SYMMETRY ABOUT CIRCLES AND CONSTANT MEAN CURVATURE SURFACE

Sung-Ho Park

Abstract

We show that a closed curve invariant under inversions with respect to two intersecting circles intersecting at angle of an irrational multiple of 2π is a circle. This generalizes the well known fact that a closed curve symmetric about two lines intersecting at angle of an irrational multiple of 2π is a circle. We use the result to give a different proof of that a compact embedded cmc surface in \mathbb{R}^{3} is a sphere. Finally we show that a closed embedded cmc surface which is invariant under the spherical reflections about two spheres, which intersect at an angle that is an irrational multiple of 2π, is a sphere.

1. Introduction

Let C be a closed curve in \mathbb{R}^{2}. If, for each vector $v \in \mathbb{S}^{1}$, there is a line l_{v} with direction vector v about which C is symmetric, then C is a circle. More precisely, a closed curve symmetric about two lines, which intersect at an angle of irrational multiple of 2π, is a circle. In [5], McCuan generalized this result. McCuan defined a new notion of symmetry for a compact set in the upper half plane. Let $S_{\rho}(x)$ be a circle of radius ρ with center x.

[^0]Definition 1. A compact set K in the upper half plane is symmetric if for each x on the x-axis there is some $\rho=\rho(x)>0$ such that K is invariant under inversion about $S_{\rho}(x)$.

McCuan showed that a symmetric set K in the upper half plane is a circle. We weaken McCuan's condition and show that a closed curve $C \subset$ \mathbb{R}^{2} which is invariant under inversions about two circles that intersects at an angle of an irrational multiple of 2π is a circle.

For surfaces in \mathbb{R}^{3}, Alexandrov developed the moving plane argument to show that a compact embedded cmc surface S in \mathbb{R}^{3} is a round sphere [1], [3]. Alexandrov first showed that, for each $n \in \mathbb{S}^{2}$, there is a symmetry plane Π_{n} of S with normal vector n. Then for two intersecting symmetry planes $\Pi_{n_{1}}$ and $\Pi_{n_{2}}$ of S which intersects at an angle of irrational multiple of $2 \pi, S$ is invariant under rotation about the line $\Pi_{n_{1}} \cap \Pi_{n_{2}}$. Since $n_{1}, n_{2} \in \mathbb{S}^{2}$ can be chosen arbitrarily, S is invariant under rotation about a line ℓ_{v} for each direction vector $v \in \mathbb{S}^{2}$. It follows that S is a round sphere.

McCuan used spheres and spherical reflections instead of the planes and reflections about planes to prove Alexandrov's result [4], [5]. We show that a compact embedded cmc surface in \mathbb{R}^{3} which is invariant under the spherical reflections about two spheres which intersect at an angle of an irrational multiple of 2π is a round sphere.

2. Inversion and stereographic projection

Let C be a circle in \mathbb{R}^{2} centered at the origin with radius r. The inversion $I_{C}: \mathbb{R}^{2} \backslash\{O\} \rightarrow \mathbb{R}^{2} \backslash\{O\}$ about C is defined by

$$
\begin{equation*}
I_{C}(p)=\frac{r^{2}}{|p|^{2}} p \tag{1}
\end{equation*}
$$

Let $\mathbb{S}^{2} \subset \mathbb{R}^{3}$ be the unit sphere centered at the origin and $N=(0,0,1)$ be the north pole. Let $\pi: \mathbb{S}^{2} \rightarrow \mathbb{R}^{2}$ be the stereographic projection from N onto the $x y$-plane Π. Then, for $(X, Y)=\pi(x, y, z)$,

$$
\begin{align*}
(X, Y) & =\left(\frac{x}{1-z}, \frac{y}{1-z}\right) \\
(x, y, z) & =\left(\frac{2 X}{1+X^{2}+Y^{2}}, \frac{2 Y}{1+X^{2}+Y^{2}}, \frac{-1+X^{2}+Y^{2}}{1+X^{2}+Y^{2}}\right) \tag{2}
\end{align*}
$$

Let V be a set invariant under I_{C} in Π. Then the scaled set $\lambda V=\{\lambda x$: $x \in V\}, \lambda>0$, is invariant under the inversion $I_{\lambda C}$. Suppose that $r=1$. Then

$$
\pi^{-1}\left(I_{C}(p)\right)=\pi^{-1}\left(\frac{p}{|p|^{2}}\right)=R_{z}\left(\pi^{-1}(p)\right),
$$

where R_{z} is the reflection about Π. Hence $\pi^{-1}(V)$ is invariant under the reflection about Π in \mathbb{R}^{3}.

Lemma 1. Let Γ be a closed curve in Π invariant under two inversions $I_{\Gamma_{1}}$ and $I_{\Gamma_{2}}$ about two circles Γ_{1} and Γ_{2}, where the angle between Γ_{1} and Γ_{2} is an irrational multiple of 2π. Then Γ is a circle.

Proof. Since $\lambda \Gamma$ is invariant under $I_{\lambda \Gamma_{i}}, i=1,2$, we may assume that the radius of Γ_{1} is 1 . Hence $\pi^{-1}(\Gamma)$ is symmetric about Π in \mathbb{R}^{3} as above. Let

$$
\operatorname{Rot}_{1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right)
$$

Then $\left(R_{0} t_{1} \circ \pi^{-1}\right)\left(\Gamma_{1}\right)$ is the great circle of \mathbb{S}^{2} on the $x z$-plane and $\left(\operatorname{Rot}_{1} \circ \pi^{-1}\right)(\Gamma)$ is invariant under the reflection about the $x z$-plane in \mathbb{R}^{3}. We note that $\left(\pi \circ \operatorname{Rot}_{1} \circ \pi^{-1}\right)\left(\Gamma_{1}\right)$ is the x-axis, and the inversion about Γ_{1} corresponds to the reflection about the x-axis in Π after $\pi \circ \operatorname{Rot}_{1} \circ \pi^{-1}$. It is clear that $\left(\pi \circ \operatorname{Rot}_{1} \circ \pi^{-1}\right)(\Gamma)$ is invariant under the reflection about the x-axis in Π.

Now we use a translation T and a dilation D of Π so that the center of $\left(T \circ \pi \circ \operatorname{Rot}_{1} \circ \pi^{-1}\right)\left(\Gamma_{2}\right)$ is symmetric about the y-axis, and $(D \circ T \circ \pi \circ$ Rot $\left._{1} \circ \pi^{-1}\right)\left(\Gamma_{2}\right)$ intersects the x-axis at $(1,0)$ and $(-1,0)$. For simplicity, we call the x-axis as $\tilde{\Gamma}_{1}$ and $\left(D \circ T \circ \pi \circ \operatorname{Rot}_{1} \circ \pi^{-1}\right)\left(\Gamma_{2}\right)$ as $\tilde{\Gamma}_{2}$ and $\left(D \circ T \circ \pi \circ \operatorname{Rot}_{1} \circ \pi^{-1}\right)(\Gamma)$ as $\tilde{\Gamma}$. We note that the inversion about Γ_{2} corresponds to the inversion about $\tilde{\Gamma}_{2}$ after $D \circ T \circ \pi \circ \operatorname{Rot}_{1} \circ \pi^{-1}$.

We see that $\pi^{-1}\left(\tilde{\Gamma}_{1}\right)$ and $\pi^{-1}\left(\tilde{\Gamma}_{2}\right)$ are great circles in \mathbb{S}^{2} with $\pi^{-1}\left(\tilde{\Gamma}_{1}\right) \cap$ $\pi^{-1}\left(\tilde{\Gamma}_{2}\right)=\{(0,1,0),(0,-1,0)\}$. Let

$$
\operatorname{Rot}_{2}=\left(\begin{array}{ccc}
0 & 0 & -1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

Then $\left(\pi \circ \operatorname{Rot}_{2} \circ \pi^{-1}\right)\left(\tilde{\Gamma}_{1}\right)$ and $\left(\pi \circ \operatorname{Rot}_{2} \circ \pi^{-1}\right)\left(\tilde{\Gamma}_{2}\right)$ are straight lines through the origin in Π, and the inversions about Γ_{1} and Γ_{2} corresponds to the reflections R_{1} and R_{2} about $\left(\pi \circ \operatorname{Rot}_{2} \circ \pi^{-1}\right)\left(\tilde{\Gamma}_{1}\right)$ and $\left(\pi \circ \operatorname{Rot}_{2} \circ \pi^{-1}\right)\left(\tilde{\Gamma}_{2}\right)$
respectively. Since all the mappings used above are conformal, the angle θ between $\left(\pi \circ \operatorname{Rot}_{2} \circ \pi^{-1}\right)\left(\tilde{\Gamma}_{1}\right)$ and $\left(\pi \circ \operatorname{Rot}_{2} \circ \pi^{-1}\right)\left(\tilde{\Gamma}_{2}\right)$ is an irrational multiple of 2π. Then $R_{2} \circ R_{1}$ is the rotation of angle 2θ. For $p \in \Gamma$, the point $\left(\pi \circ \operatorname{Rot}_{2} \circ \pi^{-1}\right)(\tilde{p})$ is mapped to a dense subset of a circle by $R_{2} \circ R_{1}$. Since $\left(\pi \circ \operatorname{Rot}_{2} \circ \pi^{-1}\right)(\tilde{\Gamma})$ is also a closed curve, it follows that $\left(\pi \circ \operatorname{Rot}_{2} \circ \pi^{-1}\right)(\tilde{\Gamma})$ is a circle. Since the stereographic projection, inverse stereographic projection, rotations of the plane, translation, dilation sends a circle or a line to a circle or a line, Γ is a circle.

3. Spherical reflection and embedded closed cmc surface in \mathbb{R}^{3}

Let Σ be a closed embedded surface in \mathbb{R}^{3} and let W be the (bounded) region bounded by Σ. We suppose that $W \subset \mathbb{R}^{3} \backslash\{O\}$. Let S_{ρ} be the sphere centered at the origin with radius ρ in \mathbb{R}^{3}. The spherical reflection $S R_{\rho}$ of $\mathbb{R}^{3} \backslash\{O\}$ about S_{ρ} is given by

$$
\begin{equation*}
X \mapsto \frac{\rho^{2}}{|X|^{2}} X \tag{3}
\end{equation*}
$$

Let $\Sigma_{\rho}^{-}=\{X \in \Sigma:|X| \geq \rho\}$ and $\Sigma_{\rho}^{+}=\{X \in \Sigma:|X| \leq \rho\}$. Since Σ is closed, $\Sigma_{\rho}^{-}=\emptyset$ for large ρ. As ρ decreases, there is ρ_{0} for which Σ_{ρ}^{-}is nonempty for the first time. We denote by $\hat{\Sigma}_{\rho}^{-}$the reflection of Σ_{ρ}^{-}for $\rho \leq \rho_{0}$. Decreasing ρ, we find $\rho_{1}>0$ for which $\hat{\Sigma}_{\rho}^{-}$and Σ_{ρ}^{+}are tangent at the image of some $X \in \Sigma_{\rho}^{-}$for the first time, that is $T_{\hat{X}} \hat{\Sigma}_{\rho}^{-}=T_{X^{\prime}} \Sigma_{\rho}^{+}$ with $X^{\prime} \in \Sigma_{\rho}^{+}$corresponding to \hat{X}. We call X the first touch point.

Let N be the unit normal vector field on Σ pointing into W. The mean curvature H of Σ is computed with respect to N. From now on, we suppose that Σ is a closed embedded cmc surface in \mathbb{R}^{3}. We recall the following results from [5].

Lemma 2. Let X be a closed embedded cmc surface in \mathbb{R}^{3}.
(I) The mean curvature $\hat{H}(X, \rho)$ of $\hat{\Sigma}$ at the image of X under the map (3) is given by

$$
\hat{H}(X, \rho)=\frac{1}{\rho^{2}}\left(|X|^{2} H+2 X \cdot N\right)
$$

(II) For $\rho \geq \rho_{1}, \hat{H}(X, \rho)$ is subharmonic. Therefore $\hat{H}(X, \rho)$ attains maximum at $\partial \hat{\Sigma}_{\rho}^{-}$. Moreover, for $\rho \geq \rho_{1}$, we have $\hat{H}(X, \rho) \leq H$.

Let X be the first touch point of Σ. Then $\hat{\Sigma}_{\rho}^{-}$lies in the region bounded by Σ_{ρ}^{+}and $S_{\rho_{1}}$. Since $\hat{H}(X, \rho) \leq H$ by Lemma 2 and $T_{\hat{X}} \hat{\Sigma}_{\rho}^{-}=$ $T_{X^{\prime}} \Sigma_{\rho}^{+}$, one can use the comparison principles for quasilinear elliptic partial differential equations of second order [2] to see that $\hat{\Sigma}_{\rho_{1}}^{-}$and $\Sigma_{\rho_{1}}^{+}$ are congruent.

We can repeat the above argument for spheres centered at an arbitrary point of $\mathbb{R}^{3} \backslash \bar{W}$. In fact, for each fixed point $P \in \mathbb{R}^{3} \backslash \bar{W}$, we can find a radius $\rho_{1}(P)$ such that Σ is invariant under the spherical reflection $S R_{\rho_{1}}(P)$ about $S_{\rho_{1}(P)}(P)$:

$$
X \mapsto \frac{\rho_{1}^{2}(P)}{|X-P|^{2}}(X-P)
$$

Note that $\rho_{1}(P)$ is a continuous function of P.
Let ℓ be the line through the origin and P. We suppose that ℓ does not intersect Σ. Let Π_{P} be a plane that contains ℓ.

Lemma 3. For $P \in \mathbb{R}^{3}, \Pi_{P} \cap \Sigma$ is either empty, or a single point or a circle.

Proof. Suppose that $\Pi_{P} \cap \Sigma$ contains a point Q different from $\Pi_{P} \cap$ $\left(S_{\rho_{1}} \cap S_{\rho_{1}(P)}(P)\right)$. If the angle between $S_{\rho_{1}}$ and $S_{\rho_{1}(P)}(P)$ is a rational multiple of 2π, then we use a point P^{\prime} on ℓ close to P for which the angle between $S_{\rho_{1}}$ and $S_{\rho_{1}\left(P^{\prime}\right)}\left(P^{\prime}\right)$ is an irrational multiple of 2π. Hence we suppose that the angle between $S_{\rho_{1}}$ and $S_{\rho_{1}(P)}(P)$ is an irrational multiple of 2π. Then the angle between $\Pi_{P} \cap S_{\rho_{1}}$ and $\Pi_{P} \cap S_{\rho_{1}(P)}(P)$ is an irrational multiple of 2π. Arguing as in the proof of Lemma 1, the inversions $\left.S R_{\rho_{1}}\right|_{\Pi_{P}}$ and $\left.S R_{\rho_{1}}(P)\right|_{\Pi_{P}}$ sends Q into a dense subset of a circle. Hence $\Pi_{P} \cap \Sigma$ is a circle.

If $\Pi_{P} \cap \Sigma=\Pi_{P} \cap\left(S_{\rho_{1}} \cap S_{\rho_{1}(P)}(P)\right)$, then $\Pi_{P} \cap \Sigma$ is fixed by $\left.S R_{\rho_{1}}\right|_{\Pi_{P}}$ and $\left.S R_{\rho_{1}}(P)\right|_{\Pi_{P}}$. If $\Pi_{P} \cap \Sigma$ contains more than one point, then one point is different from $\left(\Pi_{P} \cap S_{\rho_{1}}\right) \cap\left(\Pi_{P} \cap S_{\rho_{1}(P)}(P)\right)$. Therefore $\Pi_{P} \cap \Sigma$ is a circle.

It follows that Σ is foliated by circles. In [6], the author showed that a cmc surface in \mathbb{R}^{3}, which is foliated by circles, is either a sphere, or a surface of rotation with constant mean curvature, that is, the Delaunay surface. We give a different proof of the following theorem using the foliations by circles.

Theorem 1. A closed embedded cmc surface Σ in \mathbb{R}^{3} is a round sphere.

Proof. We may assume that Σ is in the upper half space \mathbb{R}_{+}^{3}. As observed above, each line ℓ in $\mathbb{R}^{3} \backslash \Sigma$ gives a foliation \mathcal{F}_{ℓ} of Σ by circles. Let ℓ be the x-axis and ℓ^{\prime} be the line through $(0,1,0)$ and parallel to ℓ. Let C_{ℓ} and $C_{\ell^{\prime}}$ be the circles of biggest radius in \mathcal{F}_{ℓ} anf $\mathcal{F}_{\ell^{\prime}}$ respectively. Since $\Sigma \subset \mathbb{R}_{+}^{3}, C_{\ell}$ and $C_{\ell^{\prime}}$ are different. Moreover $C_{\ell} \cap C_{\ell^{\prime}}$ is the end point of the diameter of C_{ℓ} and $C_{\ell^{\prime}}$.

Let Π^{\perp} be the plane through the center of C_{ℓ} and perpendicular to ℓ. For a circle C^{\prime} of $\mathcal{F}_{\ell^{\prime}}$ intersecting $C_{\ell}, C^{\prime} \cap C_{\ell}$ is symmetric about Π^{\perp}. Hence C^{\prime} is also symmetric about Π^{\perp}. It is easy to see that the distance between the center of C_{ℓ} and points on C^{\prime} is the radius of C_{ℓ}. Hence part of Σ is spherical. Since Σ has constant mean curvautre, Σ is a sphere by the comparison principle of the quasilinear elliptic partial differential equation of second order.

Theorem 2. Let Σ be a closed embedded cmc surface \mathbb{R}^{3}. If Σ is invariant under two spherical reflections $S R\left(P_{1}\right)$ and $S R\left(P_{2}\right)$ about spheres $S_{\rho_{1}}\left(P_{1}\right)$ and $S_{\rho_{2}}\left(P_{2}\right)$. If the angle between $S_{\rho_{1}}\left(P_{1}\right)$ and $S_{\rho_{2}}\left(P_{2}\right)$ is an irrational multiple of 2π, then Σ is a sphere.

Proof. We may suppose that P_{1} and P_{2} is on the x-axis. We denote by Π_{ϕ} the plane containing x-axis with angle to the $x y$-plane ϕ. Since the angle between $S_{\rho_{1}}\left(P_{1}\right)$ and $S_{\rho_{2}}\left(P_{2}\right)$ is an irrational multiple of 2π, $\Pi_{\phi} \cap \Sigma$ is either empty, or a single point, or a circle. Hence Σ is foliated by circles. The conclusion follows from Theorem 1. in [6]

References

[1] A. D. Alexandrov, Uniqueness theorems for surfaces in the large V, Amer. Math. Soc. Transl. 21 (1962), 412-416.
[2] D. Gilbarg and N. Trudinger, Elliptic partial differential equations of second order, Classics in mathematics, Springer-Verlag, (2001).
[3] H. Hopf, Differential Geometry in the Large, Lect. Notes Math 1000, SpringerVerlag, Berlin (1989).
[4] J. McCuan, Symmetry via spherical reflection and spanning drops in a wedge, Pacific J. Math. 180 (2) (1997), 291-323.
[5] J. McCuan, Symmetry via spherical reflection, J. of Geom. Analysis, Vol. 10, Issue 3 (2000), 545-564
[6] S. Park, Sphere-foliated minimal and constant mean curvature hypersurfaces in space forms and Lorentz-Minkowski Space, Rocky Mountain J. Math. 32 (3) (2002), 1014-1044.

Sung-Ho Park

Major in Mathematics
Graduate School of Education
Hankuk University of Foreign Studies
Seoul 130-791, Korea
E-mail: sunghopark@hufs.ac.kr

[^0]: Received July 27, 2017. Revised December 11, 2017. Accepted Debember 12, 2017.

 2010 Mathematics Subject Classification: 53C24, 53C12.
 Key words and phrases: cmc surface, symmetry.
 The author was supported by Hankuk University of Foreign Studies Research Fund.
 (c) The Kangwon-Kyungki Mathematical Society, 2017.

 This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

