CONSTRUCTIVE PROOF FOR THE POSITIVITY OF THE ORBIT POLYNOMIAL $O_{d}^{n, 2}(q)$

Jaejin Lee

AbStract. The cyclic group $C_{n}=\langle(12 \cdots n)\rangle$ acts on the set $\binom{[n]}{k}$ of all k-subsets of $[n]$. In this action of C_{n} the number of orbits of size d, for $d \mid n$, is

$$
O_{d}^{n, k}=\frac{1}{d} \sum_{\frac{n}{d}|s| n} \mu\left(\frac{d s}{n}\right)\binom{n / s}{k / s}
$$

Stanton and White [6] generalized the above identity to construct the orbit polynomials

$$
O_{d}^{n, k}(q)=\frac{1}{[d]_{q^{n / d}}} \sum_{\frac{n}{d}|s| n} \mu\left(\frac{d s}{n}\right)\left[\begin{array}{l}
n / s \\
k / s
\end{array}\right]_{q^{s}}
$$

and conjectured that $O_{d}^{n, k}(q)$ have non-negative coefficients. In this paper we give a constructive proof for the positivity of coefficients of the orbit polynomial $O_{d}^{n, 2}(q)$.

1. Introduction

When n is a positive integer, we write as $[n]=\{1,2, \ldots, n\}$. Let C_{n} be the cyclic group generated by a permutation $\sigma=(12 \cdots n)$. If $\binom{[n]}{k}$ is the set of all k-subsets of $[n], C_{n}$ acts on $\binom{[n]}{k}$ via

$$
\left(\tau,\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}\right) \mapsto\left\{x_{\tau(1)}, x_{\tau(2)}, \ldots, x_{\tau(k)}\right\}
$$

[^0]The number of orbits in this action of C_{n} is given

$$
\begin{equation*}
O^{n, k}=\frac{1}{n} \sum_{d \mid \operatorname{gcd}(n, k)} \varphi(d)\binom{n / d}{k / d}, \tag{1}
\end{equation*}
$$

and the number of orbits of size d, for $d \mid n$, is

$$
\begin{equation*}
O_{d}^{n, k}=\frac{1}{d} \sum_{\frac{n}{d}|s| n} \mu\left(\frac{d s}{n}\right)\binom{n / s}{k / s} . \tag{2}
\end{equation*}
$$

Here φ is the Euler phi-function and μ is the Möbius function. In preprint [6] Stanton and White constructed the orbit polynomials $O_{d}^{n, k}(q)$, a q-version of (2), and conjectured the following.

Conjecture 1.1. Fix $d \mid n$, and any non-negative integer k. Polynomials

$$
O_{d}^{n, k}(q)=\frac{1}{[d]_{q^{n / d}}} \sum_{\frac{n}{d}|s| n} \mu\left(\frac{d s}{n}\right)\left[\begin{array}{l}
n / s \\
k / s
\end{array}\right]_{q^{s}}
$$

have non-negative coefficients.
Here $[n]_{q}=1+q+\cdots+q^{n-1}, \quad[n]!_{q}=[1]_{q}[2]_{q} \cdots[n]_{q}$ and

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{[n]!_{q}}{[k]!_{q}[n-k]_{q}!} .
$$

Möbius inversion implies

$$
\left[\begin{array}{l}
n \tag{3}\\
k
\end{array}\right]_{q}=\sum_{d \mid n}[d]_{q^{n / d}} O_{d}^{n, k}(q)
$$

Andrews [1] and Haiman [3] independently verified the above conjecture when $(n, k)=1$. In [4] Reiner, Stanton and White defined the cyclic sieving phenomenon, generalization of Stembridge's $q=-1$ phenomenon [7], and use it to prove several enumeration problems involving q-binomial coefficients, non-crossing partitions, polygon dissections and some finite field q-analogues. Drudge [2] has proven that $O^{n, k}(q)=\sum_{d \mid n} O_{d}^{n, k}(q)$ is the number of orbits of the Singer cycle on the k-dimensional subspaces of an n-dimensional vector space over a field of order q. Recently Sagan [5] gave combinatorial proofs for several theorems appeared in [4].

In this paper we give a new weight for each 2-subset in $\binom{[n]}{2}$, and show that the sum of weights of all 2 -subset in $\binom{[n]}{2}$ is equal to the q-binomial
coefficient $\left[\begin{array}{l}n \\ 2\end{array}\right]_{q}$. This will give a combinatorial proof for the positivity of coefficients of the orbit polynomial $O_{d}^{n, 2}(q)$. Finally we suggest a strategy for the constructive proof of the positivity of coefficients of the orbit polynomial $O_{d}^{n, k}(q)$ for any positive integers n, k with $(n, k)=1$.

2. Positivity for the orbit polynomial $O_{d}^{n, 2}(q)$

In this section we write as $i j=\{i, j\}$ for convention. We begin with the recurrence relation of q-binomial coefficient $\left[\begin{array}{l}n \\ 2\end{array}\right]_{q}$. Using the recurrence relations

$$
\begin{aligned}
& {\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=q^{k}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{q}+\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]_{q} \text { and }} \\
& {\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{q}+q^{n-k}\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]_{q}}
\end{aligned}
$$

several times, we get the following identity.
Proposition 2.1. Let $n \geq 2$ be an integer. Then

$$
\left[\begin{array}{c}
n+2 \\
2
\end{array}\right]_{q}=q^{2}\left[\begin{array}{l}
n \\
2
\end{array}\right]_{q}+q^{n+2}\left[\begin{array}{c}
n-1 \\
1
\end{array}\right]_{q}+[n+2]_{q}
$$

We now describe the representatives x of orbits in the action of of C_{n} on $\binom{[n]}{2}$. In each orbit O under C_{n} we choose $1 i \in O$ as the representative of O, where

$$
\begin{equation*}
1<i \leq \frac{n}{2}+1 \tag{4}
\end{equation*}
$$

For example, if $n=10$, all orbits are given with representatives underlined as follows. Here $a=10$.

$$
\begin{aligned}
& O_{1}=\langle\underline{12}\rangle=\{\underline{12}, 23,34,45,56,67,78,89,9 a, 1 a\} \\
& O_{2}=\langle\underline{13}\rangle=\{\underline{13}, 24,35,46,57,68,79,8 a, 19,2 a\} \\
& O_{3}=\langle\underline{14}\rangle=\{\underline{14}, 25,36,47,58,69,7 a, 18,29,3 a\} \\
& O_{4}=\langle\underline{15}\rangle=\{\underline{15}, 26,37,48,59,6 a, 17,28,39,4 a\} \\
& O_{0}=\langle\underline{16}\rangle=\{\underline{16}, 27,38,49,5 a\} .
\end{aligned}
$$

Let $1 i$ be the representative of an orbit under C_{n}. We define the weight $w_{n}(1 i)$ as

$$
w_{n}(1 i)= \begin{cases}q^{n+2-2 i} & \text { if } i=\frac{n}{2}+1 \tag{5}\\ q^{n+1-2 i} & \text { else }\end{cases}
$$

The weights for the other elements than the representatives are given using the weights of representatives in (5).

Assume first $\operatorname{gcd}(n, 2)=1$. Note that all orbits are of size n by (1) and (2). If $O_{i}=\left\{x_{i 1}, x_{i 2}, \ldots, x_{i(n-1)}, x_{i n}\right\}$ is an orbit of size n with the representative $x_{i 1}$ and with the action

$$
x_{i 1} \xrightarrow{\sigma} x_{i 2} \xrightarrow{\sigma} \cdots \xrightarrow{\sigma} x_{i(n-1)} \xrightarrow{\sigma} x_{i n} \xrightarrow{\sigma} x_{i 1},
$$

we define

$$
\begin{equation*}
w_{n}\left(x_{i j+1}\right)=q w_{n}\left(x_{i j}\right) \text { for } 1 \leq j \leq n-1 . \tag{6}
\end{equation*}
$$

If $\operatorname{gcd}(n, 2) \neq 1$, there is only one orbit of size $\frac{n}{2}$ and the other orbits are of size n under the action of C_{n}. The weights for elements in an orbit of size n are defined in the same way as (6). On the other hand, if $O_{0}=\left\{x_{01}, x_{02}, \ldots, x_{0 \frac{n}{2}}\right\}$ is the orbit of size $\frac{n}{2}$ with the representative x_{01} and with the action

$$
x_{01} \xrightarrow{\sigma} x_{02} \xrightarrow{\sigma} \cdots \xrightarrow{\sigma} x_{0 \frac{n}{2}} \xrightarrow{\sigma} x_{01},
$$

we define

$$
w_{n}\left(x_{0 j+1}\right)=q^{2} w_{n}\left(x_{0 j}\right) \text { for } 1 \leq j \leq \frac{n}{2}-1 .
$$

Then the sum of weights of all elements in $\binom{[n]}{2}$ is equal to the q-binomial coefficient $\left[\begin{array}{l}n \\ 2\end{array}\right]_{q}$ as follows.

Theorem 2.2. Let $n \geq 2$ be an integer and let T_{n} be the set of all 2-subsets of $[n]$, i.e., $T_{n}=\binom{[n]}{2}$. If we set $w_{n}\left(T_{n}\right)=\sum_{x \in T_{n}} w_{n}(x)$, then we have

$$
w_{n}\left(T_{n}\right)=\left[\begin{array}{c}
n \\
2
\end{array}\right]_{q} .
$$

Proof. Computing $w_{n}\left(T_{n}\right)$ and $\left[\begin{array}{l}n \\ 2\end{array}\right]_{q}$ for $n=2,3,4,5$ directly, we have

$$
\begin{aligned}
& w_{2}\left(T_{2}\right)=1=\left[\begin{array}{l}
2 \\
2
\end{array}\right]_{q} \\
& w_{3}\left(T_{3}\right)=1+q+q^{2}=\left[\begin{array}{l}
3 \\
2
\end{array}\right]_{q} \\
& w_{4}\left(T_{4}\right)=1+q+2 q^{2}+q^{3}+q^{4}=\left[\begin{array}{l}
4 \\
2
\end{array}\right]_{q} \\
& w_{5}\left(T_{5}\right)=1+q+2 q^{2}+2 q^{3}+2 q^{4}+q^{5}+q^{6}=\left[\begin{array}{l}
5 \\
2
\end{array}\right]_{q} .
\end{aligned}
$$

We only work out for $n=2 \ell+1$. The proof for $n=2 \ell$ can be given in the same way with a little modification.

Suppose now $n=2 \ell+1$ for some $\ell \in \mathbb{N}$ and $w_{n}\left(T_{n}\right)=\left[\begin{array}{l}n \\ 2\end{array}\right]_{q}$. Since $\operatorname{gcd}(n, 2)=\operatorname{gcd}(n+2,2)=1$, all orbits under C_{n} are of size n and all orbits under C_{n+2} are of size $n+2$. Let

$$
x_{11}, x_{21}, \ldots, x_{s 1}
$$

be all representatives of orbits in the action of C_{n}, where

$$
s=\left|T_{n}\right| / \mid \text { orbit } \left\lvert\,=\binom{n}{2} / n=\frac{1}{2}(n-1) .\right.
$$

On the other hand, if t is the number of orbits in the action of C_{n+2},

$$
t=\binom{n+2}{2} /(n+2)=\frac{1}{2}(n+1)=s+1 .
$$

Let

$$
x_{11}, x_{21}, \ldots, x_{s 1}, x_{(s+1) 1}
$$

be all representatives of orbits in the action of C_{n+2}. Then all orbits $O_{1}, O_{2}, \cdots, O_{s}$ under the action of C_{n} are

$$
\begin{align*}
O_{1} & =\left\{x_{11}, x_{12}, \ldots, x_{1(n-1)}, x_{1 n}\right\} \\
O_{2} & =\left\{x_{21}, x_{22}, \ldots, x_{2(n-1)}, x_{2 n}\right\} \\
\vdots & \tag{7}\\
O_{s} & =\left\{x_{s 1}, x_{s 2}, \ldots, x_{s(n-1)}, x_{s n}\right\}
\end{align*}
$$

while

$$
\begin{aligned}
& O_{1}^{\prime}=\left\{x_{11}, x_{12}, \ldots, x_{1 n}, x_{1(n+1)}, x_{1(n+2)}\right\} \\
& O_{2}^{\prime}=\left\{x_{21}, x_{22}, \ldots, x_{2 n}, x_{2(n+1)}, x_{2(n+2)}\right\}
\end{aligned}
$$

$$
\begin{align*}
O_{s}^{\prime} & =\left\{x_{s 1}, x_{s 2}, \ldots, x_{s n}, x_{s(n+1)}, x_{s(n+2)}\right\} \tag{8}\\
O_{s+1}^{\prime} & =\left\{x_{(s+1) 1}, x_{(s+1) 2}, \ldots, x_{(s+1) n}, x_{(s+1)(n+1)}, x_{(s+1)(n+2)}\right\}
\end{align*}
$$

are all orbits under C_{n+2}. Let x be the representative of an orbit under the action of $C_{n} . x$ can be also the representative of an orbit under the action of C_{n+2}. In this case,

$$
w_{n+2}(x)=q^{2} w_{n}(x) .
$$

For example, $x=12 \in\binom{[n]}{2}$ is the representative of an orbit under the action of C_{n}. The weight of x is

$$
w_{n}(x)=q^{n+1-2 \cdot 2}=q^{n-3} .
$$

Also, $x=12$ can be considered in $T_{n+2}=\binom{[n+2]}{2}$ and the weight $w_{n+2}(x)$ is

$$
w_{n+2}(x)=q^{(n+2)+1-2 \cdot 2}=q^{n-1}
$$

so that $w_{n+2}(x)=q^{2} w_{n}(x)$. Another 2-subset $23=\sigma(12)$ is considered as the element of T_{n+2} as well as T_{n}. The weight of 23 is

$$
w_{n}(23)=q w_{n}(12) \quad \text { and } \quad w_{n+2}(23)=q w_{n+2}(12)
$$

so that $w_{n+2}(23)=q^{2} w_{n}(23)$. Using this relation we compute $w_{n+2}\left(T_{n+2}\right)$. Let $r_{n}(q)$ be the sum of weights of representatives of all orbits of size n. From (7) and assumption we have

$$
w_{n}\left(T_{n}\right)=\sum_{i=1}^{s} \sum_{x \in O_{i}} w_{n}(x)=\sum_{i=1}^{s} w_{n}\left(x_{i 1}\right)[n]_{q}=r_{n}(q)[n]_{q}=\left[\begin{array}{c}
n \\
2
\end{array}\right]_{q} .
$$

On the other hand, if we use (8), we have

$$
w_{n+2}\left(T_{n+2}\right)=\sum_{i=1}^{s+1} \sum_{x \in O_{i}^{\prime}} w_{n+2}(x)=\sum_{i=1}^{s} \sum_{x \in O_{i}^{\prime}} w_{n+2}(x)+\sum_{x \in O_{s+1}^{\prime}} w_{n+2}(x) .
$$

Here

$$
\begin{align*}
\sum_{i=1}^{s} \sum_{x \in O_{i}^{\prime}} w_{n+2}(x) & =\sum_{i=1}^{s} \sum_{j=1}^{n+2} w_{n+2}\left(x_{i j}\right)=\sum_{i=1}^{s} w_{n+2}\left(x_{i 1}\right)[n+2]_{q} \\
& =\sum_{i=1}^{s} q^{2} w_{n}\left(x_{i 1}\right)\left([n]_{q}+q^{n}[2]_{q}\right) \\
& =q^{2} r_{n}(q)[n]_{q}+q^{n+2} r_{n}(q)[2]_{q} \tag{9}\\
& =q^{2}\left[\begin{array}{c}
n \\
2
\end{array}\right]_{q}+q^{n+2} \frac{\left[\begin{array}{c}
n \\
2
\end{array}\right]_{q}}{[n]_{q}}[2]_{q} \\
& =q^{2}\left[\begin{array}{c}
n \\
2
\end{array}\right]_{q}+q^{n+2}\left[\begin{array}{c}
n-1 \\
1
\end{array}\right]_{q} .
\end{align*}
$$

Using (4) we can find the representatives of all orbits under of C_{n+2}. $1(\ell+2)$ is the only one representative of orbit in the action of C_{n+2} which are not in orbits of the action of C_{n}. Using the weights given in (5) and (6)

$$
\begin{align*}
\sum_{x \in O_{s+1}^{\prime}} w_{n+2}(x) & =w_{n}(1(\ell+2))[n+2]_{q} \tag{10}\\
& =q^{(2 \ell+3)+1-2(\ell+2)}[n+2]_{q}=[n+2]_{q} .
\end{align*}
$$

Combining (9) and (10), we have

$$
\begin{aligned}
w_{n+2}\left(T_{n+2}\right) & =q^{2}\left[\begin{array}{c}
n \\
2
\end{array}\right]_{q}+q^{n+2}\left[\begin{array}{c}
n-1 \\
1
\end{array}\right]_{q}+[n+2]_{q} \\
& =\left[\begin{array}{c}
n+2 \\
2
\end{array}\right]_{q} \text { from Proposition 2.1. }
\end{aligned}
$$

Hence we have $w_{n}\left(T_{n}\right)=\left[\begin{array}{c}n \\ 2\end{array}\right]_{q}$ for $n \geq 2$.
Theorem 2.3. Orbit polynomials $O_{n}^{n, 2}(q)$ is equal to the sum of weights of representatives of all orbits of size n.

Proof. Assume first $\operatorname{gcd}(n, 2)=1$. Then there are only s orbits of size n under C_{n}, where $s=\binom{n}{2} / n$. Let $O_{1}, O_{2}, \ldots, O_{s}$ be all orbits of size n
under C_{n}. Then from the proof of Theorem 2.2 we know that

$$
\begin{equation*}
w_{n}\left(T_{n}\right)=r_{n}(q)[n]_{q} . \tag{11}
\end{equation*}
$$

Assume now $\operatorname{gcd}(n, 2) \neq 1$. Then there are s orbits $O_{1}, O_{2}, \ldots, O_{s}$ of size n where $s=\left(\binom{n}{2}-\frac{n}{2}\right) / n$, and there is only one orbit

$$
O_{0}=\left\{x_{01}, x_{02}, \ldots, x_{0 \frac{n}{2}}\right\}
$$

of size $\frac{n}{2}$. Hence

$$
\begin{align*}
w_{n}\left(T_{n}\right) & =\sum_{x \in\binom{[n])}{2}} w_{n}(x)=\sum_{x \in O_{0}} w_{n}(x)+\sum_{i=1}^{s} \sum_{x \in O_{i}} w_{n}(x) \\
& =\left(1+q^{2}+\cdots+q^{n-2}\right)+\sum_{i=1}^{s} w_{n}\left(x_{i 1}\right)[n]_{q} \tag{12}\\
& =\left[\frac{n}{2}\right]_{q^{2}}+r_{n}(q)[n]_{q} .
\end{align*}
$$

From (3), we have

$$
\left[\begin{array}{c}
n \tag{13}\\
2
\end{array}\right]_{q}= \begin{cases}{[n]_{q} O_{n}^{n, 2}(q)} & \text { if } \operatorname{gcd}(n, 2)=1 \\
{\left[\frac{n}{2}\right]_{q^{2}} O_{\frac{n}{2}}^{n, 2}(q)+[n]_{q} O_{n}^{n, 2}(q)} & \text { if } \operatorname{gcd}(n, 2) \neq 1\end{cases}
$$

Note that $O_{\frac{n}{2}}^{n, 2}(q)=1$. Comparing (11) and (12) with (13), we have

$$
O_{n}^{n, 2}(q)=r_{n}(q)
$$

Corollary 2.4. Let $d \mid n$. Then orbit polynomials $O_{d}^{n, 2}(q)$ have non-negative coefficients.

Proof. Since $O_{n / t}^{n, k}(q)=O_{n / t}^{n / t, k / t}\left(q^{t}\right)$, it is sufficient to prove Corollary 2.4 for $d=n$. Then $O_{n}^{n, 2}(q)=r_{n}(q)$ by Theorem 2.3 and $r_{n}(q)$ clearly has non-negative coefficients from the definition.

3. Remark

Let n, k be positive integers with $(n, k)=1$. In this section we suggest a strategy for the constructive proof of the positivity of coefficients of the orbit polynomial $O_{d}^{n, k}(q)$.

Question 1. $\left[\begin{array}{c}n+k \\ k\end{array}\right]_{q}$ has recurrence relations similar to Proposition 2.1 for $k=3,4,5$. It would be interesting to find a recurrence relation of $\left[\begin{array}{c}n+k \\ k\end{array}\right]_{q}$ similar to Proposition 2.1 for an arbitrary positive integer k, i.e., to find the polynomial $f_{k}(q)$ satisfying the equality

$$
\left[\begin{array}{c}
n+k \\
k
\end{array}\right]_{q}=q^{k(k-1)}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}+q^{n+k(k-1)}\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]_{q}+f_{k}(q)[n+k]_{q} .
$$

Let $T_{n}=\binom{[n]}{k}$ and $T_{n+k}=\binom{[n+k]}{k}$, and let $w_{n}(x)$ and $w_{n+k}(y)$ be weights of $x \in T_{n}$ and $y \in T_{n+k}$, respectively. If

$$
\begin{aligned}
O_{1} & =\left\{x_{11}, x_{12}, \ldots, x_{1(n-1)}, x_{1 n}\right\} \\
O_{2} & =\left\{x_{21}, x_{22}, \ldots, x_{2(n-1)}, x_{2 n}\right\} \\
\vdots & \\
O_{s} & =\left\{x_{s 1}, x_{s 2}, \ldots, x_{s(n-1)}, x_{s n}\right\}
\end{aligned}
$$

are all orbits of size n in the action of C_{n}, and

$$
\begin{aligned}
O_{1}^{\prime} & =\left\{x_{11}, x_{12}, \ldots, x_{1 n}, x_{1(n+1)}, \ldots, x_{1(n+k)}\right\} \\
O_{2}^{\prime} & =\left\{x_{21}, x_{22}, \ldots, x_{2 n}, x_{2(n+1)}, \ldots, x_{2(n+k)}\right\} \\
\vdots & \\
O_{s}^{\prime} & =\left\{x_{s 1}, x_{s 2}, \ldots, x_{s n}, x_{s(n+1)}, \ldots, x_{s(n+k)}\right\} \\
O_{s+1}^{\prime} & =\left\{x_{(s+1) 1}, x_{(s+1) 2}, \ldots, x_{(s+1) n}, x_{(s+1)(n+1)}, \ldots, x_{(s+1)(n+k)}\right\} \\
\vdots & \\
O_{t}^{\prime} & =\left\{x_{t 1}, x_{t 2}, \ldots, x_{t n}, x_{t(n+1)}, \ldots, x_{t(n+k)}\right\}
\end{aligned}
$$

are all orbits of size $n+k$ under C_{n+k}, we have
$w_{n+k}\left(T_{n+k}\right)=\sum_{i=1}^{t} \sum_{x \in O_{i}^{\prime}} w_{n+k}(x)=\sum_{i=1}^{s} \sum_{x \in O_{i}^{\prime}} w_{n+k}(x)+\sum_{i=s+1}^{t} \sum_{x \in O_{i}^{\prime}} w_{n+k}(x)$.

Question 2. Define $w_{n}(x)$ and $w_{n+k}(y)$ such that

$$
\begin{aligned}
& \sum_{i=1}^{s} \sum_{x \in O_{i}^{\prime}} w_{n+k}(x)=q^{k(k-1)}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}+q^{n+k(k-1)}\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]_{q} \text { and } \\
& \sum_{i=s+1}^{t} \sum_{x \in O_{i}^{\prime}} w_{n+k}(x)=f_{k}(q)[n+k]_{q}
\end{aligned}
$$

The answers for the above Question 1 and 2 will give the constructive proof of the positivity of coefficients of the orbit polynomial $O_{d}^{n, k}(q)$.

Acknowledgements

The author thanks Professor Bruce Sagan for encouraging discussions.

References

[1] G. Andrews, The Friedman-Joichi-Stanton monotonicity conjecture at primes, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 64 (2004), AMS, 9-15.
[2] K. Drudge, On the orbits of Singer groups and their subgroups, Elec. J. Comb. 9 (2002), R15.
[3] M. Haiman, Conjectures on the quotient ring by diagonal invariants, J. Alg. Comb. 3 (1994), 17-76.
[4] V. Reiner, D. Stanton and D. White, The Cyclic Sieving Phenomenon, J. Combin. Theory Ser. A, 108 (1) (2004), 17-50.
[5] B. Sagan, The cyclic sieving phenomenon: a survey, in "Surveys in Combinatorics 2011", London Mathematical Society Lecture Note Series, Vol. 392 (2011), Cambridge University Press, Cambridge, 183-234.
[6] D. Stanton and D. White, Sieved q-Binomial Coefficients, Preprint.
[7] J.R. Stembridge, Some hidden relations involving the ten symmetry classes of plane partitions, J. Combin. Theory Ser A 68 (1994), 372-409.

Jaejin Lee

Department of Mathematics
Hallym University
Chunchon 24252, Korea
E-mail: jjlee@hallym.ac.kr

[^0]: Received July 4, 2017. Revised September 2, 2017. Accepted September 4, 2017. 2010 Mathematics Subject Classification: 05E10.
 Key words and phrases: q-binomial coefficient, cyclic group, action, orbit, orbit polynomial.
 (c) The Kangwon-Kyungki Mathematical Society, 2017.

 This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

