MODAL, NECESSITY, SUFFICIENCY AND CO-SUFFICIENCY OPERATORS

YONG CHAN KIM

ABSTRACT. We investigate the properties of modal, necessity, sufficiency and co-sufficiency operators. We show that their operations induce various relations, respectively.

1. Introduction

Pawlak [5] introduced rough set theory to generalize the classical set theory. Rough approximations are defined by a partition of the universe which is corresponding to the equivalence relation about information. An information consists of (X, A) where X is a set of objects and A is a set of attributes, a map $a: X \to P(A_a)$ where A_a is the value set of the attribute a. Recently, intensional modal-like logics with the propositional operators induced by relations are important mathematical tools for data analysis and knowledge processing [1-3, 6-9].

In this paper, we investigate the properties of modal, necessity, sufficiency and co-sufficiency operators. We show that their operations induce various relations, respectively.

2. Preliminaries

DEFINITION 2.1. [2] Let P(X), P(Y) be the families of subsets on X and Y, respectively. Then a map $F: P(X) \to P(Y)$ is called

- (1) modal operator if $F(\bigcup_{i\in\Gamma} A_i) = \bigcup_{i\in\Gamma} F(A_i), F(\emptyset) = \emptyset$,
- (2) necessity operator if $F(\bigcap_{i\in\Gamma} A_i) = \bigcap_{i\in\Gamma} F(A_i), F(X) = Y,$
- (3) sufficiency operator if $F(\bigcup_{i\in\Gamma} A_i) = \bigcap_{i\in\Gamma} F(A_i), \ F(\emptyset) = Y,$
- (4) co-sufficiency operator if $F(\bigcap_{i\in\Gamma}A_i)=\bigcup_{i\in\Gamma}F(A_i), \ F(X)=\emptyset.$

Received July 2, 2012. Revised September 10, 2012. Accepted September 12, 2012.

²⁰¹⁰ Mathematics Subject Classification: 06A06, 06A15, 06B30, 54F05, 68U35. Key words and phrases: Modal, necessity, sufficiency and co-sufficiency operators.

(5) a dual operator F^{∂} is defined by $F^{\partial}(A) = F(A^c)^c$. Moreover, we define $F^c(A) = (F(A))^c$ and $F^*(A) = F(A^c)$.

DEFINITION 2.2. [2,4] Let $R \subset P(X \times Y)$ be a relation. For each $A \in P(X)$, we define operations $(y,x) \in R^{-1}$ iff $(x,y) \in R$ and $[R], [[R]], \langle R \rangle, \langle \langle R \rangle \rangle, [R]^*, \langle R \rangle^* : P(X) \to P(Y)$ as follows:

$$[R](A) = \{ y \in Y \mid (\forall x)((x,y) \in R \to x \in A) \},$$

$$[[R]](A) = \{ y \in Y \mid (\forall x \in X)(x \in A \to (x,y) \in R) \}$$

$$\langle R \rangle (A) = \{ y \in Y \mid (\exists x \in X)((x,y) \in R, x \in A) \}$$

$$\langle \langle R \rangle \rangle (A) = \{ y \in Y \mid (\exists x \in X)((x,y) \in R^c, x \in A^c) \},$$

$$[R]^*(A) = \{ y \in Y \mid (\forall x \in X)((x,y) \in R \to x \in A^c) \}$$

$$\langle R \rangle^*(A) = \{ y \in Y \mid (\exists x \in X)((x,y) \in R, x \in A^c) \}.$$

THEOREM 2.3. [2] Let $R \subset P(X \times Y)$ be a relation.

- (1) $\langle R \rangle$ is a modal operator and [R] is a necessity operator with $\langle R \rangle (A) = ([R](A^c))^c = [R]^{\partial}(A)$, for each $A \in P(X)$.
- (2) If $F: P(X) \to P(Y)$ is a modal operator on P(X), there exists a unique relation $R_F \subset P(X \times Y)$ such that $\langle R_F \rangle = F$ and $[R_F] = F^{\partial}$ where $(x, y) \in R_F$ iff $y \in F(\{x\})$.
 - (3) $R_{\langle R \rangle} = R$.

3. Modal, necessity, sufficiency and co-sufficiency operators

LEMMA 3.1. Let $F,G:P(X)\to P(Y)$ be operators. Then the following properties hold:

- (1) $(F^{\partial})^{\partial} = F$, $(F^c)^c = F$ and $(F^*)^* = F$.
- (2) $(F^{\partial})^* = (F^*)^{\partial}$, $(F^{\partial})^c = (F^c)^{\partial}$ and $(F^*)^c = (F^c)^* = F^{\partial}$.
- (3) $(F \cup G)^{\partial} = F^{\partial} \cap G^{\partial}$, $(F \cup G)^* = F^* \cup G^*$ and $(F \cup G)^c = F^c \cap G^c$.
- (4) $F, G: P(X) \to P(Y)$ are modal operators, then $F \cup G$ is a model operator and it's dual operator $F^{\partial} \cap G^{\partial}$ is a necessity operator.
- (5) $F, G: P(X) \to P(Y)$ are necessity operators, then $F \cap G$ is a necessity operator and it's dual operator $F^{\partial} \cap G^{\partial}$ is a model operator.

$$\begin{array}{l} \textit{Proof.} \ \ (1) \ \ (F^{\partial})^{\partial}(A) = (F^{\partial}(A^c))^c = F(A). \\ (2) \ \ (F^{\partial})^*(A) = F^{\partial}(A^c) = F^c(A) = (F^*(A^c))^c = (F^*)^{\partial}(A). \\ (F^{\partial})^c(A) = (F^{\partial}(A))^c = F(A^c) = (F^c(A^c))^c = (F^c)^{\partial}(A). \end{array}$$

- (3) $(F \cup G)^{\partial}(A) = ((F \cup G)(A^c))^c = (F(A^c))^c \cap (F(A^c))^c = F^{\partial}(A) \cap G^{\partial}(A)$. Other cases are similarly proved.
 - (4) and (5) are easily proved from (3).

LEMMA 3.2. (1) A map $F: P(X) \to P(Y)$ is a modal operator iff $F^{\partial}: P(X) \to P(Y)$ is a necessity operator.

- (2) A map $F: P(X) \to P(Y)$ is a sufficiency operator iff $F^{\partial}: P(X) \to P(Y)$ is a co-sufficiency operator operator.
- (3) A map $F: P(X) \to P(Y)$ is a modal operator iff $F^c: P(X) \to P(Y)$ is a sufficient operator.
- (4) A map $F: P(X) \to P(Y)$ is a co-sufficiency operator iff $F^c: P(X) \to P(Y)$ is a necessity operator operator.
- (5) A map $F: P(X) \to P(Y)$ is a sufficiency operator iff $F^*: P(X) \to P(Y)$ is a necessity operator operator.
- (6) A map $F: P(X) \to P(Y)$ is a modal operator iff $F^*: P(X) \to P(Y)$ is a co-sufficiency operator.

Proof. (1) Let $F: P(X) \to P(Y)$ be a modal operator.

$$F^{\partial}(\bigcap_{i \in \Gamma} A_i) = \left(F(\bigcup_{i \in \Gamma} A_i^c)\right)^c = \left(\bigcup_{i \in \Gamma} F(A_i^c)\right)^c$$
$$= \bigcap_{i \in \Gamma} (F(A_i^c))^c = \bigcap_{i \in \Gamma} F^{\partial}(A_i).$$
$$F^{\partial}(X) = \left(F(X^c)\right)^c = \left(F(\emptyset)\right)^c = Y.$$

Conversely, $(F^{\partial})^{\partial}(A) = (F^{\partial}(A^c))^c = F(A)$.

$$F(\bigcup_{i \in \Gamma} A_i) = \left(F^{\partial}(\bigcap_{i \in \Gamma} A_i^c)\right)^c = \left(\bigcap_{i \in \Gamma} F^{\partial}(A_i^c)\right)^c$$
$$= \bigcup_{i \in \Gamma} (F^{\partial}(A_i^c))^c = \bigcup_{i \in \Gamma} F(A_i).$$
$$F(\emptyset) = \left(F^{\partial}((\emptyset)^c)\right)^c = F(X)^c = \emptyset.$$

(2), (3) and (4) are similarly proved as same in (1).

THEOREM 3.3. Let $R \subset P(X \times Y)$ be a relation.

- (1) $\langle \langle R \rangle \rangle^*$ is a modal operator and $[[R]]^*$ is a necessity operator with $\langle \langle R \rangle \rangle^* (A) = ([[R]]^* (A^c))^c = ([[R]]^*)^{\partial} (A)$ for each $A \in P(X)$.
- (2) If $F: P(X) \to P(Y)$ is a modal operator on P(X), there exists a unique relation $R_F \subset P(X \times Y)$ such that $\langle \langle R_F \rangle \rangle^* = F$ and $[[R_F]]^* = F^{\partial}$ where $(x, y) \in R_F$ iff $y \in F(\{x\})^c$.
 - (3) $R_{\langle\langle R\rangle\rangle^*} = R$.

Proof. (1) We have $\langle \langle R \rangle \rangle^*(A) = ([[R]]^*(A^c))^c = ([[R]]^*)^{\partial}(A)$ from:

$$y \in ([[R]]^*(A^c))^c \text{ iff } \left((\forall x \in X)(X \in A \to (x,y) \in R) \right)^c$$

$$\text{iff } \left((\forall x \in X)((x,y) \in R^c, x \in A)^c \right)^c$$

$$\text{iff } (\exists x \in X)((x,y) \in R^c, x \in A)$$

$$\text{iff } y \in \langle \langle R \rangle \rangle^*(A).$$

(2) Since $A = \bigcup_{x \in A} \{x\}$ and $F(A) = \bigcup_{x \in A} F(\{x\})$, we have

$$y \in \langle \langle R_F \rangle \rangle^*(A) \text{ iff } (\exists x \in X)((x,y) \in R_F^c \& x \in A)$$
$$\text{iff } (\exists x \in X)(y \in F(\{x\}) \& x \in A)$$
$$\text{iff } y \in \bigcup_{x \in A} F(\{x\}) = F(\bigcup_{x \in A} \{x\}) = F(A).$$

$$y \in [[R_F]]^*(A) \text{ iff } (\forall x \in X)(x \in A^c \to (x,y) \in R_F))$$

$$\text{iff } (\forall x \in X)((x,y) \in R_F^c \to x \in A))$$

$$\text{iff } (\forall x \in X)(y \in F(\{x\}) \to x \in A))$$

$$\text{iff } \left((\exists x \in X)(y \in F(\{x\}) \& x \in A^c)\right)^c$$

$$\text{iff } y \in \left(\bigcup_{x \in A^c} F(\{x\})\right)^c = (F(A^c))^c = F^{\partial}(A).$$

$$(x,y) \in R_{\langle\langle R \rangle\rangle^*} \text{ iff } y \in \langle\langle R \rangle\rangle^* (\{x\})^c$$

$$\text{iff } \left((\exists z \in X)((z,y) \in R^c \& z \in \{x\}) \right)^c$$

$$\text{iff } (x,y) \in (R^c)^c = R.$$

THEOREM 3.4. Let $R \in P(X \times Y)$ be a relation.

- (1) [[R]] is a sufficiency operator and $\langle \langle R \rangle \rangle$ is a co-sufficiency operator with $\langle \langle R \rangle \rangle (A) = ([[R]](A^c))^c = [[R]]^{\partial}(A)$ for each $A \in P(X)$.
- (2) If $F: P(X) \to P(Y)$ is a sufficiency operator on P(X), there exists a unique relation $R_F \in P(X \times Y)$ such that $[[R_F]] = F$ and $\langle \langle R_F \rangle \rangle = F^{\partial}$ where $(x, y) \in R_F$ iff $y \in F(\{x\})$.
 - (3) $R_{[[R]]} = R$.

Proof. (1) We have
$$\langle \langle R \rangle \rangle (A) = ([[R]](A^c))^c = [[R]]^{\partial}(A)$$
 from:

$$x \in ([[R]](A^c))^c \text{ iff } \left((\forall y \in X)(y \in A^c \to (x,y) \in R) \right)^c$$

$$\text{iff } \left((\forall y \in X)((x,y) \in R^c \& y \in A^c)^c \right)^c$$

$$\text{iff } (\exists y \in X)((x,y) \in R^c \& y \in A^c)$$

$$\text{iff } x \in \langle \langle R \rangle \rangle (A).$$

(2) Since
$$F(\bigcup_{x \in A} \{x\}) = \bigcap_{x \in A} F(\{x\})$$
, we have

$$y \in [[R_F]](A) \text{ iff } (\forall x \in X)(x \in A \to (x, y) \in R_F)$$
$$\text{iff } (\forall x \in X)(x \in A \to y \in F(\{x\}))$$

$$\text{iff } y \in \bigcap_{x \in A} F(\{x\}) = F(\bigcup_{x \in A} \{x\}) = F(A).$$

$$y \in \langle \langle R_F \rangle \rangle (A) \text{ iff } (\exists x \in X) ((x, y) \in R_F^c \& x \in A^c)$$

$$\text{iff } (\exists x \in X) (y \in F(\{x\})^c \& x \in A^c)$$

$$\text{iff } y \in \bigcup_{x \in A^c} F(\{x\})^c = (\bigcap_{x \in A^c} F(\{x\}))^c$$

$$\text{iff } y \in (F(\bigcup_{x \in A^c} \{x\}))^c = (F(A^c))^c = F^{\partial}(A).$$

(3)
$$(x,y) \in R_{[[R]]} \text{ iff } (\forall z \in X)(z \in \{x\} \to (z,y) \in R)$$

$$\text{iff } (x,y) \in R.$$

THEOREM 3.5. Let $R \in P(X \times Y)$ be a relation.

- (1) $[R]^*$ is a sufficiency operator and $\langle R \rangle^*$ is a co-sufficiency operator with $[R]^*(A) = (\langle R \rangle^*(A^c))^c$.
- (2) If $F: P(X) \to P(Y)$ is a sufficiency operator on P(X), there exists a unique relation $R_F \in P(X \times Y)$ such that $[R_F]^* = F$ and $\langle R_F \rangle^* = F^{\partial}$ where $(x, y) \in R_F$ iff $y \in F(\{x\})^c$.
 - (3) $R_{[R]^*} = R$.

Proof. (1)

$$y \in (\langle R \rangle^* (A^c))^c \text{ iff } \left((\exists x \in X) (x \in A \& (x, y) \in R) \right)^c$$

 $\text{iff } (\forall x \in X) ((x, y) \in R \to x \in A^c)$
 $\text{iff } y \in [R]^* (A).$

(2)

$$y \in [R_F]^*(A) \text{ iff } (\forall x \in X)((x,y) \in R_F \to x \in A^c)$$
$$\text{iff } (\forall x \in X)(x \in A \to y \in F(\{x\}))$$
$$\text{iff } y \in \bigcap_{x \in A} F(\{x\}) = F(\bigcup_{x \in A} \{x\}) = F(A).$$

$$y \in \langle R_F \rangle^*(A) \text{ iff } (\exists x \in X)((x,y) \in R_F \& x \in A^c)$$

$$\text{iff } (\exists x \in X)(y \in F(\{x\})^c \& x \in A^c)$$

$$\text{iff } \left((\forall x \in X)(x \in A^c \to y \in F(\{x\})) \right)^c$$

$$\text{iff } y \in \left(\bigcap_{x \in A^c} (F(\{x\})) \right)^c$$

$$\text{iff } y \in \left(F(\bigcup_{x \in A^c} \{x\}) \right)^c = (F(A^c))^c$$

$$\text{iff } y \in F^{\partial}(A).$$

(3)

$$(x,y) \in R_{[R]^*} \text{ iff } y \in [R]^*(\{x\}^c)^c$$

$$\text{iff } \left((\forall z \in X)((z,y) \in R \to z \in \{x\}^c) \right)^c$$

$$\text{iff } (x,y) \in R.$$

Theorem 3.6. Let $R \subset P(X \times Y)$ be a relation.

(1) If $F: P(X) \to P(Y)$ is a necessity operator on P(X), there exists a unique relation $R_F \in P(X \times Y)$ such that $[R_F] = F$ and $\langle R_F \rangle = F^{\partial}$ where $(x, y) \in R_F$ iff $y \in F(\{x\}^c)^c$.

(2) $R_{[R]} = R$.

Proof. (1)

$$y \in [R_F](A) \text{ iff } (\forall x \in X)((x,y) \in R_F \to x \in A)$$
$$\text{iff } (\forall x \in X)(y \in F(\{x\}^c)^c \to x \in A)$$
$$\text{iff } (\forall x \in X)(x \in A^c \to y \in F(\{x\}^c))$$
$$\text{iff } y \in \bigcap_{x \in A^c} F(\{x\}^c) = F(\bigcap_{x \in A^c} \{x\}^c) = F(A).$$

$$y \in \langle R_F \rangle(A) \text{ iff } (\exists x \in X)((x,y) \in R_F \& x \in A)$$

$$\text{iff } (\exists x \in X)(y \in F(\{x\}^c)^c \& x \in A)$$

$$\text{iff } \left((\forall x \in X)(x \in A \to y \in F(\{x\}^c))\right)^c$$

$$\text{iff } y \in \left(\bigcap_{x \in A} F(\{x\}^c)\right)^c = \left(F(\bigcap_{x \in A} \{x\}^c)\right)^c$$

$$\text{iff } y \in F(A^c)^c \text{ iff } y \in F^{\partial}(A).$$

(2)

$$(x,y) \in R_{[R]} \text{ iff } y \in [R](\{x\}^c)^c$$

$$\text{iff } \left((\forall z \in X)((z,y) \in R \to z \in \{x\}^c) \right)^c$$

$$\text{iff } (x,y) \in R.$$

THEOREM 3.7. Let $R \in P(X \times Y)$ be a relation.

(1) If $F: P(X) \to P(Y)$ is a co-sufficiency operator on P(X), there exists a unique relation $R_F \in P(X \times Y)$ such that $\langle \langle R_F \rangle \rangle = F$ and $[[R_F]] = F^{\partial}$ where $(x, y) \in R_F$ iff $y \in F(\{x\}^c)^c$.

(2)
$$R_{\langle\langle R_F \rangle\rangle} = R$$
.

Proof. (1)

$$y \in \langle \langle R_F \rangle \rangle(A) \text{ iff } (\exists x \in X)((x,y) \in R_F^c \& x \in A^c)$$
$$\text{iff } (\exists x \in X)(y \in F(\{x\}^c) \& x \in A^c)$$
$$\text{iff } y \in \bigcup_{x \in A^c} F(\{x\}^c) = F(\bigcap_{x \in A^c} \{x\}^c) = F(A).$$

$$y \in [[R_F]](A) \text{ iff } (\forall x \in X)(x \in A \to (x, y) \in R_F)$$

$$\text{iff } (\forall x \in X)(x \in A \to y \in F(\{x\}^c)^c)$$

$$\text{iff } \left((\exists x \in X)(x \in A \& y \in F(\{x\}^c))\right)^c$$

$$\text{iff } y \in \left(\bigcup_{x \in A} F(\{x\}^c)\right)^c$$

$$\text{iff } y \in \left(F(\bigcap_{x \in A} \{x\}^c)\right)^c$$

$$\text{iff } y \in F(A^c)^c = F^{\partial}(A).$$

(2)

$$\begin{split} (x,y) \in R_{\langle\langle R \rangle\rangle} \text{ iff } y \in \langle\langle R \rangle\rangle(\{x\}^c)^c \\ \text{ iff } \Big((\exists z \in X)((z,y) \in R^c \ \& \ z \in \{x\}^c) \Big)^c \\ \text{ iff } (x,y) \in R. \end{split}$$

THEOREM 3.8. Let $R \in P(X \times Y)$ be a relation.

- (1) If $F: P(X) \to P(Y)$ is a necessity operator on P(X), there exists a unique relation $R_F \in P(X \times Y)$ such that $[[R_F]]^* = F$ and $\langle \langle R_F \rangle \rangle^* = F^{\partial}$ where $(x, y) \in R_F$ iff $y \in F(\{x\}^c)$.
 - (2) $R_{[R_F]} = R$.

Proof. (1)

$$y \in [[R_F]]^*(A) \text{ iff } (\forall x \in X)(x \in A^c \to (x,y) \in R_F)$$
$$\text{iff } (\forall x \in X)(x \in A^c \to y \in F(\{x\}^c))$$
$$\text{iff } y \in \bigcap_{x \in A^c} F(\{x\}^c) = F(\bigcap_{x \in A^c} \{x\}^c) = F(A).$$

$$x \in \langle \langle R_F \rangle \rangle^*(A) \text{ iff } (\exists x \in X)((x,y) \in R_F^c \& x \in A)$$

$$\text{iff } (\exists x \in X)(y \in F(\{x\}^c)^c \& x \in A)$$

$$\text{iff } \left((\forall x \in X)(x \in A \to y \in F(\{x\}^c)) \right)^c$$

$$\text{iff } y \in \left(\bigcap_{x \in A} F(\{x\}^c) \right)^c = \left(F(\bigcap_{x \in A} \{x\}^c) \right)^c$$

$$\text{iff } y \in F(A^c)^c \text{ iff } y \in F^{\partial}(A).$$

(2)

$$(x,y) \in R_{[[R_F]]^*}$$
 iff $y \in [[R_F]]^*(\{x\}^c)$
iff $(\forall z \in X)(z \in \{x\} \to (z,y) \in R)$
iff $(x,y) \in R$.

THEOREM 3.9. Let $R \in P(X \times Y)$ be a relation.

(1) If $F: P(X) \to P(Y)$ is a co-sufficiency operator on P(X), there exists a unique relation $R_F \in P(X \times Y)$ such that $\langle R_F \rangle^* = F$ and $[R_F]^* = F^{\partial}$ where $(x, y) \in R_F$ iff $y \in F(\{x\}^c)$.

(2) $R_{\langle R_F \rangle^*} = R$.

Proof. (1)

$$y \in \langle R_F \rangle^* \text{ iff } (\exists x \in X)((x,y) \in R_F \& x \in A^c)$$
$$\text{iff } (\exists x \in X)(y \in F(\{x\}^c) \& x \in A^c)$$
$$\text{iff } y \in \bigcup_{x \in A^c} F(\{x\}^c) = F(\bigcap_{x \in A^c} \{x\}^c) = F(A).$$

$$y \in [R_F]^*(A) \text{ iff } (\forall x \in X)(x \in (x,y) \in R_F \to x \in A^c)$$

$$\text{iff } \left((\exists x \in X)(x \in A \& (x,y) \in R_F) \right)^c$$

$$\text{iff } \left((\exists x \in X)(x \in A \& y \in F(\{x\}^c)) \right)^c$$

$$\text{iff } y \in \left(\bigcup_{x \in A} F(\{x\}^c) \right)^c$$

$$\text{iff } y \in \left(F(\bigcap_{x \in A} \{x\}^c) \right)^c$$

$$\text{iff } y \in F(A^c)^c = F^{\partial}(A).$$

(2)

$$(x,y) \in R_{\langle R_F \rangle^*} \text{ iff } y \in \langle R_F \rangle^* (\{x\}^c)$$
$$\text{iff } \left((\exists z \in X) ((z,y) \in R^c \& z \in \{x\}) \right)^c$$
$$\text{iff } (x,y) \in R.$$

Example 3.10. Let $X=\{a,b,c\}$ and $Y=\{x,y,z\}$ be a set. Define $F,G:P(X)\to P(Y)$ as

$$F(\{a\}) = \emptyset, F(\{b\}) = \{x\}, F(\{c\}) = \{y, z\},$$

$$G(\{a\}) = X, G(\{b\}) = \{x, y\}, G(\{c\}) = \{y, z\},$$

$$H(\{b, c\}) = \{x\}, H(\{c, a\}) = \{x, y\}, H(\{a, b\}) = \{z\}.$$

(1) If F is a modal operator, then, by Theorem 2.3,

$$F(A) = \begin{cases} \emptyset, & \text{if } A \in \{\emptyset, \{a\}\}, \\ \{x\}, & \text{if } A \in \{\{b\}, \{a, b\}\}, \\ \{y, z\}, & \text{if } A \in \{\{c\}, \{a, c\}\}, \\ Y, & \text{if } A \in \{\{b, c\}, X\}. \end{cases}$$

Since $(x, y) \in R_F$ iff $y \in F(\{x\})$, we obtain:

$$R_F = \{(b, x), (c, y), (c, z)\}, \langle R_F \rangle = F, [R_F] = F^{\partial}.$$

(2) If F is a modal operator, then, by Theorem 3.3, we obtain F as same in (1). Since $(x, y) \in R_F$ iff $y \in F(\{x\})^c$, we obtain:

$$R_F = \{(a, x), (a, y), (a, z), (b, y), (b, z), (c, x)\},\$$
$$\langle \langle R_F \rangle \rangle^* = F, [[R_F]]^* = F^{\partial}.$$

(3) If G is a sufficiency operator, then, by Theorem 3.4,

$$G(A) = \begin{cases} Y, & \text{if } A \in \{\emptyset, \{a\}\}, \\ \{x, y\}, & \text{if } A \in \{\{b\}, \{a, b\}\}, \\ \{y, z\}, & \text{if } A \in \{\{c\}, \{a, c\}\}, \\ \{y\}, & \text{if } A \in \{\{b, c\}, X\}. \end{cases}$$

Since $(x, y) \in R_G$ iff $y \in G(\{x\})$, we obtain:

$$R_G = \{(a, x), (a, y), (a, z), (b, x), (b, y), (c, y), (c, z)\},$$

$$[[R_G]] = G, \langle \langle R_G \rangle \rangle = G^{\partial}.$$

(4) If G is a sufficiency operator, then, by Theorem 3.5, we obtain G as same in (3). Since $(x, y) \in R_G$ iff $y \in G(\{x\})^c$, we obtain:

$$R_G = \{(b, z), (c, x)\}, [R_G]^* = G, \langle R_G \rangle^* = G^{\partial}.$$

(5) If H is a necessity operator, then, by Theorem 3.6,

$$H(A) = \begin{cases} \emptyset, & \text{if } A \in \{\emptyset, \{a\}, \{b\}\}, \\ \{x\}, & \text{if } A \in \{\{c\}, \{b, c\}\}, \\ \{x, y\}, & \text{if } A = \{a, c\}, \\ \{z\}, & \text{if } A = \{a, b\}, \\ Y, & \text{if } A = X. \end{cases}$$

Since $(x,y) \in R_H$ iff $y \in H(\{x\}^c)^c$, we obtain:

$$R_H = \{(a, y), (a, z), (b, z), (c, x), (c, y)\}, [R_H] = H, \langle R_H \rangle = H^{\partial}.$$

(6) If H is a necessity operator, then, by Theorem 3.8, we obtain H as same in (5). Since $(x, y) \in R_H$ iff $y \in H(\{x\}^c)$, we obtain:

$$R_H = \{(a, x), (b, x), (b, y), (c, z)\}, [[R_H]]^* = H, \langle\langle R_H \rangle\rangle^* = H^{\partial}.$$

(7) If H is a co-sufficiency operator, then, by Theorem 3.7, we have:

$$H(A) = \begin{cases} \emptyset, & \text{if } A = X, \\ \{x, y\}, & \text{if } A \in \{\{c\}, \{a, c\}\}, \\ \{x, z\}, & \text{if } A = \{b\}, \\ \{z\}, & \text{if } A = \{a, b\}, \\ \{x\}, & \text{if } A = \{b, c\}, \\ Y, & \text{if } A \in \{\emptyset, \{a\}\}. \end{cases}$$

Since $(x, y) \in R_H$ iff $y \in H(\{x\}^c)^c$, we obtain:

$$R_H = \{(a, y), (a, z), (b, z), (c, x), (c, y)\}, \langle\langle R_H \rangle\rangle = H, [[R_H]] = H^{\partial}.$$

(8) If H is a co-sufficiency operator, then, by Theorem 3.9, we obtain H as same in (7). Since $(x, y) \in R_H$ iff $y \in H(\{x\}^c)$, we obtain:

$$R_H = \{(a, x), (b, x), (b, y), (c, z)\}, \langle R_H \rangle^* = H, [R_H]^* = H^{\partial}.$$

References

- [1] R. Bělohlávek, Lattices of fixed points of Galois connections, Math. Logic Quart. 47 (2001), 111–116.
- [2] I. Düntsch, Ewa. Orlowska, Boolean algebras arising from information systems, Ann. Pure Appl. Logic 127 (2004), 77–98.
- [3] J. Järvinen, M. Kondo, J. Kortelainen, Logics from Galois connections, Internat. J. Approx. Reason. 49 (2008), 595–606.
- [4] Ewa. Orlowska, I. Rewitzky, Algebras for Galois-style connections and their discrete duality, Fuzzy Sets and Systems 161 (2010), 1325–1342.
- [5] Z. Pawlak, Rough sets, Int.J. Comput. Sci. Math. 11 (1982), 341–356.

- [6] G. Qi, W. Liu, Rough operations on Boolean algebras, Inform. Sci. 173 (2005), 49–63.
- [7] R. Wille, Restructuring lattice theory; an approach based on hierarchies of concept, in: 1. Rival(Ed.), Ordered Sets, Reidel, Dordrecht, Boston (1982).
- [8] W. Yao, L.X. Lu, Fuzzy Galois connections on fuzzy posets, Math. Logic Quart. 55 (2009), 105–112.
- [9] Y.Y. Yao, Two Views of the Theory of Rough Swts in Finite Universes, Internat. J. Approx. Reason. 15 (1996), 291–317.

Department of Mathematics Natural Science Gangneung-Wonju National University Gangneung, 210-702, Korea E-mail: yck@gwnu.ac.kr