NONCONSTANT WARPING FUNCTIONS ON EINSTEIN WARPED PRODUCT MANIFOLDS WITH 2-DIMENSIONAL BASE

Soo-Young Lee

Abstract

In this paper, we study nonconstant warping functions on an Einstein warped product manifold $M=B \times{ }_{f} F$ with a warped product metric $g=g_{B}+f(t)^{2} g_{F}$. And we consider a 2 -dimensional base manifold B with a metric $g_{B}=d t^{2}+\left(f^{\prime}(t)\right)^{2} d u^{2}$. As a result, we prove the following: if M is an Einstein warped product manifold with a 2 -dimensional base, then there exist generally nonconstant warping functions $f(t)$.

1. Introduction

In [1], A.L. Besse, the author studies an Einstein manifold. And he considers an Einstein warped product manifold $M=B \times_{f^{2}} F$ with a warped product metric $g=g_{B}+f(t)^{2} g_{F}$. In addition to, he may also consider an Einstein warped product manifold with a 2 -dimensional base manifold.

In a recent study, we have various results on an Einstein warped product manifold by several authors([4,6-10]). And we get results on an Einstein warped product manifold with a 2 -dimensional base by several authors([8-10]).

In this paper, we study the following question:
Received November 4, 2017. Revised March 18, 2018. Accepted March 20, 2018. 2010 Mathematics Subject Classification: 53C15, 53C21, 53C25, 58D17.
Key words and phrases: warping function, warped product manifold, scalar curvature, Einstein manifold, Ricci tensor, Ricci curvature.
(c) The Kangwon-Kyungki Mathematical Society, 2018.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

Main Theorem : If $M=B \times{ }_{f^{2}} F$ is an Einstein warped product manifold with a 2 -dimensional base, then there exist generally nonconstant warping functions $f(t)$.

Definition 1.1. Let $\left(B, g_{B}\right)$ and $\left(F, g_{F}\right)$ be two manifolds. Let g_{B} be metric tensors of B and g_{F} be metric tensors of F. We denote by π and σ the projections of $B \times F$ onto B and F, respectively.

For a positive smooth function f on B the warped product manifold $M=B \times_{f} F$ is the product manifold $M=B \times F$ furnished with the metric tensor g defined by $g=\pi^{*}\left(g_{B}\right)+(f \circ \pi)^{2} \sigma^{*}\left(g_{F}\right)$. We denote by π^{*} and σ^{*} the pullback π and σ, respectively. Here B is called the base of M and F the fiber($[1-3,11])$.

We denote by Ric_{F} is the Ricci curvature of $\left(F, g_{F}\right)$ and Ric_{B} is the Ricci curvature of $\left(B, g_{B}\right)$. We denote by Ric^{B} and $R i c^{F}$ the lifts to M of Ricci curvatures of B and F, respectively. Let p be a dimension of $F([1-3,11])$.

Proposition 1.2. (See Proposition 9.106 in [1].) The Ricci curvature Ric of the warped product manifold $M=B \times_{f^{2}} F$ satisfies
(i) $\operatorname{Ric}(V, W)=\operatorname{Ric}^{F}(V, W)+g(V, W)\left[\left(\frac{\Delta f}{f}-(p-1) \frac{\|d f\|^{2}}{f^{2}}\right) \pi\right]$,
(ii) $\operatorname{Ric}(X, V)=0$,
(iii) $\operatorname{Ric}(X, Y)=\operatorname{Ric}^{B}(X, Y)-\frac{p}{f} H^{f}(X, Y)$
for any vertical vectors V, W and any horizontal vectors X, Y. We are defined by $d f$ is the gradient of f for g_{B}, H^{f} is the Hessian of f for g_{B}. We denote by Δf is the Laplacian of f for g_{B} and p is a dimension of F.

Corollary 1.3. (See Corollary 9.107 in [1].) The warped product manifold $M=B \times_{f^{2}} F$ is an Einstein manifold (with Ric $=\lambda g$) if and only if g_{F}, g_{B} and f satisfy
(i) $\left(F, g_{F}\right)$ is Einstein (with Ric ${ }_{F}=\lambda_{0} g_{F}$),
(ii) $\frac{\Delta f}{f}-(p-1) \frac{\|d f\|^{2}}{f^{2}}+\frac{\lambda_{0}}{f^{2}}=\lambda$,
(iii) $\operatorname{Ric}_{B}-\frac{p}{f} H^{f}=\lambda g_{B}$.

Obviously, (i) gives a condition on $\left(F, g_{F}\right)$ alone, whereas (ii) and (iii) are two differential equations for f on $\left(B, g_{B}\right)$.

Remark 1.4. (See 9.108 in [1].) Using Corollary 1.3 (ii) and (iii), we replace the unique equation
$\operatorname{Ric}_{B}-\frac{p}{f} H^{f}=\frac{1}{2}\left[s_{B}+2 p \frac{\Delta f}{f}-p(p-1) \frac{\|d f\|^{2}}{f^{2}}+p \frac{\lambda_{0}}{f^{2}}-(p+q-2) \lambda\right] g_{B}$, where $q=\operatorname{dim} B$.

Remark 1.5. (See 9.116 in [1].) In a special case of a warped product manifold $M=B \times{ }_{f^{2}} F$ over a $2-$ dimensional base. We denote by s_{B} is a Gaussian curvature of $B, \operatorname{Ric}_{B}=\frac{1}{2} s_{B} g_{B}$, and $q=2$. Hence equation (1.1) simplifies to

$$
\begin{equation*}
H^{f}=-\frac{1}{2}\left[2 \Delta f-(p-1) \frac{\|d f\|^{2}}{f}+\frac{\lambda_{0}}{f}-\lambda f\right] g_{B} \tag{1.2}
\end{equation*}
$$

Lemma 1.6. (See Lemma 9.117 in [1].) On a $2-$ dimensional manifold $\left(B, g_{B}\right)$ the equation $H^{f}=f^{\prime \prime} g_{B}$ admits a nonconstant solution f if and only if, locally at points where $d f \neq 0$, there exist local coordinates (t, u) such that f is a function of t alone and $g_{B}=d t^{2}+f^{\prime}(t)^{2} d u^{2}$.

Remark 1.7. (See 9.117a in [1].) With the notations of the lemma, equation (1.2) becomes an ordinary differential equation for f in the variable t and $\|d f\|^{2}=\left(f^{\prime}\right)^{2}$. Then we have an equation

$$
\begin{equation*}
2 f^{\prime \prime}+(p-1) \frac{f^{\prime 2}}{f}-\frac{\lambda_{0}}{f}+\lambda f=0 \tag{1.3}
\end{equation*}
$$

If we denote $f(t)=u(t)^{\frac{2}{p+1}}$, where $u(t)$ is a positive function and $\operatorname{dim} F=p>1$, then equation (1.3) can be changed into

$$
u^{\prime \prime}(t)=\frac{(p+1) \lambda_{0}}{4} u(t)^{1-\frac{4}{p+1}}-\frac{(p+1) \lambda}{4} u(t)
$$

By multiplies both side $u^{\prime}(t)$ and an integration gives, then we obtain

$$
\begin{equation*}
\left(u^{\prime}(t)\right)^{2}=\frac{(p+1)^{2} \lambda_{0}}{4(p-1)} u(t)^{2-\frac{4}{p+1}}-\frac{(p+1) \lambda}{4}(u(t))^{2} . \tag{1.4}
\end{equation*}
$$

We study generally nonconstant warping functions of equation (1.4) on an Einstein warped product manifold $M=B \times{ }_{f^{2}} F$ with a 2-dimensional base B and the metric $g_{B}=d t^{2}+f^{\prime}(t)^{2} d u^{2}$.

2. Fiber manifold with $\lambda_{0}=0$

Let $\operatorname{dim} F=p>1$. In case that $\lambda_{0}=0$, we consider to the following theorem according to the signs of λ.

Theorem 2.1. In case that $\lambda_{0}=0$. If λ is a constant, then there exist solutions of equation (1.4).
(i) For $\lambda=0, u(t)=c$, where c is a positive constant.
(ii) For $\lambda>0$, there does not exist a solution of equation (1.4).
(iii) For $\lambda<0, u(t)=e^{ \pm} \frac{\frac{-(p+1) \lambda}{4}}{t+c}$, where c is a constant.

Proof. For $\lambda_{0}=0$, equation (1.4) implies that

$$
\begin{equation*}
\left(u^{\prime}(t)\right)^{2}=-\frac{(p+1) \lambda}{4}(u(t))^{2} . \tag{2.1}
\end{equation*}
$$

(i) For $\lambda=0$, equation (2.1) implies that $\left(u^{\prime}(t)\right)^{2}=0$ and $u^{\prime}(t)=0$.

An integration gives $u(t)=c$, where c is a positive constant.
(ii) For $\lambda>0$, equation (2.1) implies that $\left(u^{\prime}(t)\right)^{2}<0$, which is a contradiction. Hence there does not exist a solution of equation (1.4).
(iii) For $\lambda<0$, then we get $u^{\prime}(t)= \pm \sqrt{\frac{-(p+1) \lambda}{4}} u(t)$, where $u(t)$ is a positive function. Multiplying both sides of equation by $\frac{1}{u(t)}$ and an integration gives

$$
\ln |u(t)|= \pm \sqrt{\frac{-(p+1) \lambda}{4}} t+c,
$$

where c is a constant. Then we have $u(t)=e^{ \pm \sqrt{\frac{-(p+1) \lambda}{4}} t+c}$, where c is a constant and $u(t)$ is a positive function.

Therefore we have $u(t)=e^{ \pm} \sqrt{\frac{-(p+1) \lambda}{4}} t+c$, where c is a constant.
From above Theorem 2.1, the following remark considers that equation (1.3) satisfies generally nonconstant warping function $f(t)$.

Remark 2.2. For $\lambda_{0}=0$, there exist generally nonconstant warping functions $f(t)$ of equation (1.3) according to the signs of λ :
(i) For $\lambda=0, f(t)=c$, where c is a positive constant. Because c is not nonconstant, thus $f(t)=c$ is not our nonconstant solution.
(ii) For $\lambda>0$, there does not exist a solution of equation (1.3).
(iii) For $\lambda<0, f(t)=e^{ \pm \sqrt{\frac{-\lambda}{p+1}} t+\frac{2 c}{p+1}}$, where c is a constant.

The following example shows that our results are satisfied with wellknown special cases of equation (1.3) besides the constant cases.

Example 2.3. Let $\operatorname{dimF}=p>1$. From Remark 2.2, for the wellknown special cases λ_{0} and λ, we have a nonconstant warping function of equation (1.3). For $\lambda_{0}=0$ and $\lambda=-(p+1)$, then $f(t)=e^{ \pm t}$ when $c=0$.

3. Fiber manifold with $\lambda_{0}>0$

Let $\operatorname{dim} F=p>1$. In case that $\lambda_{0}>0$, we consider to the following theorem according to the signs of λ.

Theorem 3.1. In case that $\lambda_{0}>0$. If λ is a constant, then there exist solutions $u(t)$ of equation (1.4):
(i) For $\lambda=0, u(t)=\left(\pm \sqrt{\frac{\lambda_{0}}{p-1}} t+\frac{2 c}{p+1}\right)^{\frac{p+1}{2}}$,
(ii) for $\lambda>0, u(t)=\left(\sqrt{\frac{(p-1) \lambda}{(p+1) \lambda_{0}}} \sec \left(\pm \sqrt{\frac{\lambda}{p+1}} t-\sqrt{\frac{\lambda}{p+1}} c\right)\right)^{-\frac{p+1}{2}}$,
(iii) for $\lambda<0, u(t)=\left(\sqrt{\frac{-(p+1) \lambda_{0}}{(p-1) \lambda}} \sinh \left(\pm \sqrt{\frac{-\lambda}{p+1}} t+\sqrt{\frac{-\lambda}{p+1}} c\right)\right)^{\frac{p+1}{2}}$, where c is a constant.

Proof. (i) For $\lambda=0$, equation (1.4) implies that we have equation

$$
\left(u^{\prime}(t)\right)^{2}=\frac{(p+1)^{2} \lambda_{0}}{4(p-1)} u(t)^{2-\frac{4}{p+1}} .
$$

Here we get $u^{\prime}(t)= \pm \sqrt{\frac{(p+1)^{2} \lambda_{0}}{4(p-1)}} u(t)^{1-\frac{2}{p+1}}$. Multiplying both sides of equation by $u(t)^{-1+\frac{2}{p+1}}$ and an integration gives

$$
\frac{p+1}{2} u(t)^{\frac{2}{p+1}}= \pm \sqrt{\frac{(p+1)^{2} \lambda_{0}}{4(p-1)}} t+c
$$

where c is a constant. Then we obtain $u(t)^{\frac{2}{p+1}}= \pm \sqrt{\frac{\lambda_{0}}{p-1}} t+\frac{2 c}{p+1}$, where c is a constant. Therefore we have

$$
u(t)=\left(\pm \sqrt{\frac{\lambda_{0}}{p-1}} t+\frac{2 c}{p+1}\right)^{\frac{p+1}{2}}
$$

where c is a constant.
(ii) For $\lambda>0$, first of all, equation (1.4) simplifies that we rewritten as

$$
\begin{equation*}
\int \frac{1}{u(t) \sqrt{\frac{(p+1)^{2} \lambda_{0}}{4(p-1)}} u(t)^{-\frac{4}{p+1}}-\frac{(p+1) \lambda}{4}} d u= \pm \int d t \tag{3.1}
\end{equation*}
$$

Putting $\frac{(p+1)^{2} \lambda_{0}}{4(p-1)}=a>0$ and $\frac{(p+1) \lambda}{4}=b>0$, then we have

$$
\int \frac{1}{u(t) \sqrt{a u(t)^{\frac{-4}{p+1}}-b}} d u= \pm \int d t
$$

By using trigonometric substitution, $u(t)^{\frac{-2}{p+1}}=\frac{\sqrt{b}}{\sqrt{a}} \sec \theta$, then we get

$$
\int-\frac{p+1}{2} \frac{1}{\sqrt{b}} d \theta= \pm \int d t
$$

Upon integration, we obtain $-\frac{p+1}{2} \frac{1}{\sqrt{b}} \theta= \pm t+c$, where c is a constant. Now we have

$$
u(t)^{\frac{-2}{p+1}}=\frac{\sqrt{b}}{\sqrt{a}} \sec \left(\pm \frac{2 \sqrt{b}}{p+1} t-\frac{2 \sqrt{b}}{p+1} c\right)
$$

where c is a constant. Then we become

$$
u(t)=\left(\frac{\sqrt{b}}{\sqrt{a}} \sec \left(\pm \frac{2 \sqrt{b}}{p+1} t-\frac{2 \sqrt{b}}{p+1} c\right)\right)^{-\frac{p+1}{2}}
$$

where c is a constant. Therefore we have

$$
u(t)=\left(\sqrt{\frac{(p-1) \lambda}{(p+1) \lambda_{0}}} \sec \left(\pm \sqrt{\frac{\lambda}{p+1}} t-\sqrt{\frac{\lambda}{p+1}} c\right)\right)^{-\frac{p+1}{2}}
$$

where c is a constant.
(iii) For $\lambda<0$, by a proof similar to Theorem 3.1 (ii), putting $\frac{(p+1)^{2} \lambda_{0}}{4(p-1)}=$ $a>0$ and $-\frac{(p+1) \lambda}{4}=b>0$, equation (3.1) implies that we have the equation

$$
\int \frac{1}{u(t) \sqrt{a u(t)^{\frac{-4}{p+1}}+b}} d u= \pm \int d t .
$$

By using trigonometric substitution, $u(t)^{\frac{-2}{p+1}}=\frac{\sqrt{b}}{\sqrt{a}} \tan \theta$, then we obtain

$$
\int-\frac{p+1}{2} \frac{1}{\sqrt{b}} \csc \theta d \theta= \pm \int d t
$$

Upon integration, we become $\ln |\csc \theta+\cot \theta|= \pm \frac{2 \sqrt{b}}{p+1} t+\frac{2 \sqrt{b}}{p+1} c$, where c is a constant. Here we obtain

$$
\ln \left|\frac{\sqrt{a+b u(t)^{\frac{4}{p+1}}}}{\sqrt{a}}+\frac{\sqrt{b} u(t)^{\frac{2}{p+1}}}{\sqrt{a}}\right|= \pm \frac{2 \sqrt{b}}{p+1} t+\frac{2 \sqrt{b}}{p+1} c,
$$

where c is a constant. Now we get

$$
\left|\sqrt{a+b u(t)^{\frac{4}{p+1}}}+\sqrt{b} u(t)^{\frac{2}{p+1}}\right|=e^{ \pm \frac{2 \sqrt{b}}{p+1} t+\frac{2 \sqrt{b}}{p+1} c+\ln \sqrt{a}},
$$

where c is a constant and $e^{ \pm \frac{2 \sqrt{b}}{p+1} t+\frac{2 \sqrt{b}}{p+1} c+\ln \sqrt{a}}$ are positive functions.
Hence we have

$$
u(t)^{\frac{2}{p+1}}=\frac{\sqrt{a}}{\sqrt{b}} \sinh \left(\pm \frac{2 \sqrt{b}}{p+1} t+\frac{2 \sqrt{b}}{p+1} c\right)
$$

where c is a constant. Therefore we have

$$
u(t)=\left(\sqrt{\frac{-(p+1) \lambda_{0}}{(p-1) \lambda}} \sinh \left(\pm \sqrt{\frac{-\lambda}{p+1}} t+\sqrt{\frac{-\lambda}{p+1}} c\right)\right)^{\frac{p+1}{2}}
$$

where c is a constant.
Remark 3.2. For $\lambda_{0}>0$, there exist generally nonconstant warping functions $f(t)$ of the equation (1.3) according to the signs of λ :
(i) For $\lambda=0$, then $f(t)= \pm \sqrt{\frac{\lambda_{0}}{p-1}} t+\frac{2 c}{p+1}$,
(ii) for $\lambda>0$, then $f(t)=\sqrt{\frac{(p+1) \lambda_{0}}{(p-1) \lambda}} \cos \left(\pm \sqrt{\frac{\lambda}{p+1}} t-\sqrt{\frac{\lambda}{p+1}} c\right)$,
(iii) for $\lambda<0$, then $f(t)=\sqrt{\frac{-(p+1) \lambda_{0}}{(p-1) \lambda}} \sinh \left(\pm \sqrt{\frac{-\lambda}{p+1}} t+\sqrt{\frac{-\lambda}{p+1}} c\right)$,
where c is a constant.
Example 3.3. Let $\operatorname{dimF}=p>1$. From the Remark 3.2, we have nonconstant warping functions $f(t)$ of equation (1.3) depending on wellknown special constants λ_{0} and λ when $c=0$.
(i) For $\lambda_{0}=p-1$ and $\lambda=0$, then $f(t)= \pm t$.
(ii) For $\lambda_{0}=p-1$ and $\lambda=p+1$, then $f(t)=\cos t$.
(iii) For $\lambda_{0}=p-1$ and $\lambda=-(p+1)$, then $f(t)= \pm \sinh t$.

4. Fiber manifold with $\lambda_{0}<0$

Let $\operatorname{dim} F=p>1$. In case that $\lambda_{0}<0$, we consider to the following theorem according to the signs of λ.

Theorem 4.1. In case that $\lambda_{0}<0$. If λ is a constant, then there exists a solution equation (1.4):
(i) For $\lambda \geq 0$, there does not exist a solution of equation (1.4).
(ii) For $\lambda<0, u(t)=\left(\sqrt{\frac{(p+1) \lambda_{0}}{(p-1) \lambda}} \cosh \left(\pm \sqrt{\frac{-\lambda}{p+1}} t+\sqrt{\frac{-\lambda}{p+1}} c\right)\right)^{\frac{p+1}{2}}$, where c is a constant.

Proof. (i) For $\lambda \geq 0$, equation (1.4) implies that $\left(u^{\prime}(t)\right)^{2}<0$. Therefore there does not exist a solution of equation (1.4).
(ii) For $\lambda<0$, by a proof similar to Theorem 3.1 (ii) and (iii), putting $-\frac{(p+1)^{2} \lambda_{0}}{4(p-1)}=a>0$ and $-\frac{(p+1) \lambda}{4}=b>0$, equation (3.1) implies that we get the equation

$$
\int \frac{1}{u(t) \sqrt{-a u(t)^{\frac{-4}{p+1}}+b}} d u= \pm \int d t .
$$

By using trigonometric substitution, $u\left(t^{\frac{-2}{p+1}}=\frac{\sqrt{b}}{\sqrt{a}} \sin \theta\right.$, then we obtain

$$
\int-\frac{p+1}{2} \frac{1}{\sqrt{b}} \csc \theta d \theta= \pm \int d t
$$

Upon integration, we have $\ln |\csc \theta+\cot \theta|= \pm \frac{2 \sqrt{b}}{p+1} t+\frac{2 \sqrt{b}}{p+1} c$, where c is a constant. Here we become

$$
\ln \left|\frac{\sqrt{b} u(t)^{\frac{2}{p+1}}}{\sqrt{a}}+\frac{\sqrt{-a+b u(t)^{\frac{4}{p+1}}}}{\sqrt{a}}\right|= \pm \frac{2 \sqrt{b}}{p+1} t+\frac{2 \sqrt{b}}{p+1} c,
$$

where c is a constant. Here we get

$$
\left|\sqrt{b} u(t)^{\frac{2}{p+1}}+\sqrt{-a+b u(t)^{\frac{4}{p+1}}}\right|=e^{ \pm \frac{2 \sqrt{b}}{p+1}} t+\frac{2 \sqrt{b}}{p+1} c+\ln \sqrt{a},
$$

where c is a constant and $e^{ \pm \frac{2 \sqrt{b}}{p+1}} t+\frac{2 \sqrt{b}}{p+1} c+\ln \sqrt{a}$ are positive functions. Then we have

$$
u(t)^{\frac{2}{p+1}}=\frac{\sqrt{a}}{\sqrt{b}} \cosh \left(\pm \frac{2 \sqrt{b}}{p+1} t+\frac{2 \sqrt{b}}{p+1} c\right),
$$

where c is a constant. Therefore we have

$$
u(t)=\left(\sqrt{\frac{(p+1) \lambda_{0}}{(p-1) \lambda}} \cosh \left(\pm \sqrt{\frac{-\lambda}{p+1}} t+\sqrt{\frac{-\lambda}{p+1}} c\right)\right)^{\frac{p+1}{2}},
$$

where c is a constant.

Remark 4.2. For $\lambda_{0}<0$, there exists generally nonconstant warping function $f(t)$ of equation (1.3) for the signs of λ :
(i) For $\lambda \geq 0$, there does not exist a positive solution of equation (1.3).
(ii) For $\lambda<0$, then $f(t)=\sqrt{\frac{(p+1) \lambda_{0}}{(p-1) \lambda}} \cosh \left(\pm \sqrt{\frac{-\lambda}{p+1}} t+\sqrt{\frac{-\lambda}{p+1}} c\right)$, where c is a constant.

Example 4.3. Let $\operatorname{dimF}=p>1$. From the Remark 4.2, for the well-known special cases $\lambda_{0}=-(p-1), \lambda=-(p+1)$, and $c=0$, then $f(t)=\cosh (t)$.

From above Remark 2.2, Remark 3.2, and Remark 4.2, the following remark shows that equation (1.3) satisfies nonconstant warping functions $f(t)$.

Remark 4.4. If $M=B \times{ }_{f^{2}} F$ is an Einstein warped product manifold with a 2 -dimensional base B and a metric $g_{B}=d t^{2}+f^{\prime}(t)^{2} d u^{2}$, then there exist generally nonconstant warping functions $f(t)$ of equation (1.3). The behavior of the solutions depends on the signs of λ_{0} and λ. We are reduced to the following five cases (besides the constant case), where $c=0$:
(i) For $\lambda_{0}=0$ and $\lambda<0$, then $f(t)=e^{ \pm \sqrt{\frac{-\lambda}{p+1}} t}$
(ii) For $\lambda_{0}>0$ and $\lambda=0$, then $f(t)= \pm \sqrt{\frac{\lambda_{0}}{p-1}} t$.
(iii) For $\lambda_{0}>0$ and $\lambda>0$, then $f(t)=\sqrt{\frac{(p+1) \lambda_{0}}{(p-1) \lambda}} \cos \left(\pm \sqrt{\frac{\lambda}{p+1}} t\right)$.
(iv) For $\lambda_{0}>0$ and $\lambda<0$, then $f(t)=\sqrt{\frac{-(p+1) \lambda_{0}}{(p-1) \lambda}} \sinh \left(\pm \sqrt{\frac{-\lambda}{p+1}} t\right)$.
(v) For $\lambda_{0}<0$ and $\lambda<0$, then $f(t)=\sqrt{\frac{(p+1) \lambda_{0}}{(p-1) \lambda}} \cosh \left(\pm \sqrt{\frac{-\lambda}{p+1}} t\right)$.

Thus main theorem is verified.

References

[1] A.L. Besse, Einstein manifolds, Springer-Verlag, New York, 1987.
[2] J.K. Beem and P.E. Ehrlich, Global Lorentzian geometry, Pure and Applied Mathematics, Vol. 67, Dekker, New York, 1981.
[3] J.K. Beem, P.E. Ehrlich and K.L. Easley, Global Lorentzian Geometry (2nd ed.), Marcel Dekker, Inc., New York (1996).
[4] J. Case, Y.J. Shu, and G. Wei, Rigidity of quasi-Einstein metrics, Diff. Geo. and its applications 29 (2011), 93-100.
[5] F.E.S. Feitosa, A.A. Freitas, and J.N.V. Gomes, On the construction of gradient Ricci soliton warped product, math.DG. 26, May, (2017).
[6] C. He, P.Petersen, and W. Wylie, On the classification of warped product Einstein metrics, math.DG. 24, Jan.(2011).
[7] C. He, P.Petersen, and W. Wylie, Uniqueness of warped product Einstein metrics and applications, math.DG. 4, Feb.(2013).
[8] Dong-Soo Kim, Einstein warped product spaces, Honam Mathematical J. 22 (1) (2000), 107-111.
[9] Dong-Soo Kim, Compact Einstein warped product spaces, Trends in Mathematics, Information center for Mathematical Sciences, 5 (2) (2002) (2002), 1-5.
[10] Dong-Soo Kim and Young-Ho Kim, Compact Einstein warped product spaces with nonpositive scalar curvature, Proc. Amer. Soc. 131 (8) (2003), 2573-2576.
[11] B. O'Neill, Semi-Riemannian Geometry, Academic, New York, 1983.

Soo-Young Lee

Department of Mathematics
Chosun University
Kwangju, 61452, Republic of Korea.
E-mail: skdmlskan@hanmail.net

