Korean J. Math. **25** (2017), No. 3, pp. 349–358 https://doi.org/10.11568/kjm.2017.25.3.349

CONSTRUCTIVE PROOF FOR THE POSITIVITY OF THE ORBIT POLYNOMIAL $O_d^{n,2}(q)$

JAEJIN LEE

ABSTRACT. The cyclic group $C_n = \langle (12 \cdots n) \rangle$ acts on the set $\binom{[n]}{k}$ of all k-subsets of [n]. In this action of C_n the number of orbits of size d, for $d \mid n$, is

$$O_d^{n,k} = \frac{1}{d} \sum_{\frac{n}{d}|s|n} \mu\left(\frac{ds}{n}\right) \binom{n/s}{k/s}$$

Stanton and White [6] generalized the above identity to construct the orbit polynomials

$$O_d^{n,k}(q) = \frac{1}{[d]_{q^{n/d}}} \sum_{\frac{n}{d}|s|n} \mu\left(\frac{ds}{n}\right) \left[\begin{array}{c} n/s\\ k/s \end{array} \right]_{q^s}$$

and conjectured that $O_d^{n,k}(q)$ have non-negative coefficients. In this paper we give a constructive proof for the positivity of coefficients of the orbit polynomial $O_d^{n,2}(q)$.

1. Introduction

When *n* is a positive integer, we write as $[n] = \{1, 2, ..., n\}$. Let C_n be the cyclic group generated by a permutation $\sigma = (12 \cdots n)$. If $\binom{[n]}{k}$ is the set of all *k*-subsets of [n], C_n acts on $\binom{[n]}{k}$ via

$$(\tau, \{x_1, x_2, \dots, x_k\}) \mapsto \{x_{\tau(1)}, x_{\tau(2)}, \dots, x_{\tau(k)}\}.$$

Received July 4, 2017. Revised September 2, 2017. Accepted September 4, 2017. 2010 Mathematics Subject Classification: 05E10.

Key words and phrases: q-binomial coefficient, cyclic group, action, orbit, orbit polynomial.

[©] The Kangwon-Kyungki Mathematical Society, 2017.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

The number of orbits in this action of C_n is given

(1)
$$O^{n,k} = \frac{1}{n} \sum_{d | \gcd(n,k)} \varphi(d) \binom{n/d}{k/d},$$

and the number of orbits of size d, for $d \mid n$, is

(2)
$$O_d^{n,k} = \frac{1}{d} \sum_{\frac{n}{d}|s|n} \mu\left(\frac{ds}{n}\right) \binom{n/s}{k/s}$$

Here φ is the Euler phi-function and μ is the Möbius function. In preprint [6] Stanton and White constructed the orbit polynomials $O_d^{n,k}(q)$, a *q*-version of (2), and conjectured the following.

CONJECTURE 1.1. Fix $d \mid n$, and any non-negative integer k. Polynomials

$$O_d^{n,k}(q) = \frac{1}{[d]_{q^{n/d}}} \sum_{\frac{n}{d}|s|n} \mu\left(\frac{ds}{n}\right) \left[\begin{array}{c} n/s\\k/s \end{array} \right]_{q^s}$$

have non-negative coefficients.

Here
$$[n]_q = 1 + q + \dots + q^{n-1}$$
, $[n]!_q = [1]_q [2]_q \dots [n]_q$ and
 $\begin{bmatrix} n \\ k \end{bmatrix}_q = \frac{[n]!_q}{[k]!_q [n-k]_q!}$.

Möbius inversion implies

(3)
$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \sum_{d|n} [d]_{q^{n/d}} O_d^{n,k}(q).$$

Andrews [1] and Haiman [3] independently verified the above conjecture when (n, k) = 1. In [4] Reiner, Stanton and White defined the cyclic sieving phenomenon, generalization of Stembridge's q = -1 phenomenon [7], and use it to prove several enumeration problems involving q-binomial coefficients, non-crossing partitions, polygon dissections and some finite field q-analogues. Drudge [2] has proven that $O^{n,k}(q) = \sum_{d|n} O^{n,k}_d(q)$ is the number of orbits of the Singer cycle on the k-dimensional subspaces of an n-dimensional vector space over a field of order q. Recently Sagan [5] gave combinatorial proofs for several theorems appeared in [4].

In this paper we give a new weight for each 2-subset in $\binom{[n]}{2}$, and show that the sum of weights of all 2-subset in $\binom{[n]}{2}$ is equal to the *q*-binomial

coefficient $\begin{bmatrix} n \\ 2 \end{bmatrix}_q$. This will give a combinatorial proof for the positivity of coefficients of the orbit polynomial $O_d^{n,2}(q)$. Finally we suggest a strategy for the constructive proof of the positivity of coefficients of the orbit polynomial $O_d^{n,k}(q)$ for any positive integers n, k with (n, k) = 1.

2. Positivity for the orbit polynomial $O_d^{n,2}(q)$

In this section we write as $ij = \{i, j\}$ for convention. We begin with the recurrence relation of q-binomial coefficient $\begin{bmatrix} n \\ 2 \end{bmatrix}_q$. Using the recurrence relations

$$\begin{bmatrix} n\\k \end{bmatrix}_q = q^k \begin{bmatrix} n-1\\k \end{bmatrix}_q + \begin{bmatrix} n-1\\k-1 \end{bmatrix}_q \text{ and}$$
$$\begin{bmatrix} n\\k \end{bmatrix}_q = \begin{bmatrix} n-1\\k \end{bmatrix}_q + q^{n-k} \begin{bmatrix} n-1\\k-1 \end{bmatrix}_q$$

several times, we get the following identity.

PROPOSITION 2.1. Let $n \ge 2$ be an integer. Then

$$\begin{bmatrix} n+2\\2 \end{bmatrix}_q = q^2 \begin{bmatrix} n\\2 \end{bmatrix}_q + q^{n+2} \begin{bmatrix} n-1\\1 \end{bmatrix}_q + [n+2]_q$$

We now describe the representatives x of orbits in the action of C_n on $\binom{[n]}{2}$. In each orbit O under C_n we choose $1i \in O$ as the representative of O, where

$$(4) 1 < i \le \frac{n}{2} + 1.$$

For example, if n = 10, all orbits are given with representatives underlined as follows. Here a = 10.

$$O_{1} = \langle \underline{12} \rangle = \{\underline{12}, 23, 34, 45, 56, 67, 78, 89, 9a, 1a\}$$

$$O_{2} = \langle \underline{13} \rangle = \{\underline{13}, 24, 35, 46, 57, 68, 79, 8a, 19, 2a\}$$

$$O_{3} = \langle \underline{14} \rangle = \{\underline{14}, 25, 36, 47, 58, 69, 7a, 18, 29, 3a\}$$

$$O_{4} = \langle \underline{15} \rangle = \{\underline{15}, 26, 37, 48, 59, 6a, 17, 28, 39, 4a\}$$

$$O_{0} = \langle \underline{16} \rangle = \{\underline{16}, 27, 38, 49, 5a\}.$$

Let 1i be the representative of an orbit under C_n . We define the weight $w_n(1i)$ as

(5)
$$w_n(1i) = \begin{cases} q^{n+2-2i} & \text{if } i = \frac{n}{2} + 1\\ q^{n+1-2i} & \text{else.} \end{cases}$$

The weights for the other elements than the representatives are given using the weights of representatives in (5).

Assume first gcd(n, 2) = 1. Note that all orbits are of size n by (1) and (2). If $O_i = \{x_{i1}, x_{i2}, \ldots, x_{i(n-1)}, x_{in}\}$ is an orbit of size n with the representative x_{i1} and with the action

$$x_{i1} \xrightarrow{\sigma} x_{i2} \xrightarrow{\sigma} \cdots \xrightarrow{\sigma} x_{i(n-1)} \xrightarrow{\sigma} x_{in} \xrightarrow{\sigma} x_{i1},$$

we define

(6)
$$w_n(x_{ij+1}) = qw_n(x_{ij}) \text{ for } 1 \le j \le n-1.$$

If $gcd(n, 2) \neq 1$, there is only one orbit of size $\frac{n}{2}$ and the other orbits are of size n under the action of C_n . The weights for elements in an orbit of size n are defined in the same way as (6). On the other hand, if $O_0 = \{x_{01}, x_{02}, \ldots, x_{0\frac{n}{2}}\}$ is the orbit of size $\frac{n}{2}$ with the representative x_{01} and with the action

$$x_{01} \xrightarrow{\sigma} x_{02} \xrightarrow{\sigma} \cdots \xrightarrow{\sigma} x_{0\frac{n}{2}} \xrightarrow{\sigma} x_{01},$$

we define

$$w_n(x_{0j+1}) = q^2 w_n(x_{0j})$$
 for $1 \le j \le \frac{n}{2} - 1$.

Then the sum of weights of all elements in $\binom{[n]}{2}$ is equal to the *q*-binomial coefficient $\begin{bmatrix} n \\ 2 \end{bmatrix}_q$ as follows.

THEOREM 2.2. Let $n \ge 2$ be an integer and let T_n be the set of all 2-subsets of [n], i.e., $T_n = \binom{[n]}{2}$. If we set $w_n(T_n) = \sum_{x \in T_n} w_n(x)$, then we have

$$w_n(T_n) = \left[\begin{array}{c} n\\ 2 \end{array} \right]_q.$$

Proof. Computing $w_n(T_n)$ and $\begin{bmatrix} n\\2 \end{bmatrix}_q$ for n = 2, 3, 4, 5 directly, we have

$$w_{2}(T_{2}) = 1 = \begin{bmatrix} 2\\ 2 \end{bmatrix}_{q}$$

$$w_{3}(T_{3}) = 1 + q + q^{2} = \begin{bmatrix} 3\\ 2 \end{bmatrix}_{q}$$

$$w_{4}(T_{4}) = 1 + q + 2q^{2} + q^{3} + q^{4} = \begin{bmatrix} 4\\ 2 \end{bmatrix}_{q}$$

$$w_{5}(T_{5}) = 1 + q + 2q^{2} + 2q^{3} + 2q^{4} + q^{5} + q^{6} = \begin{bmatrix} 5\\ 2 \end{bmatrix}_{q}.$$

We only work out for $n = 2\ell + 1$. The proof for $n = 2\ell$ can be given in the same way with a little modification.

Suppose now $n = 2\ell + 1$ for some $\ell \in \mathbb{N}$ and $w_n(T_n) = \begin{bmatrix} n \\ 2 \end{bmatrix}_q$. Since gcd(n, 2) = gcd(n + 2, 2) = 1, all orbits under C_n are of size n and all orbits under C_{n+2} are of size n + 2. Let

$$x_{11}, x_{21}, \ldots, x_{s1}$$

be all representatives of orbits in the action of C_n , where

$$s = |T_n|/|\text{orbit}| = \binom{n}{2}/n = \frac{1}{2}(n-1).$$

On the other hand, if t is the number of orbits in the action of C_{n+2} ,

$$t = \binom{n+2}{2}/(n+2) = \frac{1}{2}(n+1) = s+1.$$

Let

$$x_{11}, x_{21}, \ldots, x_{s1}, x_{(s+1)1}$$

be all representatives of orbits in the action of C_{n+2} . Then all orbits O_1, O_2, \dots, O_s under the action of C_n are

(7)

$$\begin{aligned}
O_1 &= \{x_{11}, x_{12}, \dots, x_{1(n-1)}, x_{1n}\} \\
O_2 &= \{x_{21}, x_{22}, \dots, x_{2(n-1)}, x_{2n}\} \\
&\vdots \\
O_s &= \{x_{s1}, x_{s2}, \dots, x_{s(n-1)}, x_{sn}\}
\end{aligned}$$

while

 $O_{1}' = \{x_{11}, x_{12}, \dots, x_{1n}, x_{1(n+1)}, x_{1(n+2)}\}$ $O_{2}' = \{x_{21}, x_{22}, \dots, x_{2n}, x_{2(n+1)}, x_{2(n+2)}\}$ $(8) \qquad \vdots$ $O_{s}' = \{x_{s1}, x_{s2}, \dots, x_{sn}, x_{s(n+1)}, x_{s(n+2)}\}$ $O_{s+1}' = \{x_{(s+1)1}, x_{(s+1)2}, \dots, x_{(s+1)n}, x_{(s+1)(n+1)}, x_{(s+1)(n+2)}\}$

are all orbits under C_{n+2} . Let x be the representative of an orbit under the action of C_n . x can be also the representative of an orbit under the action of C_{n+2} . In this case,

$$w_{n+2}(x) = q^2 w_n(x).$$

For example, $x = 12 \in {\binom{[n]}{2}}$ is the representative of an orbit under the action of C_n . The weight of x is

$$w_n(x) = q^{n+1-2\cdot 2} = q^{n-3}.$$

Also, x = 12 can be considered in $T_{n+2} = {\binom{[n+2]}{2}}$ and the weight $w_{n+2}(x)$ is

$$w_{n+2}(x) = q^{(n+2)+1-2\cdot 2} = q^{n-1},$$

so that $w_{n+2}(x) = q^2 w_n(x)$. Another 2-subset $23 = \sigma(12)$ is considered as the element of T_{n+2} as well as T_n . The weight of 23 is

$$w_n(23) = qw_n(12)$$
 and $w_{n+2}(23) = qw_{n+2}(12)$

so that $w_{n+2}(23) = q^2 w_n(23)$. Using this relation we compute $w_{n+2}(T_{n+2})$. Let $r_n(q)$ be the sum of weights of representatives of all orbits of size n. From (7) and assumption we have

$$w_n(T_n) = \sum_{i=1}^s \sum_{x \in O_i} w_n(x) = \sum_{i=1}^s w_n(x_{i1})[n]_q = r_n(q)[n]_q = \begin{bmatrix} n\\ 2 \end{bmatrix}_q.$$

On the other hand, if we use (8), we have

$$w_{n+2}(T_{n+2}) = \sum_{i=1}^{s+1} \sum_{x \in O'_i} w_{n+2}(x) = \sum_{i=1}^s \sum_{x \in O'_i} w_{n+2}(x) + \sum_{x \in O'_{s+1}} w_{n+2}(x).$$

Here

(9)

$$\sum_{i=1}^{s} \sum_{x \in O'_{i}} w_{n+2}(x) = \sum_{i=1}^{s} \sum_{j=1}^{n+2} w_{n+2}(x_{ij}) = \sum_{i=1}^{s} w_{n+2}(x_{i1})[n+2]_{q}$$

$$= \sum_{i=1}^{s} q^{2} w_{n}(x_{i1})([n]_{q} + q^{n}[2]_{q})$$

$$= q^{2} r_{n}(q)[n]_{q} + q^{n+2} r_{n}(q)[2]_{q}$$

$$= q^{2} \left[\begin{array}{c} n \\ 2 \end{array} \right]_{q} + q^{n+2} \left[\begin{array}{c} n \\ 2 \end{array} \right]_{q} \left[2 \right]_{q}$$

$$= q^{2} \left[\begin{array}{c} n \\ 2 \end{array} \right]_{q} + q^{n+2} \left[\begin{array}{c} n-1 \\ 1 \end{array} \right]_{q}.$$

Using (4) we can find the representatives of all orbits under of C_{n+2} . $1(\ell + 2)$ is the only one representative of orbit in the action of C_{n+2} which are not in orbits of the action of C_n . Using the weights given in (5) and (6)

(10)
$$\sum_{x \in O'_{s+1}} w_{n+2}(x) = w_n \left(1(\ell+2) \right) [n+2]_q$$
$$= q^{(2\ell+3)+1-2(\ell+2)} [n+2]_q = [n+2]_q.$$

Combining (9) and (10), we have

$$w_{n+2}(T_{n+2}) = q^2 \begin{bmatrix} n\\2 \end{bmatrix}_q + q^{n+2} \begin{bmatrix} n-1\\1 \end{bmatrix}_q + [n+2]_q$$
$$= \begin{bmatrix} n+2\\2 \end{bmatrix}_q \text{ from Proposition 2.1.}$$

Hence we have $w_n(T_n) = \begin{bmatrix} n \\ 2 \end{bmatrix}_q$ for $n \ge 2$.

THEOREM 2.3. Orbit polynomials $O_n^{n,2}(q)$ is equal to the sum of weights of representatives of all orbits of size n.

Proof. Assume first gcd(n, 2) = 1. Then there are only s orbits of size n under C_n , where $s = \binom{n}{2}/n$. Let O_1, O_2, \ldots, O_s be all orbits of size n

under C_n . Then from the proof of Theorem 2.2 we know that

(11)
$$w_n(T_n) = r_n(q)[n]_q$$

Assume now $gcd(n,2) \neq 1$. Then there are *s* orbits O_1, O_2, \ldots, O_s of size *n* where $s = \binom{n}{2} - \frac{n}{2}/n$, and there is only one orbit

$$O_0 = \{x_{01}, x_{02}, \dots, x_{0\frac{n}{2}}\}$$

of size $\frac{n}{2}$. Hence

(12)
$$w_{n}(T_{n}) = \sum_{x \in \binom{[n]}{2}} w_{n}(x) = \sum_{x \in O_{0}} w_{n}(x) + \sum_{i=1}^{s} \sum_{x \in O_{i}} w_{n}(x)$$
$$= (1 + q^{2} + \dots + q^{n-2}) + \sum_{i=1}^{s} w_{n}(x_{i1})[n]_{q}$$
$$= \left[\frac{n}{2}\right]_{q^{2}} + r_{n}(q)[n]_{q}.$$

From (3), we have

(13)
$$\begin{bmatrix} n \\ 2 \end{bmatrix}_{q} = \begin{cases} [n]_{q} O_{n}^{n,2}(q) & \text{if } \gcd(n,2) = 1 \\ \begin{bmatrix} n \\ 2 \end{bmatrix}_{q^{2}} O_{\frac{n}{2}}^{n,2}(q) + [n]_{q} O_{n}^{n,2}(q) & \text{if } \gcd(n,2) \neq 1. \end{cases}$$

Note that $O_{\frac{n}{2}}^{n,2}(q) = 1$. Comparing (11) and (12) with (13), we have

$$O_n^{n,2}(q) = r_n(q).$$

COROLLARY 2.4. Let $d \mid n$. Then orbit polynomials $O_d^{n,2}(q)$ have non-negative coefficients.

Proof. Since $O_{n/t}^{n,k}(q) = O_{n/t}^{n/t,k/t}(q^t)$, it is sufficient to prove Corollary 2.4 for d = n. Then $O_n^{n,2}(q) = r_n(q)$ by Theorem 2.3 and $r_n(q)$ clearly has non-negative coefficients from the definition.

3. Remark

Let n, k be positive integers with (n, k) = 1. In this section we suggest a strategy for the constructive proof of the positivity of coefficients of the orbit polynomial $O_d^{n,k}(q)$.

Question 1. $\begin{bmatrix} n+k \\ k \end{bmatrix}_q^q$ has recurrence relations similar to Proposition 2.1 for k = 3, 4, 5. It would be interesting to find a recurrence relation of $\begin{bmatrix} n+k \\ k \end{bmatrix}_q$ similar to Proposition 2.1 for an arbitrary positive integer k, i.e., to find the polynomial $f_k(q)$ satisfying the equality

$$\begin{bmatrix} n+k\\k \end{bmatrix}_q = q^{k(k-1)} \begin{bmatrix} n\\k \end{bmatrix}_q + q^{n+k(k-1)} \begin{bmatrix} n-1\\k-1 \end{bmatrix}_q + f_k(q)[n+k]_q.$$

Let $T_n = {\binom{[n]}{k}}$ and $T_{n+k} = {\binom{[n+k]}{k}}$, and let $w_n(x)$ and $w_{n+k}(y)$ be weights of $x \in T_n$ and $y \in T_{n+k}$, respectively. If

$$O_1 = \{x_{11}, x_{12}, \dots, x_{1(n-1)}, x_{1n}\}$$
$$O_2 = \{x_{21}, x_{22}, \dots, x_{2(n-1)}, x_{2n}\}$$
$$\vdots$$
$$O_s = \{x_{s1}, x_{s2}, \dots, x_{s(n-1)}, x_{sn}\}$$

are all orbits of size n in the action of C_n , and

$$O'_{1} = \{x_{11}, x_{12}, \dots, x_{1n}, x_{1(n+1)}, \dots, x_{1(n+k)}\}$$

$$O'_{2} = \{x_{21}, x_{22}, \dots, x_{2n}, x_{2(n+1)}, \dots, x_{2(n+k)}\}$$

$$\vdots$$

$$O'_{s} = \{x_{s1}, x_{s2}, \dots, x_{sn}, x_{s(n+1)}, \dots, x_{s(n+k)}\}$$

$$O'_{s+1} = \{x_{(s+1)1}, x_{(s+1)2}, \dots, x_{(s+1)n}, x_{(s+1)(n+1)}, \dots, x_{(s+1)(n+k)}\}$$

$$\vdots$$

$$O'_{t} = \{x_{t1}, x_{t2}, \dots, x_{tn}, x_{t(n+1)}, \dots, x_{t(n+k)}\}$$

are all orbits of size n + k under C_{n+k} , we have

$$w_{n+k}(T_{n+k}) = \sum_{i=1}^{t} \sum_{x \in O'_i} w_{n+k}(x) = \sum_{i=1}^{s} \sum_{x \in O'_i} w_{n+k}(x) + \sum_{i=s+1}^{t} \sum_{x \in O'_i} w_{n+k}(x).$$

Question 2. Define $w_n(x)$ and $w_{n+k}(y)$ such that

$$\sum_{i=1}^{s} \sum_{x \in O'_{i}} w_{n+k}(x) = q^{k(k-1)} \begin{bmatrix} n \\ k \end{bmatrix}_{q} + q^{n+k(k-1)} \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}_{q} \text{ and}$$
$$\sum_{i=s+1}^{t} \sum_{x \in O'_{i}} w_{n+k}(x) = f_{k}(q)[n+k]_{q}.$$

The answers for the above Question 1 and 2 will give the constructive proof of the positivity of coefficients of the orbit polynomial $O_d^{n,k}(q)$.

Acknowledgements

The author thanks Professor Bruce Sagan for encouraging discussions.

References

- G. Andrews, The Friedman-Joichi-Stanton monotonicity conjecture at primes, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 64 (2004), AMS, 9–15.
- [2] K. Drudge, On the orbits of Singer groups and their subgroups, Elec. J. Comb. 9 (2002), R15.
- [3] M. Haiman, Conjectures on the quotient ring by diagonal invariants, J. Alg. Comb. 3 (1994), 17–76.
- [4] V. Reiner, D. Stanton and D. White, *The Cyclic Sieving Phenomenon*, J. Combin. Theory Ser. A, **108** (1) (2004), 17–50.
- [5] B. Sagan, The cyclic sieving phenomenon: a survey, in "Surveys in Combinatorics 2011", London Mathematical Society Lecture Note Series, Vol. 392 (2011), Cambridge University Press, Cambridge, 183–234.
- [6] D. Stanton and D. White, Sieved q-Binomial Coefficients, Preprint.
- [7] J.R. Stembridge, Some hidden relations involving the ten symmetry classes of plane partitions, J. Combin. Theory Ser A 68 (1994), 372–409.

Jaejin Lee

Department of Mathematics Hallym University Chunchon 24252, Korea *E-mail*: jjlee@hallym.ac.kr