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GENERAL NONCONVEX SPLIT VARIATIONAL

INEQUALITY PROBLEMS

Jong Kyu Kim, Salahuddin, and Won Hee Lim∗

Abstract. In this paper, we established a general nonconvex split
variational inequality problem, this is, an extension of general convex
split variational inequality problems in two different Hilbert spaces.
By using the concepts of prox-regularity, we proved the convergence
of the iterative schemes for the general nonconvex split variational
inequality problems. Further, we also discussed the iterative method
for the general convex split variational inequality problems.

1. Introduction

Let H1 and H2 be two real Hilbert spaces with inner product and
norm denoted by 〈·, ·〉 and ‖ · ‖, respectively. Let C and Q be nonempty
closed convex subsets of H1 and H2, respectively. For i ∈ {1, 2}, let fi :
Hi −→ Hi and gi : Hi −→ Hi be nonlinear mappings and A : H1 −→ H2

be a bounded linear operator with its adjoint operator A∗. Consider a
problem for finding x∗ ∈ H1 such that g1(x

∗) ∈ C and

(1.1) 〈f1(x∗), x− g1(x∗)〉 ≥ 0, ∀x ∈ C,
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and y∗ = Ax∗ ∈ H2 such that g2(y
∗) ∈ Q solves

(1.2) 〈f2(y∗), y − g2(y∗)〉 ≥ 0, ∀y ∈ Q.
The problem (1.1)-(1.2) are called general convex split variational in-
equality problems. The split convex variational inequality problem is
introduced and studied by Censor et al. [6–8]. It is worth mentioning
that split convex variational inequality problem is quite general and per-
mits split minimization between two spaces, so the image of a minimizer
of a given function, under a bounded linear operator, is a minimizer of
another function.
The general convex split variational inequality problems (1.1)-(1.2), to
take into account of non convexity of subsets C and Q. This new non-
convex problem is called general nonconvex split variational inequality
problems.
Poliquin and Rockafellor [17] and Clarke et al. [10] have introduced and
studied a class of nonconvex sets which are called uniformly prox-regular
sets. This class of uniformly prox-regular sets has played an important
role in many nonconvex applications such as optimization, dynamic sys-
tems and differential inclusions.
Inspired by the recent works going in this fields [1–5,9,12,13,16,21,22], we
established the general nonconvex split variational inequality problems.
By using the concepts of prox-regularity, we proved the convergence of
an iterative schemes for the general nonconvex split variational inequal-
ity problems. Further we also discussed the convergence of an iterative
schemes for the general convex split variational inequality problems.

Let C be a nonempty closed subsets of a Hilbert space H, not neces-
sarily convex. Then we have the following:

Definition 1.1. The proximal normal cone of C at a point x ∈ H is
given by

NP
C (x) = {ζ ∈ H : x ∈ PC(x+ αζ)},

where α > 0 is a constant and PC is projection of operator of H onto C,
that is

PC(x) = {x∗ ∈ C : dC(x) = ‖x− x∗‖},
where dC(x) or d(·, C) is the usual distance function to the subset of C,
that is

dC(x) = inf
x̂∈C
‖x̂− x‖.
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Lemma 1.2. [10] Let C be a nonempty closed subset in H. Then
ζ ∈ NP

C (x) if and only if there exists a constant α = α(ζ, x) > 0 such
that

〈ζ, x̂− x〉 ≤ α‖x̂− x‖2, ∀x̂ ∈ C.

Definition 1.3. [19] The Clarke normal cone denoted by

N cl
C (x) = c̄o[NP

C (x)],

where c̄oA means the closure of the convex hull of A.

Lemma 1.4. [10] Let C be a nonempty closed convex subset in H.
Then ζ ∈ NP

C (x) if and only if

〈ζ, x̂− x〉 ≤ 0, ∀x̂ ∈ C.

Definition 1.5. For any r ∈ (0,+∞], a subset Cr of H is called the
normalized uniformly prox-regular (or uniformly r-prox-regular) if and
only if every nonzero proximal normal to Cr can be realized by an r-ball
that is, for all x ∈ Cr and 0 6= ζ ∈ NP

Cr(x) with ‖ζ‖ = 1, one has

〈 ζ
‖ζ‖

, x̂− x〉 ≤ 1

2r
‖x̂− x‖2, ∀x̂ ∈ Cr.

It is known that if Cr is a uniformly r-prox-regular set, the proximal
normal cone NP

Cr(x) is closed as a set valued mapping. Thus, we have
N cl
Cr(x) = NP

Cr(x). We make the conversion 1
r

= 0 for r −→ +∞. If
r = +∞ then uniformly r-prox-regularity of Cr reduces to its convexity,
see, [11, 14,20].

Lemma 1.6. [11] A closed set C ⊆ H is convex if and only if it is
proximally smooth of radius r for every r > 0.

Proposition 1.7. [18] For each r > 0 and let Cr be a nonempty
closed and uniformly r-prox-regular subset of H. Set

U(r) = {x ∈ H : 0 ≤ dCr(x) < r}.
Then the following statements are hold:

(a) for all x ∈ U(r), PCr(x) 6= ∅;
(b) for all r′ ∈ (0, r), PCr is Lipschitz continuous mapping with con-

stant r
r−r′ on

U(r′) = {x ∈ H : 0 ≤ dCr(x) < r′};
(c) the proximal normal cone is closed as a set valued mapping.
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Lemma 1.8. [15]

(i) ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉, ∀x, y ∈ H
(ii) ‖(1− t)x+ ty‖2 = (1− t)‖x‖2 + t‖y‖2− (1− t)t‖x−y‖2, ∀x, y ∈ H

and for any fixed t ∈ [0, 1].

2. General nonconvex split variational inequality problems

Throughout this paper, we assume that for given r, s ∈ (0,+∞), Cr, Qs
are uniformly prox regular subsets of H1 and H2, respectively. For each
i = {1, 2}, let fi : Hi −→ Hi and gi : Hi −→ Hi be nonlinear mappings
and A : H1 −→ H2 be a bounded linear operator with its adjoint oper-
ator A∗. The general nonconvex split variational inequality problems is
formulated as follows: find x∗ ∈ H1, g1(x

∗) ∈ Cr such that

(2.1) 〈f1(x∗), x− g1(x∗)〉+ (
‖f1(x∗)‖

2r
)‖x− g1(x∗)‖2 ≥ 0, ∀x ∈ Cr,

and y∗ = Ax∗ ∈ H2 such that g2(y
∗) ∈ Qs solves

(2.2) 〈f2(y∗), y − g2(y∗)〉+ (
‖f2(y∗)‖

2s
)‖y − g2(y∗)‖2 ≥ 0, ∀y ∈ Qs.

By making use of Definition 1.5 and Lemma 1.2, the general noncon-
vex split variational inequality problems can be reformulated as follows:
finding (x∗, y∗) ∈ Cr × Qs with y∗ = Ax∗, g1(x

∗) ∈ Cr, g2(y∗) ∈ Qs such
that

0 ∈ ρf1(x∗) +NP
Cr(g1(x

∗)),

0 ∈ λf2(y∗) +NP
Qs

(g2(y
∗))(2.3)

where ρ and λ are parameters with positive values and 0 denotes the
zero vector of H1 and H2, respectively. Since PCr = (I + NP

Cr)
−1 and

PQs = (I + NP
Qs

)−1 are equivalent to finding (x∗, y∗) ∈ Cr × Qs with
y∗ = Ax∗ such that g1(x

∗) ∈ Cr, g2(y∗) ∈ Qs such that

g1(x
∗) = PCr(g1(x

∗)− ρf1(x∗)),
g2(y

∗) = PQs(g2(y
∗)− λf2(y∗))(2.4)

where 0 < ρ < r
1+‖f1(x∗)‖ , 0 < λ < s

1+‖f2(y∗)‖ and PCr and PQs are

projection onto Cr and Qs, respectively.
We note that, for r, s −→ +∞ we have Cr = C and Qs = Q, the closed
convex subsets of H1 and H2, respectively, then general nonconvex split
variational inequality problems (2.1)-(2.2) reduces to the general convex
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split variational inequality problems (1.1)-(1.2) for finding (x∗, y∗) ∈ C×
Q with y∗ = Ax∗ such that

g1(x
∗) = PC(g1(x

∗)− ρf1(x∗)),
g2(y

∗) = PQ(g2(y
∗)− λf2(y∗)),(2.5)

where PC and PQ are projection onto C and Q, respectively.

Definition 2.1. Let f : H −→ H be a mapping. Then f is said to
be:

(i) monotone if

〈f(x)− f(x̂), x− x̂〉 ≥ 0, ∀x, x̂ ∈ H,
(ii) α-strongly monotone if there exists a constant α > 0 such that

〈f(x)− f(x̂), x− x̂〉 ≥ α‖x− x̂‖2, ∀x, x̂ ∈ H,
(iii) ξ-inverse strongly monotone if there exists a constant ξ > 0 such

that

〈f(x)− f(x̂), x− x̂〉 ≥ ξ‖f(x)− f(x̂)‖2, ∀x, x̂ ∈ H,
(iii) relaxed (κ, υ)-cocoercive mapping if there exist constants κ, υ > 0

such that

〈f(x)− f(x̂), x− x̂〉 ≥ −κ‖f(x)− f(x̂)‖2 + υ‖x− x̂‖2, ∀x, x̂ ∈ H,
(iv) β-Lipschitz continuous if there exists a constant β > 0 such that

‖f(x)− f(x̂)‖ ≤ β‖x− x̂‖, ∀x, x̂ ∈ H.

Remark 2.2. Every λ-inverse strongly monotone mapping f is mono-
tone and 1

λ
-Lipschitz continuous.

Based on above arguments, we suggest the following iterative algo-
rithm for approximating a solution to (2.1)-(2.2).

Algorithm 2.3. Given x0 ∈ Cr, compute the iterative sequence {xn}
defined by the iterative schemes:

(2.6) g1(yn) = PCr [g1(xn)− ρf1(xn)],

(2.7) g2(zn) = PQs [g2(Ayn)− λf2(Ayn)],

(2.8) xn+1 = PCr [yn + γA∗(zn − Ayn)]

for all n = 0, 1, 2, · · · , 0 < ρ < r
1+‖f1(xn)‖ , 0 < λ < s

1+‖f2(Ayn)‖ and

0 < γ < r
1+‖A∗(zn−Ayn)‖ .
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As a particular case of Algorithm 2.3, we have the following algorithm
for approximating a solution to (1.1)-(1.2).

Algorithm 2.4. Given x0 ∈ C, compute the iterative sequence {xn}
defined by the iterative schemes:

(2.9) g1(yn) = PC[g1(xn)− ρf1(xn)],

(2.10) g2(zn) = PQ[g2(Ayn)− λf2(Ayn)],

(2.11) xn+1 = PC[yn + γA∗(zn − Ayn)]

for all n = 0, 1, 2, · · · , ρ, λ, γ > 0.

Let {αn} ⊆ (0, 1) be a sequence such that
∑∞

n=1 αn = +∞ and ρ, λ, γ
are parameters with positive values. Then we have the following algo-
rithm for approximating a solution to (1.1)-(1.2).

Algorithm 2.5. Given x0 ∈ H1, compute the iterative sequence
{xn} defined by the iterative schemes:

(2.12) g1(yn) = PC[g1(xn)− ρf1(xn)],

(2.13) g2(zn) = PQ[g2(Ayn)− λf2(Ayn)],

(2.14) xn+1 = (1− αn)xn + αn[yn + γA∗(zn − Ayn)]

for all n = 0, 1, 2, · · · , ρ, λ, γ > 0.

We note that Algorithm 2.4 and Algorithm 2.5 are different form.

3. Main Results

In this section, we discuss the convergence of the iterative sequence
generated by algorithms.

Theorem 3.1. For given r, s ∈ (0,+∞), we assume that r′ ∈ (0, r), s′ ∈
(0, s) and denote δ = r

r−r′ and η = s
s−s′ . Let Cr and Qs be uniformly

prox regular subsets of H1 and H2, respectively. For each i ∈ {1, 2},
let fi : Hi −→ Hi be the relaxed (κi, υi)-cocoercive mapping with con-
stants κi, υi > 0 and βi-Lipschitz continuous with constant βi > 0.
Let gi : Hi −→ Hi be the ξi-inverse strongly monotone with constant
ξi > 0 and σi-Lipschitz continuous and let (gi − Ii) be the ζi-strongly
monotone with constant ζi > 0, where Ii is the identity operator on Hi

(i = {1, 2}). Let A : H1 −→ H2 be the bounded linear operator such
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that A(Cr) ⊆ Qs and A∗ be its adjoint operator. Suppose that x∗ ∈ Cr
is a solution of general nonconvex split variational inequality problems
(2.1)-(2.2). Then the iterative sequence {xn} generated by Algorithm 2.3
converges strongly to x∗ provided that the constants ρ, λ and γ satisfy
the following conditions:

υ1 − κ1β21
β21

− Ω < ρ < min
{υ1 − κ1β21

β21
+ Ω,

r′

1 + ‖f1(xn)‖
,

r′

1 + ‖f1(x∗)‖
}
,

0 < λ < min
{ s′

1 + ‖f2(Ayn)‖
,

s′

1 + ‖f2(Ay∗)‖
}
, for some r′ ∈ (0, r), s′ ∈ (0, s),

0 < γ < min
{ 2

‖A‖2
,

r′

1 + ‖A∗(zn −Ayn)‖
}
, Ω =

1

β21
(
√

(υ1 − κ1β21)2 − β21(1− %21))

with υ1 > κ1β
2
1 + β1

√
1− %21, θ1 < [δ(1 + 2θ2)]

−1 = d,

%1 =
d
√

2ζ1 + 1

δ
− `1, `1 =

√
1− 2ξ1σ21 + σ21, θ = δθ1(1 + 2θ2) < 1,

(3.1) θ2 =
√

1− 2(υ2 − κ2β2
2)λ+ β2

2λ
2 + `2, `2 =

√
1− 2ξ2σ2

2 + σ2
2.

Proof. Since x∗ ∈ Cr is a solution of general nonconvex split varia-
tional inequality problems (2.1)-(2.2) and the parameters ρ, λ, γ satisfy-
ing the conditions (3.1), then we have

(3.2) g1(x
∗) = PCr [g1(x

∗)− ρf1(x∗)],

(3.3) g2(Ax
∗) = PQs [g2(Ax

∗)− λf2(Ax∗)].
From Lemma 1.8(i) and since (g1− I1) is ζ1-strongly monotone, then we
have

‖yn − x∗‖2 ≤ ‖g1(yn)− g1(x∗)‖2 − 2〈(g1 − I1)yn − (g1 − I1)x∗, yn − x∗〉

≤ ‖g1(yn)− g1(x∗)‖2 − 2ζ1‖yn − x∗‖2

which implies that

(3.4) ‖yn − x∗‖ ≤
1√

2ζ1 + 1
‖g1(yn)− g1(x∗)‖.

From (2.6) and conditions (3.1) on ρ, we have

‖g1(yn)− g1(x∗)‖ = ‖PCr [g1(xn)− ρf1(xn)]− PCr [g1(x∗)− ρf1(x∗)]‖

(3.5) ≤ δ[‖xn−x∗−(g1(xn)−g1(x∗))‖+‖xn−x∗−ρ(f1(xn)−f1(x∗))‖].
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Since g1 is ξ1-inverse strongly monotone with constant ξ1 > 0 and σ1-
Lipschitz continuous with constant σ1 > 0, we have

‖xn − x∗ − (g1(xn)− g1(x∗))‖2

≤ ‖xn − x∗‖2 − 2〈g1(xn)− g1(x∗), xn − x∗〉+ ‖g1(xn)− g1(x∗)‖2

≤ ‖xn − x∗‖2 − 2ξ1σ
2
1‖xn − x∗‖2 + σ2

1‖xn − x∗‖2

≤ (1− 2ξ1σ
2
1 + σ2

1)‖xn − x∗‖2

(3.6) ⇒ ‖xn − x∗ − (g1(xn)− g1(x∗))‖ ≤
√

1− 2ξ1σ2
1 + σ2

1‖xn − x∗‖.

Again since f1 is relaxed (κ1, υ1)-cocoercive mapping with constants
κ1, υ1 > 0 and β1-Lipschitz continuous with constant β1 > 0, we have

‖xn − x∗ − ρ(f1(xn)− f1(x∗))‖2

≤ ‖xn − x∗‖2 − 2ρ〈f1(xn)− f1(x∗), xn − x∗〉+ ρ2‖f1(xn)− f1(x∗)‖2

≤ ‖xn − x∗‖2 − 2ρ(−κ1‖f1(xn)− f1(x∗)‖2 + υ1‖xn − x∗‖2) + ρ2β2
1‖xn − x∗‖2

≤ (1− 2ρ(υ1 − κ1β2
1) + ρ2β2

1)‖xn − x∗‖2

(3.7)

⇒ ‖xn−x∗−ρ(f1(xn)−f1(x∗))‖ ≤
√

1− 2ρ(υ1 − κ1β2
1) + ρ2β2

1‖xn−x∗‖.

From (3.5),(3.6) and (3.7), we have

(3.8) ‖g1(yn)− g1(x∗)‖ ≤ (`1 +
√

1− 2ρ(υ1 − κ1β2
1) + ρ2β2

1)‖xn − x∗‖,

where `1 =
√

1− 2ξ1σ2
1 + σ2

1. Again from (3.4) and (3.8) we obtain

(3.9) ‖yn − x∗‖ ≤ θ1‖xn − x∗‖
where

θ1 =
δ√

2ζ1 + 1
{`1+

√
1− 2ρ(υ1 − κ1β2

1) + ρ2β2
1} and `1 =

√
1− 2ξ1σ2

1 + σ2
1.

Similarly from (2.7), (3.1), (3.3) and condition on parameter λ and using
the fact that f2 is relaxed (κ2, υ2)-cocoercive and β2-Lipschitz continuous
mapping; and g2 is ξ2-inverse strongly monotone mapping with constant
ξ2 > 0 and σ2-Lipschitz continuous mapping and from (q2 − I2) is ζ2-
strongly monotone and A(Cr) ⊆ Qs, we have

‖g2(zn)−g2(Ax∗)‖ = ‖PQs [g2(Ayn)−λf2(Ayn)]−PQs [g2(Ax
∗)−λf2(Ax∗)]‖
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(3.10) ≤ η[‖g2(Ayn)− g2(Ax∗)− λ(f2(Ayn)− f2(Ax∗))‖]
and

(3.11) ‖zn − Ax∗‖ ≤ θ2‖Ayn − Ax∗‖
where

θ2 =
η√

2ζ2 + 1
{`2+

√
1− 2λ(υ2 − κ2β2

2) + λ2β2
2} and `2 =

√
1− 2ξ2σ2

2 + σ2
2.

Next from (2.8) and condition (3.1) on γ, we have

‖xn+1 − x∗‖ ≤ ‖PCr [yn + γA∗(zn − Ayn)]− PCr [x∗ + γA∗(Ax∗ − Ax∗)]‖
≤ δ[‖yn − x∗ − γA∗(Ayn − Ax∗)‖+ γ‖A∗(zn − Ax∗)‖].(3.12)

Further using the definition of A∗, the fact that A∗ is a bounded operator
with ‖A∗‖ = ‖A‖ and condition (3.1), we have

‖yn − x∗ − γA∗(Ayn − Ax∗)‖2

= ‖yn − x∗‖2 − 2γ〈A∗(Ayn − Ax∗), yn − x∗〉+ γ2‖A∗(Ayn − Ax∗)‖2

≤ ‖yn − x∗‖2 − 2γ‖Ayn − Ax∗‖2 + γ2‖A‖2‖Ayn − Ax∗‖2

≤ ‖yn − x∗‖2 − γ(2− γ‖A‖2)‖Ayn − Ax∗‖2

(3.13) ≤ ‖yn − x∗‖2.
Using (3.11), we have

‖A∗(zn − Ax∗)‖ ≤ ‖A‖‖zn − Ax∗‖
≤ θ2‖A‖‖Ayn − Ax∗‖
≤ θ2‖A‖2‖yn − x∗‖.(3.14)

Combining (3.13) and (3.14) with (3.12), we obtain

‖xn+1 − x∗‖ ≤ δ[‖yn − x∗‖+ γθ2‖A‖2‖yn − x∗‖],
‖xn+1 − x∗‖ ≤ θ‖xn − x∗‖,

where θ = δθ1(1 + γ‖A‖2θ2).
Thus, we obtain

(3.15) ‖xn+1 − x∗‖ ≤ θn‖x0 − x∗‖.
Since γ‖A‖2 < 2, hence the maximum value of (1+γ‖A‖2θ2) is (1+2θ2).
Further θ ∈ (0, 1) if and only if

(3.16) θ1 < [δ(1 + 2θ2)]
−1 = d.
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Since d ∈ (0, 1) and δ, η > 1. Finally the inequality (3.15) holds from
conditions (3.1). Thus from (3.15) that {xn} strongly converges to
x∗ as n −→ ∞. Since A is continuous, hence from (3.9) that yn −→
x∗, g1(yn) −→ g1(x

∗), Ayn −→ Ax∗, zn −→ Ax∗ and g2(zn) −→ g2(Ax
∗)

as n −→∞. This completes the proof.

In particular case, if r = +∞, s = +∞, one has η = δ = 1. Then we
have the following convergence result for Algorithm 2.5 to solve (1.1)-
(1.2).

Theorem 3.2. Let C and Q be nonempty closed convex subsets ofH1

andH2, respectively. For each i ∈ {1, 2} let fi : Hi −→ Hi be the relaxed
(κi, υi)-cocoercive mapping with constants κi, υi > 0 and βi-Lipschitz
continuous with constant βi > 0. Let gi : Hi −→ Hi be the ξi-inverse
strongly monotone with constant ξi > 0 and σi-Lipschitz continuous and
let (gi − Ii) be the ζi-strongly monotone with constant ζi > 0, where Ii
is the identity operator on Hi (i = {1, 2}). Let A : H1 −→ H2 be the
bounded linear operator and A∗ be its adjoint operator. Suppose that
x∗ ∈ C is a solution of general convex split variational inequality problems
(1.1)-(1.2). Then the iterative sequence {xn} generated by Algorithm
2.5 converges strongly to x∗ provided the constants ρ, η and γ satisfy the
following conditions:

υ1 − κ1β2
1

β2
1

− Ω < ρ <
υ1 − κ1β2

1

β2
1

+ Ω, γ ∈
(
0,

2

‖A‖2
)
, where

Ω =
1

β2
1

(√
(υ1 − κ1β2

1)2 − β2
1(1− %21)

)
with υ1 > κ1β

2
1 + β1

√
1− %21,

θ1 < [δ(1 + 2θ2)]
−1 = d, %1 =

d
√

2ζ1 + 1

δ
− `1,

`1 =
√

1− 2ξ1σ2
1 + σ2

1, θ = δθ1(1 + 2θ2) < 1,

(3.17)

θ2 =
√

1− 2(υ2 − κ2β2
2)λ+ β2

2λ
2 + `2, `2 =

√
1− 2ξ2σ2

2 + σ2
2, λ > 1.

Proof. Since x∗ ∈ C is a solution of general convex split variational
inequality problems (1.1)-(1.2), then ρ, λ > 0 such that

(3.18) g1(x
∗) = PC[g1(x

∗)− ρf1(x∗)],

(3.19) g2(Ax
∗) = PQ[g2(Ax

∗)− λf2(Ax∗)].
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Using the same argument used in proof of Theorem 3.1, we have

(3.20) ‖yn − x∗‖ ≤ θ1‖xn − x∗‖
where

θ1 =
δ√

2ζ1 + 1
{`1+

√
1− 2ρ(υ1 − κ1β2

1) + ρ2β2
1} and `1 =

√
1− 2ξ1σ2

1 + σ2
1.

Again

(3.21) ‖zn − Ax∗‖ ≤ θ2‖Ayn − Ax∗‖
where

θ2 =
η√

2ζ2 + 1
{`2+

√
1− 2λ(υ2 − κ2β2

2) + λ2β2
2} and `2 =

√
1− 2ξ2σ2

2 + σ2
2.

Next from Algorithm 2.5 (2.14), we have
(3.22)
‖xn+1 − x∗‖ ≤ (1− αn)‖xn − x∗‖+ αn[‖yn − x∗ − γA∗(Ayn − Ax∗)‖

+ γ‖A∗(zn − Ax∗)‖].

Since A∗ is a bounded linear operator with ‖A∗‖ = ‖A‖ and given con-
dition on γ, we have
(3.23)
‖yn − x∗ − γA∗(Ayn − Ax∗)‖2

= ‖yn − x∗‖2 − 2γ〈A∗(Ayn − Ax∗), yn − x∗〉+ γ2‖A∗(Ayn − Ax∗)‖2

≤ ‖yn − x∗‖2.

Using (3.21) we have

‖A∗(zn − Ax∗)‖ ≤ ‖A‖‖zn − Ax∗‖
≤ θ2‖A‖‖Ayn − Ax∗‖
≤ θ2‖A‖2‖yn − x∗‖.(3.24)

Combining (3.23) and (3.24) with (3.22), we obtain

‖xn+1 − x∗‖ ≤ [1− αn(1− θ)]‖xn − x∗‖,
where θ = θ1(1 + γ‖A‖2θ2).
Thus, we obtain

(3.25) ‖xn+1 − x∗‖ ≤
n∏
j=1

[1− αj(1− θ)]‖x0 − x∗‖.



480 Jong Kyu Kim, Salahuddin, and Won Hee Lim

It follows from condition on ρ, λ ∈ (0, 1). Since
∑∞

n=1 an = +∞ and
θ ∈ (0, 1) and from [23], we have

lim
n−→∞

n∏
j=1

[1− αj(1− θ)] = 0.

The rest of the proof is same as the proof of Theorem 3.1. This completes
the proof.

References

[1] M. K. Ahmad and Salahuddin, A stable perturbed algorithms for a new class
of generalized nonlinear implicit quasi variational inclusions in Banach spaces,
Adv. Pure Math. 2 (2) (2012), 139–148.

[2] C. Baiocchi and A. Capelo, Variational and Quasi Variational Inequalities, John
Wiley and Sons, New York, 1984.

[3] A. Bensoussan, M. Goursat and J. L. Lions, Controle impulsinnel et inequations
quasi variationnelles stationeries, C. R. Acad. Sci. 276 (1973), 1279–1284.

[4] A. Bensoussan and J. L. Lions, Impulse Controle and Quasi variational Inequal-
ities, Gauthiers Villers, Paris, 1973.

[5] C. Byrne, Iterative oblique projection onto convex subsets and the split feasibility
problems, Inverse Problems 18 (2002), 441–453.

[6] Y. Censor, A. Gibali and S. Reich, Algorithms for the split variational inequality
problems, Numer. Algo. 59 (2) (2012), 301–323.

[7] Y. Censor and T. Elfying, A multiprojection algorithm using Bregman projection
in a product space, Numer. Algo. 8 (1994), 221–239.

[8] Y. Censor, A. Motova and A. Segal, Perturbed projection and subgradient projec-
tion for the multi sets split feasibility problems, J. Math. Anal Appl. 327 (2007),
1244–1256.

[9] Y. Censor and G. T. Herman, On some minimization techniques in image re-
construction from projection, Appl. Numer. Math. 3 (1987), 365–391.

[10] F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley Int. Science, New
York, 1983.

[11] F. H. Clarke, Y. S. Ledyaw, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis
and Control Theory, Springer-Verlag, New York 1998.

[12] R. Glowinski, J. L. Lions and R. Tremolieres, Numerical Analysis of Variational
Inequalities, North-Holland, Amsterdam, 1981.

[13] J. K. Kim, A. Farajzadeh and Salahuddin, New systems of extended nonlinear
regularized nonconvex set valued variational inequalities, Commun. Appl. Non-
linear Anal. 21 (3) (2014), 21–40.

[14] B. S. Lee and Salahuddin, A general system of regularized nonconvex variational
inequalities, Appl. Computat. Math. 3 (4) (2014), dx.doi.org/10.4172/2168-
9679.1000169.



General Nonconvex Split Variational Inequality Problems 481

[15] G. Marino and H. K. Xu, Weak and strong convergence theorems for strict pseudo
contractions in Hilbert spaces, J. Math. Anal. Appl. 329 (2007), 336–346.

[16] A. Moudafi, Split monotone variational inclusions, J. Optim. Theo. Appl. 150
(2011), 275–283.

[17] R. A. Poliquin and R. T. Rockafellar, Prox-regular functions in variational anal-
ysis, Trans. Amer. Math. Soc. 348 (1996), 1805–1838.

[18] R. A. Poliquin, R. T. Rockafellar and L. Thibault, Local differentiability of
distance functions, Trans. Amer. Math. Soc. 352 (2000), 5231–5249.

[19] Salahuddin, Regularized equilibrium problems in Banach spaces, Korean Math.
J. 24 (1) (2016), 51–63.

[20] Salahuddin, System of generalized nonlinear regularized nonconvex variational
inequalities, Korean Math. J. 24 (2) (2015), 181–198.

[21] Salahuddin, Regularized penalty method for non-stationary set valued equilibrium
problems in Banach spaces, Korean Math. J. 25 (2) (2017), 147–162.

[22] Salahuddin and R. U. Verma, Split feasibility quasi variational inequality prob-
lems involving cocoercive mappings in Banach spaces, Commun. Appl. Nonlinear
Anal. 22 (4) (2015), 95–101.

[23] R. Wittmann, Approximation of fixed points of nonexpansive mappings, Archiv
der Mathematik, 58 (1) (1992), 486–491.

Jong Kyu Kim
Department of Mathematics Education
Kyungnam University
Changwon 51767, Korea
E-mail : jongkyuk@kyungnam.ac.kr

Salahuddin
Department of Mathematics
Jazan University
Jazan, KSA
E-mail : salahuddin12@mailcity.com

Won Hee Lim
Department of Mathematics Education
Kyungnam University
Changwon 51767, Korea
E-mail : worry36@kyungnam.ac.kr


	1. Introduction
	2. General nonconvex split variational inequality problems
	3. Main Results
	References

