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MODAL, NECESSITY, SUFFICIENCY
AND CO-SUFFICIENCY OPERATORS

YoNG CHAN KiMm

ABSTRACT. We investigate the properties of modal, necessity, suffi-
ciency and co-sufficiency operators. We show that their operations
induce various relations, respectively.

1. Introduction

Pawlak [5] introduced rough set theory to generalize the classical set
theory. Rough approximations are defined by a partition of the universe
which is corresponding to the equivalence relation about information.
An information consists of (X, A) where X is a set of objects and A is a
set of attributes, a map a : X — P(A,) where A, is the value set of the
attribute a. Recently, intensional modal-like logics with the proposi-
tional operators induced by relations are important mathematical tools
for data analysis and knowledge processing [1-3, 6-9].

In this paper, we investigate the properties of modal, necessity, suf-
ficiency and co-sufficiency operators. We show that their operations
induce various relations, respectively.

2. Preliminaries

DEFINITION 2.1. [2] Let P(X), P(Y) be the families of subsets on
X and Y, respectively. Then a map F' : P(X) — P(Y) is called

(1) modal operator if F(U;cr Ai) = U;er F(As), F(0) =0,

(2) necessity operator if F((;ep Ai) = ier F(Ai), F(X) =Y,
(3) sufficiency operator if F(U,cr Ai) = Nier F(Ai), F(0) =Y,
(4) co-sufficiency operator if F((,cp Ai) = U,er F(4i), F(X) = 0.
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(5) a dual operator F? is defined by F?(A) = F(A°)°. Moreover,
we define F¢(A) = (F(A))¢ and F*(A) = F(A°).

DEFINITION 2.2. [2,4] Let R C P(X x Y) be a relation. For each
A € P(X), we define operations (y,z) € R™! iff (z,y) € R and
[B], [[R]], (R), ((R)), [R]", (R)" : P(X) = P(Y) as follows:

[R(A) ={y e Y [ (Vo)((x,y) € R = x € A)},

[R](A) ={yeY|(Vz e X)(x €A~ (2,y) € R)}
(R)(A)={yeY |(Bz e X)((z,y) € R, z € A)}
(R)(A) ={y €Y | (Fr € X)((z,y) € k", x € A)},
[R"(A) ={yeY | (Ve X)((z,y) € R—>x € A%}

)((@,y

(R)*(A)={yeY | (Fr e X)((z,y) € R, z € A°)}.

THEOREM 2.3. [2] Let R C P(X xY) be a relation.

(1) (R) is a modal operator and [R] is a necessity operator with
(R)(A) = ([R](A®))¢ = [R]?(A), for each A € P(X).

(2) If F: P(X) — P(Y) is a modal operator on P(X), there exists
a unique relation R C P(X xY) such that (Rp) = F and [Rp] = F?
where (x,y) € Rp iff y € F({x}).

(3) Rry = R.

3. Modal, necessity, sufficiency and co-sufficiency operators

LEMMA 3.1. Let F,G : P(X) — P(Y) be operators. Then the
following properties hold:

(1) (F9)? =F, (F°)° =F and (F*)* = F.

(2) (FO)* = (F*)?, (F?)° = (F°)? and (F*)° = (F)* = F°.

(3) (FU@)? = FONG?, (FUG)* = F*UG* and (FUG)° = F°NG°.

(4) F,G : P(X) — P(Y) are modal operators, then F UG is a model
operator and it’s dual operator F? N G? is a necessity operator.

(5) F,G : P(X) — P(Y) are necessity operators, then F NG is a
necessity operator and it’s dual operator F? N G? is a model operator.
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Proof. (1) (F?)°(A) = (FO(A°))c = F(A).

(2 ) (FO)*(A) = FO(A%) = F°(A) = (F*(A°))° = (F7)

(F9)°(A) = (FO(A))° = F(A°) = (F°(A%))° = (F°)?(A).

(3) (FUG)?(A) = (FUG)(A%))" = (F(A%))*N(F(A%))° = FP(A)N
GY(A). Other cases are similarly proved.

(4) and (5) are easily proved from (3).

LEMMA 3.2. (1) A map F : P(X) — P(Y) is a modal operator iff
F9: P(X)— P(Y) is a necessity operator.
(2) A map F : P(X) — P(Y) is a sufficiency operator iff F? :
P(X) — P(Y) is a co-sufficiency operator operator.
(3) A map F: P(X) — P(Y) is a modal operator iff F¢ : P(X) —
P(Y) is a sufficient operator.
) A map F : P(X) — P(Y) is a co-sufficiency operator iff F° :
) — P(Y) is a necessity operator operator.
(5) A map F : P(X) — P(Y) is a sufficiency operator iff F* :
) — P(Y) is a necessity operator operator.
(6) A map F': P(X) — P(Y) is a modal operator iff F* : P(X) —
P(Y) is a co-sufficiency operator.

Proof. (1) Let F': P(X) — P(Y) be a modal operator.

F( 4= (FJ49) = (UFn)

el el el

= [ (F(AD) = ) FO(4)

FO(X) = (F(Xc)>c - (F(@))C — Y.

Conversely, (F9)?(A) = (F(A°))¢ = F(A).

FJ 4= (PN 49) = (N F%Af))c

el el el

= J@F49) = | F(4

el el

F(0) = (Fa(((ﬁ)c))c _ F(X)° = .
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(2), (3) and (4) are similarly proved as same in (1).

THEOREM 3.3. Let R C P(X xY) be a relation.

(1) ((R))* is a modal operator and [[R]|* is a necessity operator with
((R))*(A) = ([[R]]*(A°))° = ([[R]]*)?(A) for each A € P(X).

(2) If F : P(X) — P(Y) is a modal operator on P(X), there exists a
unique relation Rp C P(X xY') such that ((Rp))* = F and [[Rp]]* =
F9 where (v,y) € Rp iff y € F({z})°.

(3) R((R))* = R.

Proof. (1) We have ((R))*(4) = ([[R]]*(A°))° = ([R]]*)?(A) from:
y € ([R]"(4%)° iff (V2 € X)(X € A~ (w,9) € R))

it (V2 € X)((w,) € B,z € A)C)c
iff (3z € X)((z,y) € R,z € A)
iff y € ((R))"(A).
(2) Since A = J,ca{z} and F(A) = U,c4 F({z}), we have
€ ((Rp))*(A) iff Bz € X)((x,y) € R% & x € A)
iff (Jz e X)(ye F{z}) &z € A)
iff y e | F({z}) =F(|J{=z}) =

z€A €A

€ [[Rr]]*(A) iff (Vz € X)(x € A° — (z,y) € RF))
iff (Ve € X)((z,y) € Ry > x € A))
ff (Ve e X)(y € F({z}) = z € A))
iff ((Elx e X)ye F{z)) &z e AC)>

ity e ((|J F({=}))

rEAC

ity e (F(|J {2}) = (F(A9))° = F(4).

rEAC



Modal, necessity, sufficiency and co-sufficiency operators 297

(3)
(z,y) € Rypyy~ iff y € ((R))*({z})°
iff (32 € X)((2,9) € R & 2 € {x})c
iff (z,y) € (R°)° = R.
O
THEOREM 3.4. Let R € P(X xY) be a relation.
(1) [[R]] is a sufficiency operator and ((R)) is a co-sufficiency oper-
ator with ((R))(A) = ([[R]](A%))¢ = [[R]]?(A) for each A € P(X).
(2) If F: P(X) — P(Y) is a sufficiency operator on P(X), there
exists a unique relation Rp € P(X x Y) such that [[Rp]] = F and

{(Rp)) = F? where (z,y) € Rp iff y € F({z}).

Proof. (1) We have ((R))(A) = ([R]}(4°))° = [[R]]°(4) from:

C

Vy e X)(y € A° — (,y)GR))C

iff

(
iff (VyEX x,y) € R &y € A°)° )C
iff (Jy € X)((z,y) € R° &y € A°)
iff v € ((R))(A).
(2) Since F(U,caiz}) = Nyea F({z}), we have
y € [[Rr]](A) iff (Vz e X)(x € A— (z,y) € Rp)
it Vee X)(zre A—-yce F({m}))

iff y e (| F({z}) =F(|J{2}) =

z€A TEA

€ ((Rp))(A) iff (Fz € X)((z,y) € R & z € A°)
iff (Jz € X)(y € F({z})c & x € A°)

iffye |J F{z)) = () F{z})*

TEAC TEAC

iffy € (F(|J {2})* = (F(A9))" = F(A).

reA¢°
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(v,y) € Rygy iff (V2 € X)(z € {2} = (2,9) € R)
iff (z,y) € R.

O

THEOREM 3.5. Let R € P(X xY) be a relation.

(1) [R]* is a sufficiency operator and (R)* is a co-sufficiency operator
with [R]*(A) = ((R)*(A°))°.

(2) If F : P(X) — P(Y) is a sufficiency operator on P(X), there
exists a unique relation Rp € P(X x Y) such that [Rp]* = F and
(Rp)* = F9 where (x,y) € Rp iffy € F({x})°.

(3) Rip)+ = R.

Proof. (1)

ye«Rfmﬂyﬁ(@xexxxeA&@aweR»C
iff (Ve € X)((x,y) € R — z € A)
iff y € [R]*(A).

€ [Rp]*(A) iff (Vz € X)((z,y) € Rp — x € A°)
ifft( Ve e X)(z € A—ye F({x}))
ity e () F({zh) = F(| {2}) = F(4).

€A r€A

€ (Rp)"(A)iff 3z € X)((z,y) € Rr & x € A°)
ff (Jz e X)(y € F({z})° &z € A)

iff (v € X)(z € 4° = y € F({x})))’

ity e () (F({=}))

rEAC

iff y € (F( U {x})>c = (F'(A%))°

rEAC

iff y € FO(A).
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(z,y) € R iff y € [R]"({2}°)°
iff ((Vz € X)(z,y) ER > z € {x}0)>
iff (z,y) € R.
0
THEOREM 3.6. Let R C P(X xY) be a relation.
(1) If F : P(X) — P(Y) is a necessity operator on P(X), there
exists a unique relation Rp € P(X x Y') such that [Rrp| = F and

(Rp) = F? where (z,y) € Rp iffy € F({z}°)°.

Proof. (1)
y € [Rp](A) iff (Vz € X)((z,y) € Rp — z € A)
iff (Ve € X)(y € F{x}°) -z € A)
iff (Vo € X)(x € A° -y € F({z}9))
iffy e () FHa}?) =F([) {=}°)
rEA® TEA®
€ (Rp)(A) iff
iff

Jr € X)((x,y) € Rp & x € A)
dJre X)(ye F{zx}°) & x € A)

if (V2 € X)(w € A=y € F({2))))’

ifny(ﬂ {x}) ( ﬂ{x})

€A €A

—~ o~

iff y € F(A)C iff y € FO(A).
(2)
(,y) € Rig) iffy € [R]({2}°)°
it (V2 € X)((2,y) € R— 2 € {J;}C))c
iff (xz,y) € R.
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THEOREM 3.7. Let R € P(X xY) be a relation.

(1) If F: P(X) — P(Y) is a co-sufficiency operator on P(X), there

exists a unique relation Rp € P(X x Y) such that ((Rr)) = F and
[[Rr]] = F? where (z,y) € Rp iffy € F({x}°)°.

Proof. (1)

y € ((BRp))(A) iff (3z € X)((z,y) € Rp & = € A%)

iff (Jz € X)(y € F({z}) & z € A°)

iffy e |J F({z})=F([) {«})

TEA*° TEAC

F(A).

y € [[Rr]](A) iff (Vx € X)(x € A — (z,y) € Rp)
iff Ve e X)(x € A—ye F({x}9)°)

if (3 € X)(@ € Ak y € F({z}))’
ity e (|J F({a))’

z€eA

iffty e (F([ {x}C))C
T€EA

iff y € F(A°)¢ = FO(A).
(2)
(z,y) € Ryry) iff y € ((R))({x}9)°
it (32 € X)((2,9) € B & 2 € {x}c)>c
iff (z,y) € R.
O

THEOREM 3.8. Let R € P(X xY) be a relation.

(1) If F : P(X) — P(Y) is a necessity operator on P(X), there
exists a unique relation Rp € P(X x Y) such that [[Rr|]* = F and
((Rp))* = F? where (z,y) € Rp iff y € F({z}°).

(2) Rp,y- = R.
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Proof. (1)

y € [[Rr]]"(A) iff (Vx € X)(z € A° — (x,y) € Rp)
iff (Ve € X)(x € A° - y € F({z}°))

ify e () F({z}) = F( [ {2}) = F(A).

rEAC rEA°C

€ ((Rp))"(A) iff
iff

dr € X)((x,y) € Ry & x € A)
Jre X)(ye F{z}) &z e A)

~—~~

iff ((vz € X)(z € A=y € F({z}))’

ity e () Fx}) = (F ﬂ{x})

r€A
iff y € F(A9) iff y € FO(A).

(z,9) € Ryjrpp- ity € [[Rp]]"({2}°)
iff (Vz € X)(z € {z} = (2,y) € R)
iff (z,y) € R.

THEOREM 3.9. Let R € P(X xY) be a relation.

(1) If F: P(X) — P(Y) is a co-sufficiency operator on P(X), there
exists a unique relation Rp € P(X x Y) such that (Rp)* = F and
[Rp]* = F9 where (z,y) € Rp iff y € F({z}°).

(2) R(g,)- = R.

Proof. (1)
€ (Rp)* iff (3x € X)((z,y) € Rp & x € A°)
iff (Fz € X)(y € F({z}°) & z € A°)
iffye | F({z})=F([) {=}°) =

reAC reA¢°
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y € [Rp]*(A) iff (Vo € X)(x € (z,y) € Rp — x € A°)
iff (37 € X)(z € A& (2,9) € Br))’
iff (3r € X)(w e Ak y e F({x}?))
ity e (U Fi{y)

€A

iff y € (F( N {x}c)>c

iff y € F(Aijf = FI(A).
(2)
(z,y) € Rippy- it y € (Rp)" ({z}°)
ift (32 € X)((s,y) € B & 2 € {x}))c
iff (z,y) € R.
O

ExXAMPLE 3.10. Let X = {a,b,c} and Y = {x,y, 2z} be a set. Define
F,G:P(X)— P(Y) as

F({a}) =0, F{b}) = {=}, F({c}) = {v, 2},

G({a}) = X, G({b}) = {z,y}, G({c}) = {y, 2},
H({b,c}) = {z}, H({c,a}) = {z,y}, H({a,b}) = {z}.

(1) If F is a modal operator, then, by Theorem 2.3,

0, if Ae{0,{a}},
{z}, it Ae{{b},{a,b}},

{y, 2}, ifAe{{c} {a,c}},
Y, it A e {{bc}, X}

F(A) =
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Since (z,y) € Rp iff y € F({x}), we obtain:
Rp = {(b7 ), (Ca y)v (Cv Z)}, <RF> = F, [RF] = FO.

(2) If F'is a modal operator, then, by Theorem 3.3, we obtain F' as
same in (1). Since (z,y) € Rp iff y € F({z})¢, we obtain:

RF = {(a,ac), (a7y)a (av Z)a (b7 y)? (b7 Z)a (Ca ZL')},
((Rr))" = F\[[R)]* = F°.
(3) If G is a sufficiency operator, then, by Theorem 3.4,

Y, it Ae{0,{a}},

{z,y}, ifAe{{b} {a,b}},
{y,z}, ifAe{{c} {a,c}},
{y}, it A e {{b,c}, X}.

Since (x,y) € Rg iff y € G({z}), we obtain:

G(A) =

RG = {(CL,LL’), (aay)v (a7z)7 (b7 :L‘), (bv y)? (Cv y)? (C,Z)},

[Re]] = G, ((Ra)) = G°.
(4) If G is a sufficiency operator, then, by Theorem 3.5, we obtain
G as same in (3). Since (z,y) € Rg iff y € G({x})¢, we obtain:
Ra ={(b,2),(c,2)},[Rg]* = G, (Ra)* = G.

(5) If H is a necessity operator, then, by Theorem 3.6,

(0, if A € {0,{a},{b}},
e}, ifAe {{c},{bcl},
H(A) = q {z,y}, ifA={a,c},
{z}, ifA={a,b},
Y, it A=X.
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Since (z,y) € Ry iff y € H({x}°)¢, we obtain:

Ry = {(avy)v (a,z), (b7 Z)? (C’ I)’ (C7 y)}a [RH] =H, <RH> = HY.

(6) If H is a necessity operator, then, by Theorem 3.8, we obtain H
as same in (5). Since (x,y) € Ry iff y € H({x}¢), we obtain:

Ry = {(a,), (b,2), (b,y), (c,2)}, [Ru]]" = H, ((Ru))* = H.
(7) If H is a co-sufficiency operator, then, by Theorem 3.7, we have:

0, if A= X,

{z,y}, ifAe{{c} {a,c}},
{z,z}, if A={b},

{z}, if A={a,b},

{z}, if A={b,c},

L Y, if Ae{0,{a}}.

Since (z,y) € Ry iff y € H({x}°)¢, we obtain:

Ry = {(CL, y)7 (a7z)7 (b7 Z)? (Cv LL‘), (07 y)}7 <<RH>> =H, [[RHH = HY.

(8) If H is a co-sufficiency operator, then, by Theorem 3.9, we obtain
H as same in (7). Since (z,y) € Ry iff y € H({z}°), we obtain:

Ry = {<a7x)7 (b7 CL‘), (b7 y)a (Cv Z)}, <RH>* =H, [RH]* = H°.
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