Korean J. Math. **25** (2017), No. 4, pp. 555–561 https://doi.org/10.11568/kjm.2017.25.4.555

SYMMETRY ABOUT CIRCLES AND CONSTANT MEAN CURVATURE SURFACE

SUNG-HO PARK

ABSTRACT. We show that a closed curve invariant under inversions with respect to two intersecting circles intersecting at angle of an irrational multiple of 2π is a circle. This generalizes the well known fact that a closed curve symmetric about two lines intersecting at angle of an irrational multiple of 2π is a circle. We use the result to give a different proof of that a compact embedded cmc surface in \mathbb{R}^3 is a sphere. Finally we show that a closed embedded cmc surface which is invariant under the spherical reflections about two spheres, which intersect at an angle that is an irrational multiple of 2π , is a sphere.

1. Introduction

Let C be a closed curve in \mathbb{R}^2 . If, for each vector $v \in \mathbb{S}^1$, there is a line l_v with direction vector v about which C is symmetric, then C is a circle. More precisely, a closed curve symmetric about two lines, which intersect at an angle of irrational multiple of 2π , is a circle. In [5], McCuan generalized this result. McCuan defined a new notion of symmetry for a compact set in the upper half plane. Let $S_{\rho}(x)$ be a circle of radius ρ with center x.

Received July 27, 2017. Revised December 11, 2017. Accepted Debember 12, 2017.

²⁰¹⁰ Mathematics Subject Classification: 53C24, 53C12.

Key words and phrases: cmc surface, symmetry.

The author was supported by Hankuk University of Foreign Studies Research Fund.

[©] The Kangwon-Kyungki Mathematical Society, 2017.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

S.-H. Park

DEFINITION 1. A compact set K in the upper half plane is symmetric if for each x on the x-axis there is some $\rho = \rho(x) > 0$ such that K is invariant under inversion about $S_{\rho}(x)$.

McCuan showed that a *symmetric* set K in the upper half plane is a circle. We weaken McCuan's condition and show that a closed curve $C \subset \mathbb{R}^2$ which is invariant under inversions about two circles that intersects at an angle of an irrational multiple of 2π is a circle.

For surfaces in \mathbb{R}^3 , Alexandrov developed the moving plane argument to show that a compact embedded cmc surface S in \mathbb{R}^3 is a round sphere [1], [3]. Alexandrov first showed that, for each $n \in \mathbb{S}^2$, there is a symmetry plane Π_n of S with normal vector n. Then for two intersecting symmetry planes Π_{n_1} and Π_{n_2} of S which intersects at an angle of irrational multiple of 2π , S is invariant under rotation about the line $\Pi_{n_1} \cap \Pi_{n_2}$. Since $n_1, n_2 \in \mathbb{S}^2$ can be chosen arbitrarily, S is invariant under rotation about a line ℓ_v for each direction vector $v \in \mathbb{S}^2$. It follows that S is a round sphere.

McCuan used spheres and spherical reflections instead of the planes and reflections about planes to prove Alexandrov's result [4], [5]. We show that a compact embedded cmc surface in \mathbb{R}^3 which is invariant under the spherical reflections about two spheres which intersect at an angle of an irrational multiple of 2π is a round sphere.

2. Inversion and stereographic projection

Let C be a circle in \mathbb{R}^2 centered at the origin with radius r. The inversion $I_C : \mathbb{R}^2 \setminus \{O\} \to \mathbb{R}^2 \setminus \{O\}$ about C is defined by

(1)
$$I_C(p) = \frac{r^2}{|p|^2}p$$

Let $\mathbb{S}^2 \subset \mathbb{R}^3$ be the unit sphere centered at the origin and N = (0, 0, 1)be the north pole. Let $\pi : \mathbb{S}^2 \to \mathbb{R}^2$ be the stereographic projection from N onto the *xy*-plane Π . Then, for $(X, Y) = \pi(x, y, z)$,

(2)
$$(X,Y) = \left(\frac{x}{1-z}, \frac{y}{1-z}\right),$$
$$(x,y,z) = \left(\frac{2X}{1+X^2+Y^2}, \frac{2Y}{1+X^2+Y^2}, \frac{-1+X^2+Y^2}{1+X^2+Y^2}\right).$$

556

557

Let V be a set invariant under I_C in Π . Then the scaled set $\lambda V = \{\lambda x : x \in V\}, \lambda > 0$, is invariant under the inversion $I_{\lambda C}$. Suppose that r = 1. Then

$$\pi^{-1}(I_C(p)) = \pi^{-1}\left(\frac{p}{|p|^2}\right) = R_z\left(\pi^{-1}(p)\right),$$

where R_z is the reflection about Π . Hence $\pi^{-1}(V)$ is invariant under the reflection about Π in \mathbb{R}^3 .

LEMMA 1. Let Γ be a closed curve in Π invariant under two inversions I_{Γ_1} and I_{Γ_2} about two circles Γ_1 and Γ_2 , where the angle between Γ_1 and Γ_2 is an irrational multiple of 2π . Then Γ is a circle.

Proof. Since $\lambda\Gamma$ is invariant under $I_{\lambda\Gamma_i}$, i = 1, 2, we may assume that the radius of Γ_1 is 1. Hence $\pi^{-1}(\Gamma)$ is symmetric about Π in \mathbb{R}^3 as above. Let

$$Rot_1 = \left(\begin{array}{rrr} 1 & 0 & 0\\ 0 & 0 & -1\\ 0 & 1 & 0 \end{array}\right).$$

Then $(Rot_1 \circ \pi^{-1})(\Gamma_1)$ is the great circle of \mathbb{S}^2 on the *xz*-plane and $(Rot_1 \circ \pi^{-1})(\Gamma)$ is invariant under the reflection about the *xz*-plane in \mathbb{R}^3 . We note that $(\pi \circ Rot_1 \circ \pi^{-1})(\Gamma_1)$ is the *x*-axis, and the inversion about Γ_1 corresponds to the reflection about the *x*-axis in Π after $\pi \circ Rot_1 \circ \pi^{-1}$. It is clear that $(\pi \circ Rot_1 \circ \pi^{-1})(\Gamma)$ is invariant under the reflection about the *x*-axis in Π .

Now we use a translation T and a dilation D of Π so that the center of $(T \circ \pi \circ Rot_1 \circ \pi^{-1})(\Gamma_2)$ is symmetric about the *y*-axis, and $(D \circ T \circ \pi \circ Rot_1 \circ \pi^{-1})(\Gamma_2)$ intersects the *x*-axis at (1,0) and (-1,0). For simplicity, we call the *x*-axis as $\tilde{\Gamma}_1$ and $(D \circ T \circ \pi \circ Rot_1 \circ \pi^{-1})(\Gamma_2)$ as $\tilde{\Gamma}_2$ and $(D \circ T \circ \pi \circ Rot_1 \circ \pi^{-1})(\Gamma)$ as $\tilde{\Gamma}$. We note that the inversion about Γ_2 corresponds to the inversion about $\tilde{\Gamma}_2$ after $D \circ T \circ \pi \circ Rot_1 \circ \pi^{-1}$.

We see that $\pi^{-1}(\tilde{\Gamma}_1)$ and $\pi^{-1}(\tilde{\Gamma}_2)$ are great circles in \mathbb{S}^2 with $\pi^{-1}(\tilde{\Gamma}_1) \cap \pi^{-1}(\tilde{\Gamma}_2) = \{ (0,1,0), (0,-1,0) \}$. Let

$$Rot_2 = \left(\begin{array}{rrr} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{array}\right)$$

Then $(\pi \circ Rot_2 \circ \pi^{-1})(\tilde{\Gamma}_1)$ and $(\pi \circ Rot_2 \circ \pi^{-1})(\tilde{\Gamma}_2)$ are straight lines through the origin in Π , and the inversions about Γ_1 and Γ_2 corresponds to the reflections R_1 and R_2 about $(\pi \circ Rot_2 \circ \pi^{-1})(\tilde{\Gamma}_1)$ and $(\pi \circ Rot_2 \circ \pi^{-1})(\tilde{\Gamma}_2)$ S.-H. Park

respectively. Since all the mappings used above are conformal, the angle θ between $(\pi \circ Rot_2 \circ \pi^{-1})(\tilde{\Gamma}_1)$ and $(\pi \circ Rot_2 \circ \pi^{-1})(\tilde{\Gamma}_2)$ is an irrational multiple of 2π . Then $R_2 \circ R_1$ is the rotation of angle 2θ . For $p \in \Gamma$, the point $(\pi \circ Rot_2 \circ \pi^{-1})(\tilde{p})$ is mapped to a dense subset of a circle by $R_2 \circ R_1$. Since $(\pi \circ Rot_2 \circ \pi^{-1})(\tilde{\Gamma})$ is also a closed curve, it follows that $(\pi \circ Rot_2 \circ \pi^{-1})(\tilde{\Gamma})$ is a circle. Since the stereographic projection, inverse stereographic projection, rotations of the plane, translation, dilation sends a circle or a line to a circle or a line, Γ is a circle.

3. Spherical reflection and embedded closed cmc surface in \mathbb{R}^3

Let Σ be a closed embedded surface in \mathbb{R}^3 and let W be the (bounded) region bounded by Σ . We suppose that $W \subset \mathbb{R}^3 \setminus \{O\}$. Let S_{ρ} be the sphere centered at the origin with radius ρ in \mathbb{R}^3 . The spherical reflection SR_{ρ} of $\mathbb{R}^3 \setminus \{O\}$ about S_{ρ} is given by

(3)
$$X \mapsto \frac{\rho^2}{|X|^2} X$$

Let $\Sigma_{\rho}^{-} = \{X \in \Sigma : |X| \ge \rho\}$ and $\Sigma_{\rho}^{+} = \{X \in \Sigma : |X| \le \rho\}$. Since Σ is closed, $\Sigma_{\rho}^{-} = \emptyset$ for large ρ . As ρ decreases, there is ρ_{0} for which Σ_{ρ}^{-} is nonempty for the first time. We denote by $\hat{\Sigma}_{\rho}^{-}$ the reflection of Σ_{ρ}^{-} for $\rho \le \rho_{0}$. Decreasing ρ , we find $\rho_{1} > 0$ for which $\hat{\Sigma}_{\rho}^{-}$ and Σ_{ρ}^{+} are tangent at the image of some $X \in \Sigma_{\rho}^{-}$ for the first time, that is $T_{\hat{X}}\hat{\Sigma}_{\rho}^{-} = T_{X'}\Sigma_{\rho}^{+}$ with $X' \in \Sigma_{\rho}^{+}$ corresponding to \hat{X} . We call X the first touch point.

Let N be the unit normal vector field on Σ pointing into W. The mean curvature H of Σ is computed with respect to N. From now on, we suppose that Σ is a closed embedded cmc surface in \mathbb{R}^3 . We recall the following results from [5].

LEMMA 2. Let X be a closed embedded cmc surface in \mathbb{R}^3 .

(I) The mean curvature $H(X,\rho)$ of Σ at the image of X under the map (3) is given by

$$\hat{H}(X,\rho) = \frac{1}{\rho^2} \left(|X|^2 H + 2X \cdot N \right).$$

(II) For $\rho \ge \rho_1$, $\hat{H}(X, \rho)$ is subharmonic. Therefore $\hat{H}(X, \rho)$ attains maximum at $\partial \hat{\Sigma}_{\rho}^-$. Moreover, for $\rho \ge \rho_1$, we have $\hat{H}(X, \rho) \le H$.

558

Let X be the first touch point of Σ . Then $\hat{\Sigma}_{\rho}^{-}$ lies in the region bounded by Σ_{ρ}^{+} and $S_{\rho_{1}}$. Since $\hat{H}(X,\rho) \leq H$ by Lemma 2 and $T_{\hat{X}}\hat{\Sigma}_{\rho}^{-} = T_{X'}\Sigma_{\rho}^{+}$, one can use the comparison principles for quasilinear elliptic partial differential equations of second order [2] to see that $\hat{\Sigma}_{\rho_{1}}^{-}$ and $\Sigma_{\rho_{1}}^{+}$ are congruent.

We can repeat the above argument for spheres centered at an arbitrary point of $\mathbb{R}^3 \setminus \overline{W}$. In fact, for each fixed point $P \in \mathbb{R}^3 \setminus \overline{W}$, we can find a radius $\rho_1(P)$ such that Σ is invariant under the spherical reflection $SR_{\rho_1}(P)$ about $S_{\rho_1(P)}(P)$:

$$X \mapsto \frac{\rho_1^2(P)}{|X - P|^2} (X - P).$$

Note that $\rho_1(P)$ is a continuous function of P.

Let ℓ be the line through the origin and P. We suppose that ℓ does not intersect Σ . Let Π_P be a plane that contains ℓ .

LEMMA 3. For $P \in \mathbb{R}^3$, $\Pi_P \cap \Sigma$ is either empty, or a single point or a circle.

Proof. Suppose that $\Pi_P \cap \Sigma$ contains a point Q different from $\Pi_P \cap (S_{\rho_1} \cap S_{\rho_1(P)}(P))$. If the angle between S_{ρ_1} and $S_{\rho_1(P)}(P)$ is a rational multiple of 2π , then we use a point P' on ℓ close to P for which the angle between S_{ρ_1} and $S_{\rho_1(P')}(P')$ is an irrational multiple of 2π . Hence we suppose that the angle between S_{ρ_1} and $S_{\rho_1(P)}(P)$ is an irrational multiple of 2π . Then the angle between $\Pi_P \cap S_{\rho_1}$ and $\Pi_P \cap S_{\rho_1(P)}(P)$ is an irrational multiple of 2π . Then the angle between $\Pi_P \cap S_{\rho_1}$ and $\Pi_P \cap S_{\rho_1(P)}(P)$ is an irrational multiple of 2π . Arguing as in the proof of Lemma 1, the inversions $SR_{\rho_1}|_{\Pi_P}$ and $SR_{\rho_1}(P)|_{\Pi_P}$ sends Q into a dense subset of a circle. Hence $\Pi_P \cap \Sigma$ is a circle.

If $\Pi_P \cap \Sigma = \Pi_P \cap (S_{\rho_1} \cap S_{\rho_1(P)}(P))$, then $\Pi_P \cap \Sigma$ is fixed by $SR_{\rho_1}|_{\Pi_P}$ and $SR_{\rho_1}(P)|_{\Pi_P}$. If $\Pi_P \cap \Sigma$ contains more than one point, then one point is different from $(\Pi_P \cap S_{\rho_1}) \cap (\Pi_P \cap S_{\rho_1(P)}(P))$. Therefore $\Pi_P \cap \Sigma$ is a circle.

It follows that Σ is foliated by circles. In [6], the author showed that a cmc surface in \mathbb{R}^3 , which is foliated by circles, is either a sphere, or a surface of rotation with constant mean curvature, that is, the Delaunay surface. We give a different proof of the following theorem using the foliations by circles. S.-H. Park

THEOREM 1. A closed embedded cmc surface Σ in \mathbb{R}^3 is a round sphere.

Proof. We may assume that Σ is in the upper half space \mathbb{R}^3_+ . As observed above, each line ℓ in $\mathbb{R}^3 \setminus \Sigma$ gives a foliation \mathcal{F}_{ℓ} of Σ by circles. Let ℓ be the *x*-axis and ℓ' be the line through (0, 1, 0) and parallel to ℓ . Let C_{ℓ} and $C_{\ell'}$ be the circles of biggest radius in \mathcal{F}_{ℓ} and $\mathcal{F}_{\ell'}$ respectively. Since $\Sigma \subset \mathbb{R}^3_+$, C_{ℓ} and $C_{\ell'}$ are different. Moreover $C_{\ell} \cap C_{\ell'}$ is the end point of the diameter of C_{ℓ} and $C_{\ell'}$.

Let Π^{\perp} be the plane through the center of C_{ℓ} and perpendicular to ℓ . For a circle C' of $\mathcal{F}_{\ell'}$ intersecting $C_{\ell}, C' \cap C_{\ell}$ is symmetric about Π^{\perp} . Hence C' is also symmetric about Π^{\perp} . It is easy to see that the distance between the center of C_{ℓ} and points on C' is the radius of C_{ℓ} . Hence part of Σ is spherical. Since Σ has constant mean curvature, Σ is a sphere by the comparison principle of the quasilinear elliptic partial differential equation of second order.

THEOREM 2. Let Σ be a closed embedded cmc surface \mathbb{R}^3 . If Σ is invariant under two spherical reflections $SR(P_1)$ and $SR(P_2)$ about spheres $S_{\rho_1}(P_1)$ and $S_{\rho_2}(P_2)$. If the angle between $S_{\rho_1}(P_1)$ and $S_{\rho_2}(P_2)$ is an irrational multiple of 2π , then Σ is a sphere.

Proof. We may suppose that P_1 and P_2 is on the x-axis. We denote by Π_{ϕ} the plane containing x-axis with angle to the xy-plane ϕ . Since the angle between $S_{\rho_1}(P_1)$ and $S_{\rho_2}(P_2)$ is an irrational multiple of 2π , $\Pi_{\phi} \cap \Sigma$ is either empty, or a single point, or a circle. Hence Σ is foliated by circles. The conclusion follows from Theorem 1. in [6]

References

- A. D. Alexandrov, Uniqueness theorems for surfaces in the large V, Amer. Math. Soc. Transl. 21 (1962), 412–416.
- [2] D. Gilbarg and N. Trudinger, *Elliptic partial differential equations of second order*, Classics in mathematics, Springer-Verlag, (2001).
- [3] H. Hopf, Differential Geometry in the Large, Lect. Notes Math 1000, Springer-Verlag, Berlin (1989).
- [4] J. McCuan, Symmetry via spherical reflection and spanning drops in a wedge, Pacific J. Math. 180 (2) (1997), 291–323.
- [5] J. McCuan, Symmetry via spherical reflection, J. of Geom. Analysis, Vol. 10, Issue 3 (2000), 545–564

560

Symmetry about circles and constant mean curvature surface 561

 [6] S. Park, Sphere-foliated minimal and constant mean curvature hypersurfaces in space forms and Lorentz-Minkowski Space, Rocky Mountain J. Math. 32 (3) (2002), 1014–1044.

Sung-Ho Park Major in Mathematics Graduate School of Education Hankuk University of Foreign Studies Seoul 130-791, Korea *E-mail*: sunghopark@hufs.ac.kr