NONCONSTANT WARPING FUNCTIONS ON EINSTEIN WARPED PRODUCT MANIFOLDS WITH 2-DIMENSIONAL BASE

Soo-Young Lee

ABSTRACT. In this paper, we study nonconstant warping functions on an Einstein warped product manifold $M = B \times_{f^2} F$ with a warped product metric $g = g_B + f(t)^2 g_F$. And we consider a 2-dimensional base manifold B with a metric $g_B = dt^2 + (f'(t))^2 du^2$. As a result, we prove the following: if M is an Einstein warped product manifold with a 2-dimensional base, then there exist generally nonconstant warping functions f(t).

1. Introduction

In [1], A.L. Besse, the author studies an Einstein manifold. And he considers an Einstein warped product manifold $M = B \times_{f^2} F$ with a warped product metric $g = g_B + f(t)^2 g_F$. In addition to, he may also consider an Einstein warped product manifold with a 2-dimensional base manifold.

In a recent study, we have various results on an Einstein warped product manifold by several authors ([4,6–10]). And we get results on an Einstein warped product manifold with a 2-dimensional base by several authors ([8–10]).

In this paper, we study the following question:

Received November 4, 2017. Revised March 18, 2018. Accepted March 20, 2018. 2010 Mathematics Subject Classification: 53C15, 53C21, 53C25, 58D17.

Key words and phrases: warping function, warped product manifold, scalar curvature, Einstein manifold, Ricci tensor, Ricci curvature.

[©] The Kangwon-Kyungki Mathematical Society, 2018.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

MAIN THEOREM: If $M = B \times_{f^2} F$ is an Einstein warped product manifold with a 2-dimensional base, then there exist generally nonconstant warping functions f(t).

DEFINITION 1.1. Let (B, g_B) and (F, g_F) be two manifolds. Let g_B be metric tensors of B and g_F be metric tensors of F. We denote by π and σ the projections of $B \times F$ onto B and F, respectively.

For a positive smooth function f on B the warped product manifold $M = B \times_f F$ is the product manifold $M = B \times F$ furnished with the metric tensor g defined by $g = \pi^*(g_B) + (f \circ \pi)^2 \sigma^*(g_F)$. We denote by π^* and σ^* the pullback π and σ , respectively. Here B is called the base of M and F the fiber ([1–3,11]).

We denote by Ric_F is the Ricci curvature of (F, g_F) and Ric_B is the Ricci curvature of (B, g_B) . We denote by Ric^B and Ric^F the lifts to M of Ricci curvatures of B and F, respectively. Let p be a dimension of F ([1–3,11]).

PROPOSITION 1.2. (See Proposition 9.106 in [1].) The Ricci curvature Ric of the warped product manifold $M = B \times_{f^2} F$ satisfies

(i)
$$Ric(V, W) = Ric^F(V, W) + g(V, W)[(\frac{\Delta f}{f} - (p-1)\frac{||df||^2}{f^2})\pi],$$

(ii) Ric(X, V) = 0,

(iii)
$$Ric(X,Y) = Ric^B(X,Y) - \frac{p}{f}H^f(X,Y)$$

for any vertical vectors V, W and any horizontal vectors X, Y. We are defined by df is the gradient of f for g_B , H^f is the Hessian of f for g_B . We denote by Δf is the Laplacian of f for g_B and g is a dimension of f.

COROLLARY 1.3. (See Corollary 9.107 in [1].) The warped product manifold $M = B \times_{f^2} F$ is an Einstein manifold (with $Ric = \lambda g$) if and only if g_F , g_B and f satisfy

(i) (F, g_F) is Einstein (with $Ric_F = \lambda_0 g_F$),

(ii)
$$\frac{\Delta f}{f} - (p-1)\frac{\|df\|^2}{f^2} + \frac{\lambda_0}{f^2} = \lambda,$$

(iii)
$$Ric_B - \frac{p}{f}H^f = \lambda g_B$$
.

Obviously, (i) gives a condition on (F, g_F) alone, whereas (ii) and (iii) are two differential equations for f on (B, g_B) .

REMARK 1.4. (See 9.108 in [1].) Using Corollary 1.3 (ii) and (iii), we replace the unique equation

(1.1)
$$Ric_B - \frac{p}{f}H^f = \frac{1}{2} \left[s_B + 2p\frac{\Delta f}{f} - p(p-1)\frac{\|df\|^2}{f^2} + p\frac{\lambda_0}{f^2} - (p+q-2)\lambda \right] g_B,$$

where $q = \dim B$.

REMARK 1.5. (See 9.116 in [1].) In a special case of a warped product manifold $M = B \times_{f^2} F$ over a 2-dimensional base. We denote by s_B is a Gaussian curvature of B, $Ric_B = \frac{1}{2} s_B g_B$, and q = 2. Hence equation (1.1) simplifies to

(1.2)
$$H^{f} = -\frac{1}{2} \left[2\Delta f - (p-1) \frac{||df||^{2}}{f} + \frac{\lambda_{0}}{f} - \lambda f \right] g_{B}.$$

LEMMA 1.6. (See Lemma 9.117 in [1].) On a 2-dimensional manifold (B, g_B) the equation $H^f = f''g_B$ admits a nonconstant solution f if and only if, locally at points where $df \neq 0$, there exist local coordinates (t, u) such that f is a function of t alone and $g_B = dt^2 + f'(t)^2 du^2$.

REMARK 1.7. (See 9.117a in [1].) With the notations of the lemma, equation (1.2) becomes an ordinary differential equation for f in the variable t and $||df||^2 = (f')^2$. Then we have an equation

(1.3)
$$2f'' + (p-1)\frac{f'^2}{f} - \frac{\lambda_0}{f} + \lambda f = 0.$$

If we denote $f(t) = u(t)^{\frac{2}{p+1}}$, where u(t) is a positive function and $\dim F = p > 1$, then equation (1.3) can be changed into

$$u''(t) = \frac{(p+1)\lambda_0}{4} \ u(t)^{1-\frac{4}{p+1}} - \frac{(p+1)\lambda}{4} \ u(t).$$

By multiplies both side u'(t) and an integration gives, then we obtain

$$(1.4) (u'(t))^2 = \frac{(p+1)^2 \lambda_0}{4(p-1)} u(t)^{2-\frac{4}{p+1}} - \frac{(p+1)\lambda}{4} (u(t))^2.$$

We study generally nonconstant warping functions of equation (1.4) on an Einstein warped product manifold $M = B \times_{f^2} F$ with a 2-dimensional base B and the metric $g_B = dt^2 + f'(t)^2 du^2$.

2. Fiber manifold with $\lambda_0 = 0$

Let $\dim F = p > 1$. In case that $\lambda_0 = 0$, we consider to the following theorem according to the signs of λ .

THEOREM 2.1. In case that $\lambda_0 = 0$. If λ is a constant, then there exist solutions of equation (1.4).

- (i) For $\lambda = 0$, u(t) = c, where c is a positive constant.
- (ii) For $\lambda > 0$, there does not exist a solution of equation (1.4).
- (iii) For $\lambda < 0$, $u(t) = e^{\pm \sqrt{\frac{-(p+1)\lambda}{4}}} t + c$, where c is a constant.

Proof. For $\lambda_0 = 0$, equation (1.4) implies that

(2.1)
$$(u'(t))^2 = -\frac{(p+1)\lambda}{4}(u(t))^2.$$

- (i) For $\lambda = 0$, equation (2.1) implies that $(u'(t))^2 = 0$ and u'(t) = 0. An integration gives u(t) = c, where c is a positive constant.
- (ii) For $\lambda > 0$, equation (2.1) implies that $(u'(t))^2 < 0$, which is a contradiction. Hence there does not exist a solution of equation (1.4).
- (iii) For $\lambda < 0$, then we get $u'(t) = \pm \sqrt{\frac{-(p+1)\lambda}{4}} \ u(t)$, where u(t) is a positive function. Multiplying both sides of equation by $\frac{1}{u(t)}$ and an integration gives

$$\ln|u(t)| = \pm \sqrt{\frac{-(p+1)\lambda}{4}} \ t + c,$$

where c is a constant. Then we have $u(t) = e^{\pm \sqrt{\frac{-(p+1)\lambda}{4}}} t + c$, where c is a constant and u(t) is a positive function.

Therefore we have $u(t) = e^{\pm \sqrt{\frac{-(p+1)\lambda}{4}}} t^{+c}$, where c is a constant. \square

From above Theorem 2.1, the following remark considers that equation (1.3) satisfies generally nonconstant warping function f(t).

REMARK 2.2. For $\lambda_0 = 0$, there exist generally nonconstant warping functions f(t) of equation (1.3) according to the signs of λ :

- (i) For $\lambda = 0$, f(t) = c, where c is a positive constant. Because c is not nonconstant, thus f(t) = c is not our nonconstant solution.
- (ii) For $\lambda > 0$, there does not exist a solution of equation (1.3).
- (iii) For $\lambda < 0$, $f(t) = e^{\pm \sqrt{\frac{-\lambda}{p+1}}} t + \frac{2c}{p+1}$, where c is a constant.

The following example shows that our results are satisfied with well-known special cases of equation (1.3) besides the constant cases.

EXAMPLE 2.3. Let dimF = p > 1. From Remark 2.2, for the well-known special cases λ_0 and λ , we have a nonconstant warping function of equation (1.3). For $\lambda_0 = 0$ and $\lambda = -(p+1)$, then $f(t) = e^{\pm t}$ when c = 0.

3. Fiber manifold with $\lambda_0 > 0$

Let $\dim F = p > 1$. In case that $\lambda_0 > 0$, we consider to the following theorem according to the signs of λ .

THEOREM 3.1. In case that $\lambda_0 > 0$. If λ is a constant, then there exist solutions u(t) of equation (1.4):

(i) For
$$\lambda = 0$$
, $u(t) = \left(\pm \sqrt{\frac{\lambda_0}{p-1}} \ t + \frac{2c}{p+1}\right)^{\frac{p+1}{2}}$,

(ii) for
$$\lambda > 0$$
, $u(t) = \left(\sqrt{\frac{(p-1)\lambda}{(p+1)\lambda_0}} \sec(\pm \sqrt{\frac{\lambda}{p+1}} \ t - \sqrt{\frac{\lambda}{p+1}} \ c \)\right)^{-\frac{p+1}{2}}$,

(iii) for
$$\lambda < 0$$
, $u(t) = \left(\sqrt{\frac{-(p+1)\lambda_0}{(p-1)\lambda}}\sinh(\pm\sqrt{\frac{-\lambda}{p+1}}\ t + \sqrt{\frac{-\lambda}{p+1}}\ c\)\right)^{\frac{p+1}{2}}$, where c is a constant.

Proof. (i) For $\lambda = 0$, equation (1.4) implies that we have equation

$$(u'(t))^2 = \frac{(p+1)^2 \lambda_0}{4(p-1)} \ u(t)^{2-\frac{4}{p+1}}.$$

Here we get $u'(t) = \pm \sqrt{\frac{(p+1)^2 \lambda_0}{4(p-1)}} \ u(t)^{1-\frac{2}{p+1}}$. Multiplying both sides of equation by $u(t)^{-1+\frac{2}{p+1}}$ and an integration gives

$$\frac{p+1}{2}u(t)^{\frac{2}{p+1}} = \pm \sqrt{\frac{(p+1)^2\lambda_0}{4(p-1)}} \ t+c,$$

where c is a constant. Then we obtain $u(t)^{\frac{2}{p+1}} = \pm \sqrt{\frac{\lambda_0}{p-1}} \ t + \frac{2c}{p+1}$, where c is a constant. Therefore we have

$$u(t) = \left(\pm\sqrt{\frac{\lambda_0}{p-1}} \ t + \frac{2c}{p+1}\right)^{\frac{p+1}{2}},$$

where c is a constant.

(ii) For $\lambda > 0$, first of all, equation (1.4) simplifies that we rewritten as

(3.1)
$$\int \frac{1}{u(t) \sqrt{\frac{(p+1)^2 \lambda_0}{4(p-1)}} u(t)^{-\frac{4}{p+1}} - \frac{(p+1)\lambda}{4}} du = \pm \int dt.$$
Putting $\frac{(p+1)^2 \lambda_0}{4(p-1)} = a > 0$ and $\frac{(p+1)\lambda}{4} = b > 0$, then we have
$$\int \frac{1}{u(t) \sqrt{a u(t)^{\frac{-4}{p+1}} - b}} du = \pm \int dt.$$

By using trigonometric substitution, $u(t)^{\frac{-2}{p+1}} = \frac{\sqrt{b}}{\sqrt{a}} \sec \theta$, then we get

$$\int -\frac{p+1}{2} \frac{1}{\sqrt{b}} d\theta = \pm \int dt.$$

Upon integration, we obtain $-\frac{p+1}{2}\frac{1}{\sqrt{b}}\theta = \pm t + c$, where c is a constant. Now we have

$$u(t)^{\frac{-2}{p+1}} = \frac{\sqrt{b}}{\sqrt{a}} \sec(\pm \frac{2\sqrt{b}}{p+1} t - \frac{2\sqrt{b}}{p+1} c),$$

where c is a constant. Then we become

$$u(t) = \left(\frac{\sqrt{b}}{\sqrt{a}}\sec(\pm\frac{2\sqrt{b}}{p+1}\ t - \frac{2\sqrt{b}}{p+1}\ c\)\right)^{-\frac{p+1}{2}},$$

where c is a constant. Therefore we have

$$u(t) = \left(\sqrt{\frac{(p-1)\lambda}{(p+1)\lambda_0}} \operatorname{sec}(\pm\sqrt{\frac{\lambda}{p+1}} t - \sqrt{\frac{\lambda}{p+1}} c)\right)^{-\frac{p+1}{2}},$$

where c is a constant.

(iii) For $\lambda < 0$, by a proof similar to Theorem 3.1 (ii), putting $\frac{(p+1)^2\lambda_0}{4(p-1)} = a > 0$ and $-\frac{(p+1)\lambda}{4} = b > 0$, equation (3.1) implies that we have the equation

$$\int \frac{1}{u(t) \sqrt{a \ u(t)^{\frac{-4}{p+1}} + b}} du = \pm \int dt.$$

By using trigonometric substitution, $u(t)^{\frac{-2}{p+1}} = \frac{\sqrt{b}}{\sqrt{a}} \tan \theta$, then we obtain

$$\int -\frac{p+1}{2} \frac{1}{\sqrt{b}} \csc \theta d\theta = \pm \int dt.$$

Upon integration, we become $\ln|\csc\theta + \cot\theta| = \pm \frac{2\sqrt{b}}{p+1} t + \frac{2\sqrt{b}}{p+1} c$, where c is a constant. Here we obtain

$$\ln \left| \frac{\sqrt{a+b \ u(t)^{\frac{4}{p+1}}}}{\sqrt{a}} + \frac{\sqrt{b} \ u(t)^{\frac{2}{p+1}}}{\sqrt{a}} \right| = \pm \frac{2\sqrt{b}}{p+1} \ t + \frac{2\sqrt{b}}{p+1} \ c \ ,$$

where c is a constant. Now we get

$$|\sqrt{a+b\ u(t)^{\frac{4}{p+1}}} + \sqrt{b}\ u(t)^{\frac{2}{p+1}}| = e^{\pm \frac{2\sqrt{b}}{p+1}\ t + \frac{2\sqrt{b}}{p+1}\ c + \ln\sqrt{a}}$$

where c is a constant and $e^{\pm\frac{2\sqrt{b}}{p+1}t+\frac{2\sqrt{b}}{p+1}c+ln\sqrt{a}}$ are positive functions. Hence we have

$$u(t)^{\frac{2}{p+1}} = \frac{\sqrt{a}}{\sqrt{b}} \sinh(\pm \frac{2\sqrt{b}}{p+1} t + \frac{2\sqrt{b}}{p+1} c),$$

where c is a constant. Therefore we have

$$u(t) = \left(\sqrt{\frac{-(p+1)\lambda_0}{(p-1)\lambda}}\sinh(\pm\sqrt{\frac{-\lambda}{p+1}}\ t + \sqrt{\frac{-\lambda}{p+1}}\ c\)\right)^{\frac{p+1}{2}},$$

where c is a constant.

REMARK 3.2. For $\lambda_0 > 0$, there exist generally nonconstant warping functions f(t) of the equation (1.3) according to the signs of λ :

(i) For
$$\lambda=0$$
, then $f(t)=\pm\sqrt{\frac{\lambda_0}{p-1}}\,\,t+\frac{2c}{p+1},$
(ii) for $\lambda>0$, then $f(t)=\sqrt{\frac{(p+1)\lambda_0}{(p-1)\lambda}}\cos(\pm\sqrt{\frac{\lambda}{p+1}}\,\,t-\sqrt{\frac{\lambda}{p+1}}\,\,c$),
(iii) for $\lambda<0$, then $f(t)=\sqrt{\frac{-(p+1)\lambda_0}{(p-1)\lambda}}\sinh(\pm\sqrt{\frac{-\lambda}{p+1}}\,\,t+\sqrt{\frac{-\lambda}{p+1}}\,\,c$), where c is a constant.

EXAMPLE 3.3. Let dimF = p > 1. From the Remark 3.2, we have nonconstant warping functions f(t) of equation (1.3) depending on well-known special constants λ_0 and λ when c = 0.

- (i) For $\lambda_0 = p 1$ and $\lambda = 0$, then $f(t) = \pm t$.
- (ii) For $\lambda_0 = p 1$ and $\lambda = p + 1$, then $f(t) = \cos t$.
- (iii) For $\lambda_0 = p 1$ and $\lambda = -(p + 1)$, then $f(t) = \pm \sinh t$.

4. Fiber manifold with $\lambda_0 < 0$

Let $\dim F = p > 1$. In case that $\lambda_0 < 0$, we consider to the following theorem according to the signs of λ .

THEOREM 4.1. In case that $\lambda_0 < 0$. If λ is a constant, then there exists a solution equation (1.4):

(i) For $\lambda \geq 0$, there does not exist a solution of equation (1.4).

(ii) For
$$\lambda < 0$$
, $u(t) = \left(\sqrt{\frac{(p+1)\lambda_0}{(p-1)\lambda}} \cosh(\pm \sqrt{\frac{-\lambda}{p+1}} t + \sqrt{\frac{-\lambda}{p+1}} c)\right)^{\frac{p+1}{2}}$, where c is a constant.

Proof. (i) For $\lambda \geq 0$, equation (1.4) implies that $(u'(t))^2 < 0$. Therefore there does not exist a solution of equation (1.4).

(ii) For $\lambda < 0$, by a proof similar to Theorem 3.1 (ii) and (iii), putting $-\frac{(p+1)^2\lambda_0}{4(p-1)} = a > 0$ and $-\frac{(p+1)\lambda}{4} = b > 0$, equation (3.1) implies that we get the equation

$$\int \frac{1}{u(t) \sqrt{-a \ u(t)^{\frac{-4}{p+1}} + b}} du = \pm \int dt.$$

By using trigonometric substitution, $u(t)^{\frac{-2}{p+1}} = \frac{\sqrt{b}}{\sqrt{a}}\sin\theta$, then we obtain

$$\int -\frac{p+1}{2} \frac{1}{\sqrt{b}} \csc \theta d\theta = \pm \int dt.$$

Upon integration, we have $\ln|\csc\theta+\cot\theta|=\pm\frac{2\sqrt{b}}{p+1}\ t+\frac{2\sqrt{b}}{p+1}\ c$, where c is a constant. Here we become

$$\ln \left| \frac{\sqrt{b} \ u(t)^{\frac{2}{p+1}}}{\sqrt{a}} + \frac{\sqrt{-a+b} \ u(t)^{\frac{4}{p+1}}}{\sqrt{a}} \right| = \pm \frac{2\sqrt{b}}{p+1} \ t + \frac{2\sqrt{b}}{p+1} \ c \ ,$$

where c is a constant. Here we get

$$|\sqrt{b} u(t)^{\frac{2}{p+1}} + \sqrt{-a + b u(t)^{\frac{4}{p+1}}}| = e^{\pm \frac{2\sqrt{b}}{p+1} t + \frac{2\sqrt{b}}{p+1} c + \ln \sqrt{a}}$$

where c is a constant and $e^{\pm \frac{2\sqrt{b}}{p+1} t + \frac{2\sqrt{b}}{p+1} c + ln\sqrt{a}}$ are positive functions. Then we have

$$u(t)^{\frac{2}{p+1}} = \frac{\sqrt{a}}{\sqrt{b}} \cosh(\pm \frac{2\sqrt{b}}{p+1} t + \frac{2\sqrt{b}}{p+1} c),$$

where c is a constant. Therefore we have

$$u(t) = \left(\sqrt{\frac{(p+1)\lambda_0}{(p-1)\lambda}} \cosh(\pm \sqrt{\frac{-\lambda}{p+1}} t + \sqrt{\frac{-\lambda}{p+1}} c)\right)^{\frac{p+1}{2}},$$

where c is a constant.

REMARK 4.2. For $\lambda_0 < 0$, there exists generally nonconstant warping function f(t) of equation (1.3) for the signs of λ :

(i) For $\lambda \geq 0$, there does not exist a positive solution of equation (1.3).

(ii) For
$$\lambda < 0$$
, then $f(t) = \sqrt{\frac{(p+1)\lambda_0}{(p-1)\lambda}} \cosh(\pm \sqrt{\frac{-\lambda}{p+1}} t + \sqrt{\frac{-\lambda}{p+1}} c)$, where c is a constant.

EXAMPLE 4.3. Let dimF = p > 1. From the Remark 4.2, for the well-known special cases $\lambda_0 = -(p-1)$, $\lambda = -(p+1)$, and c = 0, then $f(t) = \cosh(t)$.

From above Remark 2.2, Remark 3.2, and Remark 4.2, the following remark shows that equation (1.3) satisfies nonconstant warping functions f(t).

REMARK 4.4. If $M = B \times_{f^2} F$ is an Einstein warped product manifold with a 2-dimensional base B and a metric $g_B = dt^2 + f'(t)^2 du^2$, then there exist generally nonconstant warping functions f(t) of equation (1.3). The behavior of the solutions depends on the signs of λ_0 and λ . We are reduced to the following five cases (besides the constant case), where c = 0:

- (i) For $\lambda_0 = 0$ and $\lambda < 0$, then $f(t) = e^{\pm \sqrt{\frac{-\lambda}{p+1}}} t$.
- (ii) For $\lambda_0 > 0$ and $\lambda = 0$, then $f(t) = \pm \sqrt{\frac{\lambda_0}{p-1}} t$.
- (iii) For $\lambda_0 > 0$ and $\lambda > 0$, then $f(t) = \sqrt{\frac{(p+1)\lambda_0}{(p-1)\lambda}} \cos(\pm \sqrt{\frac{\lambda}{p+1}} t)$.
- (iv) For $\lambda_0 > 0$ and $\lambda < 0$, then $f(t) = \sqrt{\frac{-(p+1)\lambda_0}{(p-1)\lambda}} \sinh(\pm \sqrt{\frac{-\lambda}{p+1}} t)$.
- (v) For $\lambda_0 < 0$ and $\lambda < 0$, then $f(t) = \sqrt{\frac{(p+1)\lambda_0}{(p-1)\lambda}} \cosh(\pm \sqrt{\frac{-\lambda}{p+1}} t)$.

Thus main theorem is verified.

References

- [1] A.L. Besse, *Einstein manifolds*, Springer-Verlag, New York, 1987.
- [2] J.K. Beem and P.E. Ehrlich, Global Lorentzian geometry, Pure and Applied Mathematics, Vol. 67, Dekker, New York, 1981.
- [3] J.K. Beem, P.E. Ehrlich and K.L. Easley, *Global Lorentzian Geometry (2nd ed.)*, Marcel Dekker, Inc., New York (1996).
- [4] J. Case, Y.J. Shu, and G. Wei, *Rigidity of quasi-Einstein metrics*, Diff. Geo. and its applications **29** (2011), 93–100.

- [5] F.E.S. Feitosa, A.A. Freitas, and J.N.V. Gomes, On the construction of gradient Ricci soliton warped product, math.DG. 26, May, (2017).
- [6] C. He, P.Petersen, and W. Wylie, On the classification of warped product Einstein metrics, math.DG. 24, Jan.(2011).
- [7] C. He, P.Petersen, and W. Wylie, *Uniqueness of warped product Einstein metrics and applications*, math.DG. **4**, Feb.(2013).
- [8] Dong-Soo Kim, Einstein warped product spaces, Honam Mathematical J. 22 (1) (2000), 107–111.
- [9] Dong-Soo Kim, Compact Einstein warped product spaces, Trends in Mathematics, Information center for Mathematical Sciences, 5 (2) (2002) (2002), 1–5.
- [10] Dong-Soo Kim and Young-Ho Kim, Compact Einstein warped product spaces with nonpositive scalar curvature, Proc. Amer. Soc. 131 (8) (2003), 2573–2576.
- [11] B. O'Neill, Semi-Riemannian Geometry, Academic, New York, 1983.

Soo-Young Lee

Department of Mathematics Chosun University Kwangju, 61452, Republic of Korea. E-mail: skdmlskan@hanmail.net