxs), in which a; and as
can be thought as scaling factors.

THEOREM 3.1 (scaling). Let F' € Fy4, a, be given by (1.8) and let a;
and ay be nonzero real numbers. Then we have

(3.1) qgm [F(a1-, a2-)](y1,2) = T&)/am/a%) [F](a1y1, asy2)
for s-a.e. (y1,y2) € B2
Proof. For all A\; > 0,y > 0 and s-a.e. (y1,%2) € B,

Ti[F(ay, a2-)|(y1, y2) = / Flay(\ 2y + 01), aa (05 s + o))
BQ

d(v x v)(z1,x9)
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Using the expression (1.8), Fubini theorem and (1.2), we have
Tx[F(Gn a2')](y1> yz)

2
_ /B /Hexp{z'Z(A}/Qh a0 20y 4 4) " do(h) d( x v, )
j=1
2

2
_ /H exp{ 3O[i(A}2h, azy,)” - ;—;ij;ﬂhﬂ b do(h).

J=1

Extending analytically and using the dominated convergence theorem,
we obtain

Tg(,p) [F(ar+, az2)](y1, y2)

2 2
_ /Hexp{i;[(A;/Qh, a;y;)~ — ;—éjm}/%ﬂ } do(h).

Finally by (2.7) we see that the last expression is equal to the right hand
side of (3.1) which completes the proof. O

Next corollary follows immediately from the scaling theorem above
by putting a; = as = —1. This result is called time reversal because
we replace (x1,z3) by (=1, —x2) in F(xq,22) to get F(—z1, —xs). The
transform of this new functional is obtained by simply replacing (y1, y2)
by (—y1, —y2) in the transform of F'(z1,xs).

COROLLARY 3.2 (time reversal). Let F' € Fa, a, be given by (1.8).
Then we have

(3:2) TP (= =), 92) = TP [Fl(=v1, ~2)
for s-a.e. (y1,y2) € B>

Our next theorem is useful to obtain Fourier-Feynman transforms of
new functionals from the Fourier-Feynman transforms of old functionals
which we know their Fourier-Feynman transforms.

THEOREM 3.3 (modulation). Let F' € Fy4, 4, be given by (1.8) and
let (wy,wq) € H?. Then we have
(3.3)

Tqﬁp) [F(, ) cos(i q;(wy, )Nﬂ (y1,92) = %(K(wl,wz) + K(—wy, —wy))
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and
(3.4)

2
. N 1
T(;p) [F(, ) sm(Z q;(wj, -) )] (Y1,92) = 2Z(K(w1,w2) K(—wy, —ws)),
=1
where
2 ”
(35) K(w17w2 = eXp{ZZ[QJ w]7y] Ej’wjp]}
7j=1
qup) [F(- —wi, - — w2)|(y1, y2)
for s-a.e. (y1,y2) € B

Proof. Using the identity cos# = 3(e” + e~*) and the linearity (2.4)

of the Fourier-Feynman transform Tqﬁp )

Tqﬁp) [F(, ) cos(i q;(wj, )N>] (y1,Y2)
- %(qup) [F(7 ) exp{i Zi: q;(wy, )N}] (Y1, 92)
+ Tqﬁp) [F(, ) exp{—i i q;(wj, )N}] (Y1, 3/2))

Now by the time shifting theorem or frequency shifting theorem we ob-
tain (3.3). Using the identity sinf = (" — ™) the second conclusion
is proved similarly. O]

, we get

Since the Dirac measure concentrated at h = 0 in H is a complex
Borel measure, the constant function F' = 1 belongs to Fa, 4,. Hence
we have the following corollary.

COROLLARY 3.4. Let (wy,ws) € B*. Then we have

2 [cos(i q;(wy, )Nﬂ (Y1, 12)
i(wj,y5) > eXp{—% zi: qjle\z}

(3.6)

Il /ﬁw
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and

2

Tqﬁp) [sin (Z q;(wy, )N>] (Y1, 92)

i—1

(3.7) ) ’ .2
_ N 1
= sm(Z qj(wj,yj) ) eXP{_é qu'|wj|2}
j=1 J=1

for s-a.e. (y1,1y2) € B2

for

Proof. Since
TPF( —wi = wo)l(y1,92) = T [Flyn —wi, 0 —w) = 1
F' =1, by the modulation property Theorem 3.3 and Euler’s formula,

the results follow immediately. O]

1]
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