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CONSTRUCTIVE PROOF FOR THE POSITIVITY OF
THE ORBIT POLYNOMIAL 0"?(q)

JAEJIN LEE

ABSTRACT. The cyclic group C,, = ((12---n)) acts on the set ([Z])
of all k-subsets of [n]. In this action of C), the number of orbits of

size d, for d | n, is
n,k_l @ TL/S
O _dzu(n k/s)

Glsln

Stanton and White [6] generalized the above identity to construct
the orbit polynomials

Og,k(q) - [d];/d Z K (f) [:?i]q

Glsln

and conjectured that Og’k(q) have non-negative coefficients. In this
paper we give a constructive proof for the positivity of coefficients
of the orbit polynomial O”*(q).

1. Introduction

When n is a positive integer, we write as [n] = {1,2,...,n}. Let C},
be the cyclic group generated by a permutation o = (12---n). If ([Z]) is
the set of all k-subsets of [n], C), acts on ([Z]) via

(7’, {iL‘l,IL’Q, e ,iL‘k}) — {[L’T(l),mT(Q), . ,xT(k)}.
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The number of orbits in this action of C), is given

0 o =1 Y (),

d|ged(n,k)
and the number of orbits of size d, for d | n, is
1 ds\ (n/s
2 n,k — e .
@ =120 (3) )
q sn
Here ¢ is the Euler phi-function and p is the Mobius function. In

preprint [6] Stanton and White constructed the orbit polynomials Og’k(q),
a g-version of (2), and conjectured the following.

CONJECTURE 1.1. Fix d | n, and any non-negative integer k. Poly-

nomials
01" (q) = @ D1 (%) {Z?z Ls

alsln

have non-negative coefficients.

Here [n]y =1+q+---+¢"", [n]ly = [1]4[2]; - - [n], and

Mobius inversion implies

g HLZZMW%%H

dln

Andrews [1] and Haiman [3] independently verified the above conjecture
when (n, k) = 1. In [4] Reiner, Stanton and White defined the cyclic siev-
ing phenomenon, generalization of Stembridge’s ¢ = —1 phenomenon [7],
and use it to prove several enumeration problems involving ¢-binomial
coefficients, non-crossing partitions, polygon dissections and some finite
field g-analogues. Drudge [2] has proven that O™*(q) = > djn 07" (q)
is the number of orbits of the Singer cycle on the k-dimensional sub-
spaces of an n-dimensional vector space over a field of order q. Recently
Sagan [5] gave combinatorial proofs for several theorems appeared in [4].

In this paper we give a new weight for each 2-subset in ([g}), and show

that the sum of weights of all 2-subset in ([g]) is equal to the g-binomial
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coefficient [ g } . This will give a combinatorial proof for the positivity
q
of coefficients of the orbit polynomial 02’2(q). Finally we suggest a

strategy for the constructive proof of the positivity of coefficients of the
orbit polynomial OZ’k(q) for any positive integers n, k with (n, k) = 1.

2. Positivity for the orbit polynomial O’(q)

In this section we write as ij = {i,j} for convention. We begin

with the recurrence relation of g-binomial coefficient {g} . Using the

q
recurrence relations

B i R
B R L)

several times, we get the following identity.

PROPOSITION 2.1. Let n > 2 be an integer. Then

n—+ 2 n n n—1
{ 9 1q=f{2]?+q”{ | }Jﬂn+ﬂ¢

We now describe the representatives x of orbits in the action of of C,

n ([g]). In each orbit O under C,, we choose 1¢ € O as the representative
of O, where

(4) 1<¢§§+L

For example, if n = 10, all orbits are given with representatives un-
derlined as follows. Here a = 10.

()1::< 2) = {12,123, 34,45,56, 67, 78,89, 9a, la}
13) = {13, 24, 35,46,57, 68,79, 8a, 19, 2a}
= (14) = {14, 25, 36,47, 58,69, 7a, 18,29, 3a}
15) = {15, 26, 37,48, 59, 6a, 17, 28, 39, 4a}
16) = {16,27, 38,49, 5a}.

o~ o~~~
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Let 1i be the representative of an orbit under C),,. We define the
weight w,(17) as

n+2-—21 f N 1
(5) wn (1) = {q A

¢ else.

The weights for the other elements than the representatives are given
using the weights of representatives in (5).

Assume first ged(n,2) = 1. Note that all orbits are of size n by (1)
and (2). If O; = {@i1, i, ..., Ti(n—1), Tin} is an orbit of size n with the
representative x;; and with the action

g o o o o
Tip = Tig =+ T Ti(n—1) 7 Tin — Ti,
we define
(6) Wi (Ti541) = qup(x;;) for 1 < j <n—1.

If ged(n, 2) # 1, there is only one orbit of size § and the other orbits
are of size n under the action of (). The weights for elements in an
orbit of size n are defined in the same way as (6). On the other hand,
if Op = {To1, o2, ..., Ton } is the orbit of size § with the representative

2
o1 and with the action
g g g ag
Tor —> Loz — * —» To2 — To1,

we define

wn<x0j+1> = q2wn($oj) for1 < ] < g —1.
Then the sum of weights of all elements in ([72‘]) is equal to the g-binomial

coefficient {Z] as follows.
q

THEOREM 2.2. Let n > 2 be an integer and let T, be the set of all
2-subsets of [n], i.e., T, = ([g]). If we set wy,(T,,) = > ,cr, Wa(w), then
we have

wa(Ty) = mq
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Proof. Computing w,(T,,) and [Z} for n = 2,3,4,5 directly, we

q
have

wa(Ty) = 1 = BL

3
wy(Ts) =14+q+¢* = [2}

q

4
wi(Ty) =1+q+20"+¢" +¢' = {2}
q

5
ws(T5) = 1+q+2¢° +2¢° +2¢" + ¢° +¢° = {2]
q
We only work out for n = 2¢ + 1. The proof for n = 2¢ can be given in
the same way with a little modification.

Suppose now n = 2¢ + 1 for some ¢ € N and w,(T,) = {g} . Since

q
ged(n,2) = ged(n + 2,2) = 1, all orbits under C), are of size n and all

orbits under C), o are of size n + 2. Let

T11, X215 - -+, Ts1

be all representatives of orbits in the action of C,,, where

s = [Tu|/|orbit] = <Z) In = %(n _ ).

On the other hand, if ¢ is the number of orbits in the action of )2,
2 1
t:(n;— )/(n+2):§(n+1):3+1.

Let
T11, X215 - - -5 Lsly L(s+1)1

be all representatives of orbits in the action of C), 5. Then all orbits
01,04, -+, 04 under the action of C), are

O, = {17117 L1255 L1(n-1), xln}
Oy = {x217 T22y -+ L2(n—1)s xZn}

(7)

O, = {xsla Ls25 -+ -5 Ts(n—1), xsn}
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while
0/1 = {I117 L1255 Xlny L1(n+1), xl(n+2)}
0/2 = {$21, L2y« -y 20y L(n+1), 1172(n+2)}
(8)
O, ={Zs1,Ts2, - ., Tsn, Ts(nt1)s Ts(nt2) }
O;H = {x(5+1)1, L(s4+1)25 + + = s L(s+1)ny L(s+1)(n41)s $(s+1)(n+2)}

are all orbits under C,,.5. Let x be the representative of an orbit under
the action of C,. x can be also the representative of an orbit under the
action of C, 5. In this case,

Wy i2(7) = q2wn(x)'
For example, x = 12 € ([Z’]) is the representative of an orbit under the

action of C),. The weight of x is

n+1-2-2 — n—3

wy () = q q

Also, z = 12 can be considered in T}, o = ([";2]) and the weight w,,,2(x)
1s
Whia(x) = T2 = gl
so that w,2(7) = ¢*w,(z). Another 2-subset 23 = ¢(12) is considered
as the element of 7T},,5 as well as T},. The weight of 23 is
w,(23) = qw,(12) and  w,42(23) = qw,12(12)

so that w,12(23) = ¢*w,(23). Using this relation we compute wy, y2(Ty12)-
Let r,(q) be the sum of weights of representatives of all orbits of size n.
From (7) and assumption we have

S

wnlf) = 3 Y wale) = el =l = | 5] -

=1 z€0;
On the other hand, if we use (8), we have

s+1

Wnio(Thi2) = Z Z Wnyo(T) = Z Z Wy12(7) + Z Wy 12(T).

i=1 z€O] =1 z€O] z€0,
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Here
Z Z Wni2(T) = Z anw(%) = Z Wn2(zi1)[n + 2,
i=1 z€0) i=1 j=1 i=1
= > dPwalea)(nl, + 4"(2),)
(9) = ¢’ra(@)[ny + 4" ra(@)[2,

2

_ 2N nta | M —1
— 3] s
q q

Using (4) we can find the representatives of all orbits under of C, .
1(¢ 4 2) is the only one representative of orbit in the action of C 2
which are not in orbits of the action of C,. Using the weights given in
(5) and (6)

2
n n
i [3] el
q

S (@) = wn (1€ +2)) o + 2],
(10) z€0;

= 2D 4 o) = [ 42,
Combining (9) and (10), we have
—1
wn+2(Tn+2) - C]2 {721] + qn+2 {n 1 ] + [n + 2](1
q q

n+2
2

] from Proposition 2.1.
q

Hence we have w,(7},,) = {Z} for n > 2. O
q
THEOREM 2.3. Orbit polynomials O™2(q) is equal to the sum of
weights of representatives of all orbits of size n.

Proof. Assume first ged(n, 2) = 1. Then there are only s orbits of size
n under C,,, where s = (;‘) /n. Let O1,0,,...,0Oq be all orbits of size n
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under C,,. Then from the proof of Theorem 2.2 we know that

(11) wn(T) = r(q)[n]q-
Assume now ged(n,2) # 1. Then there are s orbits Oy, Os, ..., Os of
size n where s = ((}) — %)/n, and there is only one orbit
Oo = {zo1, o2, - - - ,xog}

of size g Hence

wo(T) = Y wale) = > we(z)+ Y > wy(x)

xe([gl) z€0q i=1 2€0;
. =1+ +-+q"7) "‘an(%l)[n]q
= 3], +re@lnl,

From (3), we have

{n} _ [n]q OZ’Q(Q) if ged(n,2) =1
2], | [5],:0%%(@) + In],0p%(q) if ged(n,2) # 1.

Note that O%*(q) = 1. Comparing (11) and (12) with (13), we have
2

On?(q) = rn(q).

(13)

]

COROLLARY 2.4. Let d | n. Then orbit polynomials O"*(q) have
non-negative coefficients.

Proof. Since O™ (q) = O™ (¢!, it is sufficient to prove Corollary

n/t n/t
2.4 for d = n. Then 0™"?%(q) = r,(q) by Theorem 2.3 and r,(q) clearly
has non-negative coefficients from the definition. n

3. Remark

Let n, k be positive integers with (n, k) = 1. In this section we suggest
a strategy for the constructive proof of the positivity of coefficients of
the orbit polynomial O (q).
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n+k
k

Question 1. [
q
sition 2.1 for k£ = 3,4,5. It would be interesting to find a recurrence

} has recurrence relations similar to Propo-

relation of [ " 2;— K } similar to Proposition 2.1 for an arbitrary positive

q
integer k, i.e., to find the polynomial f;(q) satisfying the equality
i R R el F R AT
k . k . k—1 . F @

Let T,, = ([2’]) and T, = (["Zk]), and let w,(x) and w,x(y) be weights

of v € T, and y € T, 1, respectively. If

O, = {‘Tll) T12, -+, L1(n—1)s Iln}
Oy = {517217 L22, -5 T(n-1), $2n}
O = {isla Ls25 -+ -5 Ls(n—1), xsn}

are all orbits of size n in the action of C,, and

/

01 = {1311, L1255 Tin, Ti(n+1) - - - ;$1(n+k)}
/

0, = {$21, T22; -+ -y L2n, L2(n+1)s - - - ,$2(n+kz)}
/

Os = {xsla Ls2y -y Lsny Ts(ntl)s - - - axs(nJrk:)}

/

Oii1 = {2411, T(st1)2 -+ - s T(st1)n> T(s1)(nt1)s - - - s T(s1)(ntk) |

/

Ot = {xtb Ti2y - -5 Tin, Ti(n+1)s - - - ’xt(n—i-k)}

are all orbits of size n + k under C,, ., we have

wn+k n+k Z Z wn+k Z Z wnJrk Z Z wn+k(x)

i=1 zeO0] i=1 z€O] i=s+12€0)
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Question 2. Define wy,(z) and w,x(y) such that

. _ n et ke(f— n—1
53 wnade) =0 | 1] et [2TH g
q q

i=1 €0
t

SN waral@) = filg)ln + K.

1=s+1z€0]

The answers for the above Question 1 and 2 will give the constructive
proof of the positivity of coefficients of the orbit polynomial Og’k (q).
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