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THE HARMONIC ANALYSIS ASSOCIATED TO THE

HECKMAN-OPDAM’S THEORY AND ITS

APPLICATION TO A ROOT SYSTEM OF TYPE BCd

Khalifa Trimèche

Abstract. In the five first sections of this paper we define and
study the hypergeometric transmutation operators V W

k and tV W
k

called also the trigonometric Dunkl intertwining operator and its
dual corresponding to the Heckman-Opdam’s theory on Rd. By us-
ing these operators we define the hypergeometric translation opera-
tor T W

x , x ∈ Rd, and its dual tT W
x , x ∈ Rd, we express them in terms

of the hypergeometric Fourier transform HW , we give their proper-
ties and we deduce simple proofs of the Plancherel formula and the
Plancherel theorem for the transform HW . We study also the hyper-
geometric convolution product on W -invariant Lp

Ak
-spaces, and we

obtain some interesting results. In the sixth section we consider a
some root system of type BCd (see [17]) of whom the corresponding
hypergeometric translation operator is a positive integral operator.
By using this positivity we improve the results of the previous sec-
tions and we prove others more general results.
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1. Introduction

In [2] I. Cherednik introduced a family of differential-difference oper-
ators Tj, j = 1, 2, ..., d, on Rd, associated with a root system R and a
multiplicity function k. These operators play a crucial role in Heckman-
Opdam’s theory of hypergeometric functions, which generalizes the Harish-
Chandra’s theory of spherical fucntions on Riemannian symmetric spaces
(see [3, 6, 7, 14, 15, 19]).

The Heckman-Opdam’s theory is based on the Heckman-Opdam hy-
pergeometric function Fλ, λ ∈ Cd, which is the unique analytic solution
of the system {

p(T )u(x) = p(iλ)u(x), λ ∈ Cd, x ∈ Rd,
u(0) = 1,

for all polynomials p which are invariant with respect to the Weyl group
W associated with R, and p(T ) = p(T1, T2, ..., Td).
We have

∀ λ ∈ Cd, Fλ(x) = 〈KW
x , e

i〈λ,.〉〉,
where KW

x is a W -invariant distribution on Rd with compact support.
By using this distribution we define in the five first sections of this paper,
the hypergeometric transmutation operator V W

k on E(Rd)W (the space
of C∞-functions on Rd, which are W -invariant) by

∀ x ∈ Rd, V W
k (f)(x) = 〈KW

x , f〉, f ∈ E(Rd)W .

We define also its dual tV W
k on D(Rd)W (the space of C∞-functions

on Rd with compact support and which are W -invariant) by∫
Rd

tV W
k (f)(y)g(y)dy

=

∫
Rd

V W
k (g)(x)f(x)Ak(x)dx, f ∈ D(Rd)W , g ∈ E(Rd)W ,

with

∀ x ∈ Rd,Ak(x) =
∏
α∈R+

|2 sinh〈α
2
, x〉|2k(α),

and R+ is a positive subsystem of R.
The operators V W

k and tV W
k are called also the trigonometric Dunkl

intertwining operator and its dual.
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We study the properties of the operators V W
k and tV W

k and we use
them to define and study the hypergeometric translation operator T Wx , x ∈
Rd, and its dual tT Wx , x ∈ Rd, by

∀ y ∈ Rd, T Wx (f)(y) = (V W
k )x(V

W
k )y[(V

W
k )−1(f)(x+ y)], f ∈ E(Rd)W ,

∀ y ∈ Rd, tT Wx (f)(y) = (V W
k )x(

tV W
k )−1

y [(tV W
k )(f)(y − x)], f ∈ D(Rd)W .

From these relations we deduce the product formula for the function
Fλ, λ ∈ Cd, and the relation between the operators T Wx , x ∈ Rd, and
tT Wx , x ∈ Rd :

∀ y ∈ Rd, T Wx (Fλ)(y) = Fλ(x).Fλ(y),

∀ y ∈ Rd, T Wx (f)(y) = tT Wx (f̆)(−y), f ∈ D(Rd)W ,

where f̆ is the function given by

∀ x ∈ Rd, f̆(x) = f(−x).

We express the operators T Wx , x ∈ Rd, and tT Wx , x ∈ Rd, by using the
hypergeometric Fourier transform HW given on D(Rd)W by

∀ λ ∈ Cd,HW (f)(λ) =

∫
Rd

f(x)F−λ(x)Ak(x)dx =

∫
Rd

f(x)Fλ(−x)Ak(x)dx,

and we deduce simple proofs for the Plancherel formula and the Plancherel
theorem for the transform HW (See [14]).

Next we consider the spaces LpAk
(Rd)W , p ∈ [1,+∞[, of W -invariant

functions on Rd which are pth integrable on Rd with respect to the mea-
sure Ak(x)dx. We define first the operator T Wx , x ∈ Rd, on L2

Ak
(Rd)W

and we prove that it is continuous from L2
Ak

(Rd)W into itself. This result
permits to study the hypergeometric convolution product on the spaces
LpAk

(Rd)W , p ∈ [1, 2], and to establish the Kunze and Stein’s phenome-
non for the Heckman-Opdam’s theory, and Paley-Wiener’s theorem for
the hypergeometric Fourier transform HW on L2

Ak
(Rd)W .

We remark that in this harmonic analysis we don’t know if the hy-
pergeometric translation operator T Wx , x ∈ Rd, is positive or not.

In the sixth section we consider a root system of type BCd (see [17])
of whom the corresponding hypergeometric translation operator denoted
by T W,µx , x ∈ Rd, µ a positive real parameter, is a positive integral op-
erator given by a probability measure. We prove first that this measure
is absolutely continuous with respect to the Lebesgue measure. Next by
using this positivity we improve the results of the previous sections and
we prove the following others results.
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- The Heckman-Opdam’s hypergeometric function denoted by F µ
BC(λ, x)

satisfies for all λ in
∑

= Rd+iconv(W.ρ), where conv(W.ρ) is the convex
hull for the Weyl group orbit W.ρ, the estimate

sup
x∈Rd

|F µ
BC(λ, x)| = 1.

- The hypergeometric translation operator T W,µx , x ∈ Rd, is continuous
from LpAk

(Rd)W into itself for p ∈ [1,+∞].
- We determine the maximal ideal space of the commutative Banach

algebra L1
Ak

(Rd)W for the hypergeometric convolution product ∗µHW .

- By applying the same proof as in [17], we show that (Rd, ∗µHW ) is a
commutative hypergroup.

I point out that the harmonic analysis given in this paper is very use-
ful to study many applications relating to the Heckman-opdam theory,
by examples the multiplier operators, the Calderon’s reproducing for-
mula related to the cherednik operators and inverse formulas by using
cherednick wavelets.

2. The Cherednik’s operators and their eigenfunctions

We consider Rd with the standard basis {ei, i = 1, 2, ..., d} and the
inner product 〈., .〉 for which this basis is orthonormal. We extend this
inner product to a complex bilinear form on Cd.

2.1. The root system, the multiplicity function and the Chered-

nik’s operators. Let α ∈ Rd\{0} and ᾰ =
2

‖α‖2
α. We denote by

rα(x) = x− 〈ᾰ, x〉α, x ∈ Rd, (2.1)

the reflection in the hyperplan Hα ⊂ Rd orthogonal to α.
A finite set R ⊂ Rd\{0} is called a root system if R ∩ Rα = {±α}

and rαR = R, for all α ∈ R. For a given root system R the reflections
rα, α ∈ R, generate a finite group W ⊂ O(d), called the Weyl group
associated with R. For a given β ∈ Rd which belongs to no hyperplane
Hα = {x ∈ Rd, 〈α, x〉 = 0}, α ∈ R, we fix the positive subsystem R+ =
{α ∈ R, 〈α, β〉 > 0}, then for each α ∈ R either α ∈ R+ or −α ∈ R+.
We denote by R0

+ the set of positive indivisible roots.
Let

a+ = {x ∈ Rd, ∀ α ∈ R, 〈α, x〉 > 0} (2.2)
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be the positive Weyl chamber. We denote by a+ its closure. Let also
Rd
reg = Rd\∪α∈RHα be the set of regular elements in Rd.

A function k : R → [0,+∞[ on the root system R is called a multi-
plicity function if it is invariant under the action of the reflection group
W . We introduce the index

γ = γ(R) =
∑
α∈R+

k(α). (2.3)

Moreover, let Ak be the weight function

∀ x ∈ Rd, Ak(x) =
∏
α∈R+

|2 sinh〈α
2
, x〉|2k(α), (2.4)

which is W -invariant.
The Cherednik’s operators Tj, j = 1, 2, ..., d, on Rd associated with

the reflection group W and the multiplicity function k are defined for f
of class C1 on Rd and x ∈ Rd

reg by

Tjf(x) =
∂

∂xj
f(x) +

∑
α∈R+

k(α)αj

1− e−〈α,x〉
{f(x)− f(rαx)} − ρjf(x), (2.5)

where

ρj =
1

2

∑
α∈R+

k(α)αj, and αj = 〈α, ej〉. (2.6)

In the case k(α) = 0, for all α ∈ R+, the operators Tj, j = 1, 2, ...d,
reduce to the corresponding partial derivatives. We suppose in the fol-
lowing that k 6= 0.

The Cherednik’s operators form a commutative system of differential-
difference operators.

For f of class C1 on Rd with compact support, and g of class C1 on
Rd, we have for j = 1, 2, ..., d :∫

Rd

Tjf(x)g(x)Ak(x)dx = −
∫
Rd

f(x)(Tj + Sj)g(x)Ak(x)dx, (2.7)

with

∀ x ∈ Rd, Sjg(x) =
∑
α∈R+

k(α)αjg(rαx). (2.8)
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2.2. The Opdam-Cherednik’s kernel and the Heckman-Opdam’s
hypergeometric function (see [3, 6, 14, 19]). We denote by Gλ, λ ∈
Cd, the eigenfunction of the operators Tj, j = 1, 2, ..., d. It is the unique
analytic function on Rd which satisfies the differential-difference system{

TjGλ(x) = iλjGλ(x), j = 1, 2, ..., d, x ∈ Rd,
Gλ(0) = 1.

(2.9)

It is called the Opdam-Cherednik kernel.
We consider the function Fλ defined by

∀ x ∈ Rd, Fλ(x) =
1

|W |
∑
w∈W

Gλ(wx). (2.10)

This function is the unique analytic function on Rd, which satisfies the
differential system{

p(T )Fλ(x) = p(iλ)Fλ(x), x ∈ Rd,
Fλ(0) = 1

(2.11)

for all W -invariant polynomials p on Cd and p(T ) = p(T1, T2, ..., Td).
The function Fλ(x) called the Heckman-Opdam’s hypergeometric func-

tion, is W -invariant both in λ and x.
The functions Gλ and Fλ possess the following properties

i) - For all λ ∈ Cd, the functions x → Gλ(x) and x → Fλ(x) are of
class C∞ on Rd.
- For all x ∈ Rd, the functions λ → Gλ(x) and λ → Fλ(x) are
entire on Cd.

ii) - For all x ∈ Rd and λ ∈ Cd, we have

Gλ(x) = G−λ̄(x) and Fλ(x) = F−λ̄(x). (2.12)

iii) For all x ∈ Rd and λ ∈ Rd, we have

|Gλ(x)| ≤ |W |1/2 and |Fλ(x)| ≤ |W |1/2 . (2.13)

iv) As the function f(x) = Giρ(x) is the unique solution of the system
∂

∂xj
f(x) +

∑
α∈R+

k(α)αj

1− e−〈α,x〉
{f(x)− f(rαx)} = 0, j = 1, 2, ..., d

f(0) = 1

and the constant function f(x) = 1, is also a solution of this system.
Then, from the unicity of the solution of this system, we obtain

∀ x ∈ Rd, Giρ(x) = 1. (2.14)
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From this relation and (2.10), we get

∀ x ∈ Rd, Fiρ(x) = 1. (2.15)

v) Let p and q be polynomials of degree m and n. Then there exists a
positive constant M such that for all λ ∈ Cd and x ∈ Rd, we have

|p( ∂
∂λ

)q(
∂

∂x
)Gλ(x)| ≤M(1 + ‖x‖)m(1 + ‖λ‖)nF0(x)e−maxw∈W Im〈wλ,x〉.

(2.16)
The same inequality is also true for the function Fλ(x).

vi) The function F0(x) satisfies the estimate

∀ x ∈ a+, F0(x) � e−〈ρ,x〉
∏
a∈R0

+

(1 + 〈α, x〉). (2.17)

vii) The function Gλ, λ ∈ Cd, admits the following Laplace type repre-
sentation

∀ x ∈ Rd, Gλ(x) = 〈Kx, e
i〈λ,.〉〉, (2.18)

where Kx is a distribution on Rd with support in Γ = conv{wx,w ∈
W} (the convex hull for the orbit of x under W ).

ix) From (2.10), (2.18) we deduce that the function Fλ(x), λ ∈ Cd,
possesses the Laplace type representation

∀ x ∈ Rd, Fλ(x) = 〈KW
x , e

i〈λ,.〉〉, (2.19)

where KW
x is the distribution on Rd with support in Γ, given by

KW
x =

1

|W |
∑
α∈R+

Kwx. (2.20)

3. The harmonic analysis associated to the Heckman-Opdam’s
theory on W -invariant C∞-functions

Notations. We denote by
- E(Rd)W the space of C∞-functions on Rd, which are W -invariant.
- D(Rd)W the space of C∞ functions on Rd, with compact support

and W -invariant.
- S(Rd)W the space of W -invariant functions of the classical Schwartz

space S(Rd).
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- S2(Rd)W the space of C∞-functions on Rd, which are W -invariant,
and such that for all `, n ∈ N,

p`,n(f) = sup
|µ|≤n
x∈Rd

(1 + ‖x‖)`(F0(x))−1|Dµf(x)| < +∞, (3.1)

where

Dµ =
∂|µ|

∂xµ11 ...∂x
µd
d

, µ = (µ1, ..., µd) ∈ Nd, |µ| =
d∑
i=1

µi.

Its topology is defined by the semi-norms p`,n, `, n ∈ N.
- PWa(Cd)W , a > 0, the space of entire functions on Cd, which are

W -invariant and satisfy

∀ m ∈ N, qm(g) = sup
λ∈Cd

(1 + ‖λ‖)me−a‖Imλ‖|g(λ)| < +∞. (3.2)

The topology of PWa(Cd) is defined by the semi-norms qm,m ∈ N.
We set

PW (Cd)W = ∪a>0PWa(Cd)W . (3.3)

This space is called the Paley-Wiener’s space. It is equipped with the
inductive limit topology.

3.1. The hypergeometric Fourier transform.

Definition 3.1. The hypergeometric Fourier transform HW is de-
fined for f in D(Rd)W (resp. S2(Rd)W ) by

∀ λ ∈ Cd,HW (f)(λ) =

∫
Rd

f(x)F−λ(x)Ak(x)dx. (3.4)

Remark 3.2. We have also the relation

∀ λ ∈ Cd,HW (f)(λ) =

∫
Rd

f(x)Fλ(−x)Ak(x)dx. (3.5)

(see [19]).

Proposition 3.3. For all f in D(Rd)W (resp. S2(Rd)W ) we have
the following relations

∀ λ ∈ Rd,HW (f̄)(λ) = HW (f̆)(λ), (3.6)

∀ λ ∈ Rd,HW (f)(λ) = HW (f̆)(−λ), (3.7)



The harmonic analysis associated to the Heckman-Opdam’s theory 229

where f̆ is the function defined by

∀ x ∈ Rd, f̆(x) = f(−x).

Proof. We deduce these relations from (2.12), (3.4), (3.5).

Theorem 3.4.

i) The hypergeometric Fourier transform HW is a topological isomor-
phism from
• D(Rd)W onto PW (Cd)W .
• S2(Rd)W onto S(Rd)W .

ii) A function f belongs to D(Rd)W with supp f ⊂ B(0, a) the closed
ball of center 0 and radius a > 0, if and only if its hypergeometric
Fourier transform HW (f) belongs to PWa(Cd)W .

iii) The inverse transform (HW )−1 is given by

∀ x ∈ Rd, (HW )−1(h)(x) =

∫
Rd

h(λ)Fλ(x)CWk (λ)dλ, (3.8)

where
CWk (λ) = co|Ck(λ)|−2, (3.9)

with co a positive constant chosen in such a way that CWk (−ρ) = 1,
and

Ck(λ) =
∏
α∈R+

Γ(〈iλ, ᾰ〉+ 1
2
k(α

2
))

Γ(〈iλ, ᾰ〉+ k(α) + 1
2
k(α

2
))
, (3.10)

with k(α
2
) = 0 if α

2
/∈ R.

Remark 3.5. The function CWk is continuous on Rd and satisfies the
estimate

∀ λ ∈ Rd, |CWk (λ)| ≤ const.(1 + ‖λ‖)b, (3.11)

for some b > 0.

3.2. The hypergeometric transmutation operators V W
k and tV W

k

(see also [22]). By using the distribution KW
x given by (2.19) we define

the hypergeometric transmutation operator V W
k on E(Rd)W by

∀ x ∈ Rd, V W
k (g)(x) = 〈KW

x , g〉. (3.12)

This operator is called also the trigonometric Dunkl intertwining opera-
tor. It satisfies the relation

∀ x ∈ Rd, ∀ λ ∈ Cd, V W
k (ei〈λ,.〉) = Fλ(x). (3.13)



230 Khalifa Trimèche

The operator V W
k is the unique linear topological isomorphism from

E(Rd)W onto itself satisfying the transmutation relations

∀ x ∈ Rd, p(T )V W
k (g)(x) = V W

k (p(D)g)(x), g ∈ E(Rd)W , (3.14)

for all W -invariant polynomials p on Cd, p(T ) = p(T1, T2, ..., Td) and
p(D) = p(D1, D2, ..., Dd) with Dj = ∂

∂xj
, j = 1, 2, ..., d, and the condition

V W
k (g)(0) = g(0). (3.15)

The dual tV W
k of the operator V W

k is defined by the following duality
relation∫

Rd

tV W
k (f)(y)g(y)dy =

∫
Rd

V W
k (g)(x)f(x)Ak(x)dx, (3.16)

with f in D(Rd)W (resp. S2(Rd)W ) and g in E(Rd)W .
The operator tV W

k is a linear topological isomorphism from
- D(Rd)W onto itself
- S2(Rd)W onto S(Rd)W , satisfying the transmutation relations

∀ y ∈ Rd, tV W
k (p(T )f)(y) = p(Dρ)

tV W
k (f)(y), f ∈ D(Rd)W (resp.S2(Rd)W )

(3.17)
for all W -invariant polynomials p on Cd, p(T ) = p(T1, T2, .., Td) and

p(Dρ) = p(D1,ρ1 , D2,ρ2 , ..., Dd,ρd) with Dj,ρj =
∂

∂xj
− 2ρj j = 1, 2, ..., d.

Remark 3.6. By applying the relation (3.16) with the function
g(y) = e−i〈λ,y〉, λ ∈ Rd, we deduce from the relations (3.13),(3.4) that the
operator tV W

k satisfies for f in D(Rd)W (resp. S2(Rd)W ), the following
relation

∀ λ ∈ Rd, Fo tVk(f)(λ) = HW (f)(λ), (3.18)

where F is the classical Fourier transform on Rd.

3.3. The hypergeometric translation operator T Wx and its dual
tT Wx (see also [23]). By using the hypergeometric transmutation oper-
ator V W

k we define the hypergeometric translation operator T Wx , x ∈ Rd,
on E(Rd)W by

∀ y ∈ Rd, T Wx (f)(y) = (V W
k )x(V

W
k )y[(V

W
k )−1](f)(x+ y)]. (3.19)

The operator T Wx , x ∈ Rd, satisfies the following properties:

1. For all x ∈ Rd, the operator T Wx is continuous from E(Rd)W into
itself.
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2. For all f in E(Rd)W and x, y ∈ Rd, we have

T Wx (f)(0) = f(x) and T Wx (f)(y) = T Wy (f)(x). (3.20)

3. For all x, y ∈ Rd and λ ∈ Cd, we have the product formula

T Wx (Fλ)(y) = Fλ(x).Fλ(y), (3.21)

where Fλ is the Heckman-Opdam’s hypergeometric function given
by (2.10).

4. For all f in E(Rd)W , and x, y ∈ Rd, we have

p(T )xT Wx (f)(y) = T Wx (p(T )f)(y), (3.22)

p(T )yT Wx (f)(y) = T Wx (p(T )f)(y), (3.23)

for allW -invariant polynomials p on Cd, and p(T ) = p(T1, T2, ..., Td).
5. Let f be in E(Rd)W . Then the function u(x, y) = T Wx (f)(y) is the

unique solution of class C∞ on Rd with respect to each variable, of
the system {

p(T )xu(x, y) = p(T )yu(x, y),
u(0, y) = f(y),

(3.24)

for all W -invariant polynomials p on Cd, and p(T ) = p(T1, T2, ..., Td).
By using the hypergeometric transmutation operators V W

k and tV W
k

we define the hypergeometric translation operator dual tT Wx , x ∈ Rd, on
D(Rd)W (resp. S2(Rd)W ) by

∀ y ∈ Rd, tT Wx (f)(y) = (V W
k )x(

tV W
k )−1

y [tV W
k (f)(y − x)]. (3.25)

The operator tT Wx , x ∈ Rd, possesses the following properties

1. For all x ∈ Rd, the operator tT Wx is continuous from D(Rd)W (resp.
S2(Rd)) into itself.

2. For all f in D(Rd)W (resp. S2(Rd)W ) and x, y ∈ Rd, we have

tT Wx (f)(y) = tT W−y (f)(−x). (3.26)

3. For all f in D(Rd)W (resp. S2(Rd)W ) and h in E(Rd)W we have∫
Rd

tT Wx (f)(y)h(y)Ak(y)dy =

∫
Rd

f(y)T Wx (h)(y)Ak(y)dy. (3.27)

Proposition 3.7

i) For all f in D(Rd)W (resp. S2(Rd)W ) and x ∈ Rd, we have

∀ λ ∈ Cd,HW (tT Wx (f))(λ) = F−λ(x)HW (f)(λ). (3.28)
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ii) For all f in D(Rd)W (resp. S2(Rd)W ) and x, y ∈ Rd, we have

tT Wx (f)(y) =

∫
Rd

F−λ(x)Fλ(y)HW (f)(λ)CWk (λ)dλ. (3.29)

Proof. i) From the relations (3.4), (3.27), (3.21), we have

∀ λ ∈ Cd,HW (tT Wx (f))(λ) =

∫
Rd

tT Wx (f)(y)F−λ(y)Ak(y)dy,

=

∫
Rd

f(y)T Wx (F−λ)(y)Ak(y)dy,

= F−λ(x)

∫
Rd

f(y)F−λ(y)Ak(y)dy,

thus

∀ λ ∈ Cd,HW (tT Wx (f))(λ) = F−λ(x)HW (f)(λ).

ii) We deduce (3.29) from (3.28) and (3.8).

Corollary 3.8. For all f in D(Rd)W with support in the closed ball
B(0, a) of center 0 and radius a > 0, and x ∈ Rd, we have

supptT Wx (f) ⊂ B(0, a+ ‖x‖). (3.30)

Proof. We obtain (3.30) from the relations (3.28), (2.16) and Theorem
3.4 ii).

3.4. The hypergeometric convolution product.

Definition 3.9. The hypergeometric convolution product f ∗HW g
of the functions f, g in D(Rd)W (resp. S2(Rd)W ) is defined by

∀ x ∈ Rd, f ∗HW g(x) =

∫
Rd

T Wx (f)(−y)g(y)Ak(y)dy. (3.31)

Remark 3.10. We have

∀ x ∈ Rd, f ∗HW g(x) =

∫
Rd

T Wx (f)(y)ğ(y)Ak(y)dy, (3.32)

where ğ is the function defined by

∀ y ∈ Rd, ğ(y) = g(−y),



The harmonic analysis associated to the Heckman-Opdam’s theory 233

then by applying the relation (3.27), the relation (3.32) can also be
written in the form

∀ x ∈ Rd, f ∗HW g(x) =

∫
Rd

f(y)tT Wx (ğ)(y)Ak(y)dy. (3.33)

Proposition 3.11

i) For all f, g in D(Rd)W (resp. S2(Rd)W ) the function f ∗HW g be-
longs to D(Rd)W (resp. S2(Rd)W ).

ii) For all f, g in D(Rd)W (resp. S2(Rd)W ) we have

∀ λ ∈ Rd,HW (f ∗HW g)(λ) = HW (f)(λ).HW (g)(λ). (3.34)

Proof. i) We deduce the result from the relation (3.33) and the
properties of the function tT Wx (ğ)(y).

ii) We have

∀ λ ∈ Rd,HW (f ∗HW g)(λ) =

∫
Rd

f ∗HW g(x)F−λ(x)Ak(x)dx.

By using the relations (3.33), (3.26) and Fubini’s theorem we obtain
∀ λ ∈ Rd,HW (f ∗HW g)(λ) =∫

Rd

f(y)
[ ∫

Rd

tT W−y (ğ)(−x)F−λ(x)Ak(x)dx
]
Ak(y)dy. (3.35)

But from (3.5), (3.4), (3.28), (3.7) we get∫
Rd

tT W−y (ğ)(−x)F−λ(x)Ak(x)dx =

∫
Rd

tT W−y (ğ)(−x)Fλ(−x)Ak(x)dx,

=

∫
Rd

tT W−y (ğ)(x)Fλ(x)Ak(x)dx,

= HW (tT W−y )(ğ))(−λ),

= Fλ(−y)HW (ğ)(−λ),

thus∫
Rd

tT W−y (ğ)(−x)F−λ(x)Ak(x)dx = Fλ(−y)HW (g)(λ).

We put this relation in (3.35) and we obtain

∀ λ ∈ Rd,HW (f ∗HW g)(λ) = HW (g)(λ)

∫
Rd

f(y)Fλ(−y)Ak(y)dy,

we deduce (3.34) by applying (3.5).
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Corollary 3.12

i) The hypergeometric convolution product is commutative and asso-
ciative on D(Rd)W and S2(Rd)W .

ii) For all f, g in D(Rd)W with supp f ⊂ B(0, a), a > 0, and
supp g ⊂ B(0, b), b > 0, we have

suppf ∗HW g ⊂ B(0, a+ b), (3.36)

where B(0, c), c > 0, is the closed ball of center 0 and radius c.
iii) For all f, g in D(Rd)W (resp. S2(Rd)W ) we have

∀ y ∈ Rd, p(T )(f ∗HW g)(y) = (p(T )f) ∗HW g(y), (3.37)

and

∀ y ∈ Rd, p(T )(f ∗HW g)(y) = (f ∗HW (p(T )g))(y), (3.38)

for all W -invariant polynomials p on Cd and p(T ) = p(T1, T2, ..., Td).
iv) For all f, g in D(Rd)W (resp. S2(Rd)W ), we have

∀ y ∈ Rd, tV W
k (f ∗HW g)(y) = tV W

k (f) ∗ tV W
k (g)(y), (3.39)

where ∗ is the classical convolution product on Rd.

Proof. i) We deduce the result from Proposition 3.11 ii) and The-
orem 3.4.i).

ii) Proposition 3.11 ii), the relation (2.16) and Theorem 3.4 ii) imply
the relation (3.36).

iii) We consider the hypergeometric Fourier transform of the first mem-
ber of the relations (3.37), (3.38). Next we apply the relations (3.4),
(2.11) and we deduce (3.37), (3.38), from Theorem 3.4.i).

iv) We obtain (3.39) from (3.34), (3.18).

Corollary 3.13. For all f in D(Rd)W (resp. S2(Rd)W ), we have

∀ x, y ∈ Rd, T Wx (f)(y) = tT Wx (f̆)(−y), (3.40)

where f̆ is the function defined by

∀ z ∈ Rd, f̆(z) = f(−z).
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Proof. From Corollary 3.12 i) the hypergeometric convolution product
is commutative, then we have

∀ x ∈ Rd,

∫
Rd

T Wx (g)(−y)f(y)Ak(y)dy =

∫
Rd

T Wx (f)(−y)g(y)Ak(y)dy.

On the other hand from the relation (3.33) we have

∀ x ∈ Rd,

∫
Rd

T Wx (g)(−y)f(y)Ak(y)dy =

∫
Rd

tT Wx (f̆)(y)g(y)Ak(y)dy.

Thus for all x ∈ Rd and g in D(Rd)W (resp. S2(Rd)W ) we have∫
Rd

[
T Wx (f)(−y)− tT Wx (f̆)(y)

]
g(y)Ak(y)dy = 0.

This relation implies (3.40).

Proposition 3.14

i) For all f in D(Rd)W (resp. S2(Rd)W ) and x ∈ Rd, we have

∀ λ ∈ Cd,HW (T Wx (f))(λ) = Fλ(x)HW (f)(λ). (3.41)

ii) For all f in D(Rd)W (resp. S2(Rd)W ), we have

∀ x, y ∈ Rd, T Wx (f)(y) =

∫
Rd

Fλ(x)Fλ(y)HW (f)(λ)CWk (λ)dλ. (3.42)

Proof. i) From the relations (3.5), (3.27) for all f in D(Rd)W (resp.
S2(Rd)W ) and x ∈ Rd, we have

∀ λ ∈ Cd,HW (T Wx (f))(λ) =

∫
Rd

T Wx (f)(y)F̆λ(y)Ak(y)dy,

=

∫
Rd

f(y)tT Wx (F̆λ)(y)Ak(y)dy,

=

∫
Rd

f̆(y)tT Wx (F̆λ)(−y)Ak(y)dy.

By using the relations (3.40), (3.21) we obtain

∀ λ ∈ Cd,HW (T Wx (f))(λ) =

∫
Rd

f̆(y)T Wx (Fλ)(y)Ak(y)dy,

= Fλ(x)

∫
Rd

f̆(y)Fλ(y)Ak(y)dy,

= Fλ(x)

∫
Rd

f(y)Fλ(−y)Ak(y)dy.
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The relation (3.5) implies (3.41).
ii) We deduce (3.42) from the relations (3.41), (3.8).

Corollary 3.15. For all f in D(Rd)W (resp. S2(Rd)W ) and x ∈ Rd,
we have ∫

Rd

T Wx (f)(y)Ak(y)dy =

∫
Rd

f(y)Ak(y)dy. (3.43)

Proof. From the relations (3.5), (3.41) we have∫
Rd

T Wx (f)(y)Fiρ(−y)Ak(y)dy = Fiρ(x)

∫
Rd

f(y)Fiρ(−y)Ak(y)dy.

We obtain (3.43) from the relation (2.15).

Theorem 3.16 (Plancherel’s formula). For all f, g in D(Rd)W (resp.
S2(Rd)W ) we have∫

Rd

f(y)g(y)Ak(y)dy =

∫
Rd

HW (f)(λ)HW (g)(λ)CWk (λ)dλ. (3.44)

Proof. By applying the relation (3.8) to the relation (3.34) we obtain

∀ x ∈ Rd, f ∗HW g(x) =

∫
Rd

Fλ(x)HW (f)(λ)HW (ḡ)(λ)CWk (λ)dλ.

The relations (3.31), (3.6) permit to write this relation in the following
form

∀ x ∈ Rd,

∫
Rd

T Wx (f)(y)
˘

g(y)Ak(y)dy =

∫
Rd

Fλ(x)HW (f)(λ)HW (ğ(λ)CWλ (λ)dλ.

We obtain (3.44) by changing ğ by g in the two members, by taking
x = 0, and by using the relations

∀ y ∈ Rd, T W0 (f)(y) = f(y) and ∀ λ ∈ Rd, Fλ(0) = 1.
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4. The harmonic analysis associated to the Heckman-Opdam’s
theory on the LpAk

(Rd)W spaces

4.1. The hypergeometric Fourier transform.

Notations. We denote by
- LpAk

(Rd)W , 1 ≤ p ≤ +∞, the space of measurable functions f on Rd

which are W -invariant and satisfy

‖f‖Ak,p =
(∫

Rd

|f(x)|pAk(x)dx
)1/p

< +∞, 1 ≤ p < +∞,

‖f‖Ak,∞ = ess sup
x∈Rd

|f(x)| < +∞.

- LpCWk
(Rd)W , 1 ≤ p ≤ +∞, the space of measurable functions f on

Rd, which are W -invariant and satisfy

‖f‖CWk ,p =
(∫

Rd

|f(λ)|pCWk (λ)dλ
)1/p

< +∞, 1 ≤ p < +∞,

|f‖CWk ,∞ = ess sup
λ∈Rd

|f(λ)|.

Proposition 4.1. Let p ∈ [1, 2[ and q its conjugate exponent. Then

∀ λ ∈ Rd, ‖Fλ‖Ak,q ≤ C(p), (4.1)

where C(p) is a positive constant which depends only on p.

Proof. - For q ∈]2,+∞[.
As the function x → Fλ(x) and Ak(x) are W -invariant, then to obtain
the result it suffices to prove that for all λ ∈ Rd, we have

I =

∫
a+
|Fλ(x)|qAk(x)dx < +∞.

But from the relations (2.4), (2.16) (2.17) we have

∀ x ∈ a+,Ak(x) ≤ 22γe2〈ρ,x〉,

and

∀ x ∈ a+, |F0(x)| ≤ const.(
∏
α∈R0

+

(1 + 〈α, x〉))e−〈ρ,x〉.



238 Khalifa Trimèche

Thus

I ≤ const.

∫
a+

 ∏
α∈R0

+

(1 + 〈α, x〉)

q

e−(q−2)〈ρ,x〉dx.

The integral of the second member is convergent for q ∈]2,+∞[. From
this result we deduce that there exists a positive constant C0(p) which
depends only on p ∈]1, 2[ such that

∀ λ ∈ Rd, ‖Fλ‖Ak,q ≤ C0(p). (4.2)

- For q = +∞
From (2.13) we have

∀ λ ∈ Rd, sup
x∈Rd

|Fλ(x)| ≤ |W |1/2. (4.3)

We obtain (4.1) from (4.2), (4.3), with C(p) = Max(C0(p), |W |1/2).

Theorem 4.2. (Plancherel’s theorem). The hypergeometric Fourier
transform HW defined by (3.4) extends uniquely to an isometric isomor-
phism from L2

Ak
(Rd)W onto L2

CWk
(Rd)W .

Proof. We deduce the result from the relation (3.44) and the fact that
the space S(Rd)W is dense in L2

Ak
(Rd)W .

Corollary 4.3. For all f in L2
CWk

(Rd)W , such that HW (f) belongs

to L1
CWk

(Rd), we have the inversion formula

f(x) =

∫
Rd

HW (f)(λ)Fλ(x)CWk (λ)dλ, a.e. x ∈ Rd . (4.4)

Corollary 4.4. The hypergeometric Fourier transform HW is in-
jective on LpAk

(Rd), 1 ≤ p ≤ 2.

Proof. - For p = 2, the result follows from Theorem 4.2.
- We assume that p ∈ [1, 2[. Let q be the conjugate exponent of p.

For f in LpAk
(Rd)W and g in D(Rd)W , we obtain from Hölder’s inequality

and Proposition 4.1 the following relations

|〈f, g〉Ak
| = |

∫
Rd

f(x)g(x)Ak(x)dx| ≤ ‖f‖Ak,p‖g‖Ak,q,
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and ∣∣∣〈HW (f),HW (g)〉CWk
∣∣∣ =

∣∣∣ ∫
Rd

HW (f)(λ)HW (g)(λ)CWk (λ)dλ
∣∣∣,

≤ ‖HW (f)‖CWk ,∞‖HW (g)‖CWk ,1,

≤ C(p)‖f‖Ak,p‖HW (g)‖CWk ,1

Then the mappings f → 〈f, g〉Ak
and f → 〈HW (f),HW (g)〉CWk are con-

tinuous functionals on LpAk
(Rd)W .

On the other hand from Theorem 4.2, we have for all f in LpAk
(Rd)W ∩

L2
Ak

(Rd)W :

〈f, g〉Ak
= 〈HW (f),HW (g)〉CWk . (4.5)

Then by continuity this equality is also true for f in LpAk
(Rd)W . We

consider f in LpAk
(Rd)W such that HW (f) = 0. Then from (4.5), for all

g in D(Rd)W we have

〈f, g〉Ak
= 〈HW (f),HW (g)〉CWk = 0.

Thus
f = 0.

This completes the proof.

4.2. The hypergeometric translation operator.
Definition 4.5. The hypergeometric translation operator T Wx , x ∈

Rd, is defined on L2
Ak

(Rd)W by

HW (T Wx (f))(λ) = Fλ(x)HW (f)(λ), λ ∈ Rd. (4.6)

Remark 4.6. Note that this definition makes sense because the
hypergeometric Fourier transform is, from Theorem 4.2, an isomorphism
from L2

Ak
(Rd)W onto L2

CWk
(Rd)W , and from (2.13), for all λ ∈ Rd, and

x ∈ Rd, the function Fλ(x) is bounded.
Proposition 4.7.

i) For all f in L2
Ak

(Rd)W we have

‖T Wx (f)‖Ak,2 ≤ |W |1/2‖f‖Ak,2. (4.7)

ii) For all f in L2
Ak

(Rd)W such that HW (f) belongs to L1
CWk

(Rd)W , and

x ∈ Rd, we have

T Wx (f)(y) =

∫
Rd

Fλ(x)Fλ(y)HW (f)(λ)CWk (λ)dλ, a.e. y ∈ Rd. (4.8)
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Proof. i) We deduce the relation (4.7) from (4.6), Theorem 4.2 and
(2.13).

ii) We obtain (4.8) from (4.6) and the inversion formula (4.4).

Proposition 4.8. For all f in L2
Ak

(Rd)W the mapping x→ T Wx (f)

is continuous from Rd into L2
Ak

(Rd)W .

Proof. Let x0 ∈ Rd. By using Theorem 4.2 and the relation (4.6), we
obtain

‖T Wx (f)− T Wx0 (f)‖2
Ak,2

= ‖HW (T Wx (f))−HW (T Wx0 (f))‖2
Ak,2

,

=

∫
Rd

|Fλ(x)− Fλ(x0)|2|HW (f)(λ)|2CWk (λ)dλ.

From the relation (2.13) and the fact that for all λ ∈ Rd, the function
x → Fλ(x) is continuous on Rd, the dominated convergence theorem
implies

lim
x→x0

‖T Wx (f)− T Wx0 (f)‖Ak,2 = 0.

4.3. The hypergeometric convolution product.

Theorem 4.9. Let f be in L2
Ak

(Rd)W and g in L1
Ak

(Rd)W . Then the

function f ∗HW g defined almost everywhere on Rd by

f ∗HW g(x) =

∫
Rd

T Wx (f)(−y)g(y)Ak(y)dy, (4.9)

belongs to L2
Ak

(Rd)W and we have

‖f ∗HW g‖Ak,2 ≤ |W |1/2‖f‖Ak,2‖g‖Ak,1. (4.10)

Proof. Let f, g, ϕ in D(Rd)W . From (3.20) and Fubini’s theorem we
have∫
Rd

f ∗HW g(x)ϕ(x)Ak(x)dx =

∫
Rd

g(y)

(∫
Rd

T Wx (f)(−y)ϕ(x)Ak(x)dx

)
Ak(y)dy.

=

∫
Rd

ǧ(y)
(∫

Rd

T Wy (f)(x)ϕ(x)Ak(x)dx
)
Ak(y)dy.
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By using Hölder’s inequality and (4.7), we obtain∣∣∣∣∫
Rd

f ∗HW g(x)ϕ(x)Ak(x)dx

∣∣∣∣ ≤ |W |1/2‖f‖Ak,2‖g‖Ak,1‖ϕ‖Ak,2. (4.11)

As the relation (4.11) remain true for all functions g in L1
Ak

(Rd)W , and

f, ϕ in L2
Ak

(Rd)W . So we obtain (4.10).

Theorem 4.10. Let ϕ be a positive function in D(Rd)W such that
suppϕ ⊂ B(0, 1) the closed ball of center 0 and radius 1, and ‖ϕ‖Ak,1 = 1.
For ε > 0, we consider the function ϕε given by

∀ x ∈ Rd, ϕε(x) =
Ak(xε )

εdAk(x)
ϕ(
x

ε
). (4.12)

Then for all f in L2
Ak

(Rd)W , we have

lim
ε→0
‖f ∗HW ϕε − f‖Ak,2 = 0. (4.13)

Proof. Using the fact that ‖ϕε‖Ak,1 = 1, we deduce that for x ∈ Rd,
we have

|f∗HWϕε(x)−f(x)| ≤
∫
Rd

(ϕε(y))1/2(ϕε(y))1/2|T Wx (f)(−y)−f(x)|Ak(y)dy.

By applying Hölder’s inequality to the second member, we obtain

|f ∗HW ϕε(x)− f(x)|2 ≤
∫
Rd

ϕε(y)|T Wx (f)(−y)− f(x)|2Ak(y)dy.

Thus∫
Rd

|f∗HWϕε(x)−f(x)|2Ak(x)dx ≤
∫
Rd

∫
Rd

ϕε(y)|T Wx (f)(−y)−f(x)|2Ak(y)Ak(x)dydx.

By using the relation (3.20) and Fubini-Tonelli’s theorem we deduce that

‖f ∗HW ϕε − f‖2
Ak,2
≤
∫
Rd

ϕε(y)‖T W−y (f)− f‖2
Ak,2
Ak(y)dy,

the change of variables y = εt gives

‖f ∗H∗ ϕε − f‖2
Ak,2
≤
∫
Rd

ϕ(t)‖T W−εt(f)− f‖2
Ak,2
Ak(t)dt.

From Proposition 4.8, the relation (4.7) and the dominated convergence
theorem, we deduce (4.13).



242 Khalifa Trimèche

Notation. We denote by H̃W the mapping on L1
CWk

(Rd) defined by

∀ x ∈ Rd, H̃W (f)(x) =

∫
Rd

h(λ)Fλ(x)CWk (λ)dλ. (4.14)

We remark that for h in S(Rd)W , we have

H̃W (h) = (HW )−1(h).

Theorem 4.11. Let f and g be in L2
Ak

(Rd). Then

i) The function f ∗HW g defined on Rd by

f ∗HW g(x) =

∫
Rd

T Wx (f)(−y)g(y)Ak(y)dy, (4.15)

is continuous on Rd, tends to zero at the infinity and we have

sup
x∈Rd

|f ∗HW g(x)| ≤ |W |1/2‖f‖Ak,2‖g‖Ak,2. (4.16)

ii) We have

∀ x ∈ Rd, f ∗HW g(x) = H̃W (HW (f)HW (g))(x). (4.17)

Proof. i) Let {fn}n∈N and {gn}n∈N be two sequences in D(Rd)W

which converge respectively to f and g in L2
Ak

(Rd)W . By using the

fact that the operator T Wx , x ∈ Rd, is continuous from D(Rd)W into
itself, we deduce that the sequence {fn∗HW gn}n∈N which belongs to
D(Rd)W , converges to f ∗HW g uniformly on Rd. Then the function
f ∗HW g is continuous on Rd and tends to zero at the infinity.

ii) Let {fn}n∈N and {gn}n∈N be two sequences in S2(Rd)W which con-
verge respectively to f and g in L2

Ak
(Rd)W . From (3.34) and The-

orem 3.4, for all n ∈ N, we have

∀ x ∈ Rd, fn ∗HW gn(x) =

∫
Rd

HW (fn)(λ)HW (gn)(λ)Fλ(x)CWk (λ)dλ.

(4.18)
On the other hand as the sequence {fn ∗HW gn}n∈N converges uni-

formly to f ∗HW g, and the sequence {HW (fn)HW (gn)}n∈N converges to
HW (f).HW (g) in L1

CWk
(Rd)W . Then we obtain (4.17) when n goes to

infinity in (4.18).

Corollary 4.12 We have

L2
Ak

(Rd)W ∗HW L2
Ak

(Rd)W = H̃W (L1
CWk

(Rd)W ). (4.19)
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Proof. From Theorem 4.11, we have

L2
Ak

(Rd)W ∗HW L2
Ak

(Rd)W ⊂ H̃W (L1
CWk

(Rd)W ).

conversely let f be in H̃W (L1
CWk

(Rd)W ). There exists a function h in

L1
CWk

(Rd)W such that f = H̃W (h).

We write h in the following form

h = h1.h2,

with

h1(λ) = |h(λ)|1/2, λ ∈ Rd,

and

h2(λ) =


h(λ)

|h(λ)|1/2
, if λ ∈ Rd\{0},

0, if λ = 0.

These functions are in L2
CWk

(Rd). By applying Theorem 4.11 to the

functions (HW )−1(h1) and (HW )−1(h2), we obtain

(HW )−1(h1) ∗HW (HW )−1(h2) = H̃W (h1, h2) = H̃W (h) = f.

Thus

H̃W )(L1
CWk

(Rd)W ) ⊂ L2
Ak

(Rd)W ∗HW L2
Al

(Rd)W .

This completes the proof.

4.4. The Kunze and Stein’s phenomenon for the Heckman-
Opdam’s theory. The Kunze and Stein’s phenomenon has been proved
first by R.A.Kunze and E.M.Stein [9] for the harmonic analysis of the
2× 2 real unimodular groups.

In this section we shall prove this phenomenon for the Heckman-
Opdam’s theory.

Theorem 4.13. Let p ∈ [1, 2[. For all function f in LpAk
(Rd)W and

g in L2
Ak

(Rd)W , the function f ∗HW g belongs to L2
Ak

(Rd)W and we have

‖f ∗HW g‖Ak,2 ≤ C(p)‖f‖Ak,p‖g‖Ak,2, (4.20)

where C(p) is the constant given in Proposition 4.1.
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Proof. Let f, g, ϕ be in D(Rd)W . From (3.31) and Fubini’s theorem,
we have∫
Rd

f ∗HW g(x)ϕ(x)Ak(x)dx

=

∫
Rd

f(y)

(∫
Rd

T Wx (g)(−y)ϕ(x)Ak(x)dx

)
Ak(y)dy.

But from Theorem 3.16 and the relations (3.41), (3.6) we have∫
Rd

T Wx (g)(−y)ϕ(x)Ak(x)dx =

∫
Rd

Fλ(−y)HW (g)(λ)HW (ϕ̌)(λ)CWk (λ)dλ.

Thus∫
Rd

f ∗HW g(x)ϕ(x)Ak(x)dx

=

∫
Rd

f(y)Fλ(−y)
(∫

Rd

HW (g)(λ)HW (ϕ̌(λ)CWk (λ)dλ
)
Ak(y)dy.

By applying Theorem 3.16, Hölder’s inequality and Proposition 4.1 to
the second member, we obtain∣∣∣∣∫

Rd

f ∗HW g(x)ϕ(x)Ak(x)dx

∣∣∣∣ ≤ C(p)‖g‖Ak,2‖ϕ‖Ak,2‖f‖Ak,p. (4.21)

This inequality remains true for the functions g and ϕ in L2
Ak

(Rd) and

for all function f in LpAk
(Rd)W . Then we obtain (4.20) from (4.21).

Theorem 4.14. Let p ∈ [1, 2[ and q the conjugate exponent of p.
Then for all functions f and g in L2

Ak
(Rd)W , the function f ∗HW g belongs

to LqAk
(Rd), and we have

‖f ∗HW g‖Ak,q ≤ C(p)‖f‖Ak,2‖g‖Ak,2 (4.22)

where C(p) is the constant given in Proposition 4.1.

Proof. Let f, g be in D(Rd)W and ϕ in LpAk
(Rd)W . From (3.33), (3.40),

3.20) and Fubini’s theorem we have∫
Rd

f ∗HW g(x)ϕ(x)Ak(x)dx =

∫
Rd

f̌(x)(g ∗HW ˇ̄ϕ)(x)Ak(x)dx.

By applying to the second member the same method used to obtain
(4.21) we get∣∣∣∣∫

Rd

f ∗HW g(x)ϕ(x)Ak(x)dx

∣∣∣∣ ≤ C(p)‖f‖Ak,2‖g‖Ak,2‖ϕ‖Ak,p.
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Thus this inequality implies (4.22).

5. Paley-Winer’s theorem for the Hypergeometric Fourier
transform on the L2

Ak
(Rd)W space

In this section we describe a class of holomorphe functions which arise
in this manner. This class consists of all functions f of the form

∀ λ ∈ Cd, f(λ) =

∫
Rd

h(x)Fλ(−x)Ak(x)dx, (5.1)

where h belongs to L2
Ak

(Rd)W ant its support is contained in the closed
ball B(0, a) of center 0 and radius a > 0. We can write also (5.1) in the
form

∀ λ ∈ Cd, f(λ) = HW (h)(λ). (5.2)

From the relation (5.1) and the derivation theorem under the integral
sign, the function f is entire on Cd and satisfies the growth condition

∀ λ ∈ Cd, |f(λ)| ≤ const.ea‖Imλ‖. (5.3)

Then every function f of the form (5.1) is an entire function on Cd which
satisfies (5.3) and by Theorem 4.2 its restriction to Rd lies in L2

CWk
(Rd)W .

It is remarkable fact that the converse of the previous result is true.
This is the content of the following theorem called Paley-Wiener’s the-
orem for the Hypergeometric Fourier transform HW on the L2

Ak
(Rd)W

space.
Theorem 5.1. Let f be an entire function on Cd satisfying the

conditions

i) We have

∀ λ ∈ Cd, |f(λ)| ≤ const.ea‖Imλ‖ , a > 0. (5.4)

ii) The restriction f|Rd of f to Rd, belongs to L2
Ak

(Rd)W . Then there

exists a function h in L2
Ak

(Rd) with support in the closed ball B(0, a)
such that

∀ λ ∈ Cd, f(λ) =

∫
Rd

h(x)Fλ(−x)Ak(x)dx. (5.5)

To prove this theorem we need the following lemma.

Lemma 5.2. Let f be in L2
Ak

(Rd)W and g in D(Rd)W . Then
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i) The function f ∗HW g is continuous on Rd, belongs to L∞Ak
(Rd)W ∩

L2
Ak

(Rd)W and we have

‖f ∗HW g‖Ak,2 ≤ |W |1/2‖f‖Ak,2‖g‖Ak,1. (5.6)

ii) We have

HW (f ∗HW g)(λ) = HW (f)(λ).HW (g)(λ), a.e.λ ∈ Rd. (5.7)

Proof. i) From Theorem 4.11 the function f ∗HW g is continuous
on Rd and belongs to L∞Ak

(Rd)W , and from Theorem 4.9 it is in

L2
Ak

(Rd)W and satisfies the relation (5.6).

ii) Let {fn‖n∈N be the sequence in D(Rd)W which converges to f in
L2
Ak

(Rd)W . From (3.34) we have

∀ λ ∈ Rd,HW (fn ∗HW g) = HW (fn)(λ).HW (g)(λ). (5.8)

By using Theorem 4.2 and the relation (5.6), the sequence {HW (fn∗HW

g)}n∈N converges to HW (f ∗HW g) in L2
Ak

(Rd)W .

Theorem 4.2 implies also that the sequence {HW (fn).HW (g)}n∈N con-
verges to HW (f).HW (g) in L2

Ak
(Rd)W .

Thus we deduce (5.7) from the relation (5.8).

Proof of Theorem 5.1
We consider the function h given by

h(x) = (HW )−1(f/Rd)(x), x ∈ Rd, (5.9)

From Theorem 4.2 it belongs to L2
Ak

(Rd)W .
Let ϕε, ε > 0, be the function defined by (5.9). From Lemma 5.2 the
function h ∗HW ϕε is continuous on Rd, belongs to L2

Ak
(Rd)W and we

have

HW (h ∗HW ϕε)(λ) = HW (h)(λ)HW (ϕε)(λ), a.e. λ ∈ Rd.

Thus by using (5.9) we obtain

HW (h ∗HW ϕε)(λ) = f/Rd(λ).HW (ϕε)(λ), a.e. λ ∈ Rd. (5.10)

As the function ϕε is in D(Rd)W , then from Theorem 3.4 ii) the function
HW (ϕε) is entire on Cd and satisfies

∀ ` ∈ N,∃ C0
` > 0,∀ λ ∈ Cd, |HW (ϕε)(λ)| ≤ C0

` (1 + ‖λ‖)−`eε‖Imλ‖.
(5.11)
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By using (5.11) and the fact that the function f is entire on Cd and
satisfies the condition (5.4), we deduce that the function f.HW (ϕε) is
entire on Cd verifying

∀ ` ∈ N,∃ C` > 0, ∀ λ ∈ Cd, |f(λ).HW (ϕε)(λ)| ≤ C`(1+‖λ‖)−`e(a+ε)‖Imλ‖

thus from Theorem 3.4 ii) we deduce that the function f.HW (ϕε) is the
hypergeometric Fourier transform of a function in D(Rd)W which has its
support contained in the closed ball B(0, a + ε) of center 0 and radius
(a+ ε). Then the relation (5.10) implies

supph ∗HW ϕε ⊂ B(0, a+ ε). (5.12)

On the other hand from Theorem 4.9, we have

lim
ε→0
‖h ∗HW ϕε − h‖Ak,2 = 0, (5.13)

this relation and (5.12) imply that

supph ⊂ B(0, a). (5.14)

On the other hand from the relation (5.13) and Theorem 4.2, we have

lim
ε→0
‖HW (h ∗HW ϕε)−HW (h)‖Ak,2

= 0. (5.15)

By using this relation and (5.9), we obtain

lim
ε→0
‖HW (h ∗HW ϕε)− f|Rd‖Ak,2

= 0. (5.16)

Thus from the relations (5.14), (5.15), (5.16), we deduce that

f/Rd(λ) =

∫
Rd

h(x)Fλ(−x)Ak(x)dx, a.e. λ ∈ Rd ,

as the two members are entire on Cd, then we obtain (5.5).

6. The harmonic analysis associated to the Heckman-Opdam’s
theory attached to a root system of type BCd

The root system on Rd of type BCd can be identified with the set R
given by

R = { ±2ei, ±4ei, 1 ≤ i ≤ d} ∪ { 2(±ei ± ej), 1 ≤ i < j ≤ d}. (6.1)

We denote by R+ the set of positive roots

R+ = { 2ei, 4ei, 1 ≤ i ≤ d} ∪ { 2(ei ± ej), 1 ≤ i < j ≤ d}. (6.2)
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The Weyl group associated with R is isomorphic to the hyperoctahe-
dral group which is generated by permutations and sign changes of the
ei, i = 1, 2, ..., d.

The multiplicity function k : R −→ [0,+∞[ can be written in the
form k = (k1, k2, k3) where k1 and k2 are the values on the roots ±2ei
and ±4ei, 1 ≤ i ≤ d, respectively, and k3 is the value on the roots
2(±ei ± ej), 1 ≤ i < j ≤ d.

The positive Weyl chamber denoted by a+ is given by

a+ = {x = (x1, x2, ..., xd) ∈ Rd, x1 > x2 > ... > xd > 0}. (6.3)

The closed chamber a+ corresponds to the set

C = {x = (x1, x2, ..., xd) ∈ Rd, x1 ≥ x2 ≥ ... ≥ xd ≥ 0}. (6.4)

One of the indefinite orthogonal, unitary or symplectic groups SOo(p, d),
SU(p, d) or Sp(p, d) with maximal compact subgroup K = SO(p) ×
SO(d), S(U(p)× U(d)) or Sp(p)× Sp(d), respectively (see [17]).

Let p ∈ N such that p > d ≥ 1, d0 = 1, 2, 4 and µ ∈ R such that
µ > γ0 − 1 with γ0 = d0(d− 1

2
) + 1.

We consider in this section the root system of type BCd corresponding
to the multiplicity function kµ = (k1, k2, k3) with k1 = µ − d−d0

2
, k2 =

d0−1
2

, k3 = d0
2

.
We denote by F µ

BC(λ, x) the Heckman-Opdam’s hypergeometric func-
tion associated to this root system.

Remark 6.1. For µ = pd0
2

, the function F µ
BC(λ, x) can be identified

with the spherical function on the Grasmann manifolds G|K where G is
one of the indefinite orthogonal, unitary or symplectic groups SO0(p, d), SU(p, d)
or Sp(p, d) with maximal compact subgroupK = SO(p)×SO(d), S(U(p)×
U(d)) or Sp(p)× Sp(d), respectively (see [17]).

6.1. The product formula for the function F µ
BC.

Notation. We denote by Σ = Rd + iconv(W.ρ), where conv(W.ν) is

the convex hull of the Weyl group orbit W.ρ, and by
o

Σ the interior of Σ.
In [17] p.2789-2792, the author has proved that the function F µ

BC(λ, x),
λ ∈ Cd, x ∈ Rd, admits the following product formula

∀x, y ∈ Rd, F µ
BC(λ, x).F µ

BC(λ, y) =

∫
Rd

F µ
BC(λ, z)dmµ

x,y(z), (6.5)

where mµ
x,y is a probability measure on Rd.
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Theorem 6.2. For all λ ∈ Σ we have

sup
x∈Rd

|F µ
BC(λ, x)| = 1. (6.6)

Proof. In [17] p.2798-2799, the author has proved that for all λ ∈ Σ
the function x→ F µ

BC(λ, x) is bounded.
On the other hand as for all x, y ∈ Rd, the measure mµ

x,y is a probability
measure, then from the relation (6.5), for all λ ∈ Σ, we obtain

∀x, y ∈ Rd, |F µ
BC(λ, x)||F µ

BC(λ, y)| ≤ sup
z∈Rd

|F µ
BC(λ, z)|.

We deduce (6.6) from this inequality and the fact that F µ
BC(λ, 0) = 1.

Remarks 6.3.

1. The function x −→ F µ
BC(λ, x) is unbounded for λ /∈ Σ. (see [17,

Corollary 5.6]).

2. All the results of the previous five sections remain true for the root
system of type BCd considered in this section.

The hypergeometric translation operator defined by the relation (3.19),
will be denoted by T W,µx , x ∈ Rd.

By using the relations (6.5), (3.21), the operator T W,µx , x ∈ Rd, pos-
sesses the following integral representation

∀y ∈ Rd, T W,µx (f)(y) =

∫
Rd

f(z)dmµ
x,y(z), f ∈ E(Rd)W , (6.7)

and then the relation (6.5) can also be written in the form

∀x, y ∈ Rd, τW,µx (F µ
BC)(y) = F µ

BC(x)F µ
BC(y). (6.8)

Proposition 6.4.

i) We have
mµ
x,0 = δx and mµ

0,y = δy, (6.9)

where δz is the Dirac measure at z ∈ Rd.

ii) For all x, y ∈ Rd, we have

supp mµ
x,y ⊂ {z ∈ Rd, ||z|| ≤ ||x||+ ||y||}. (6.10)

Proof. i) We deduce the results from the relation (6.7),(3.20).
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ii) The relation (6.10) is given in [17] p.2794.

6.2. Absolute continuity of the measure mµ
x,y.

Notations. We denote by
- B(c, a) the open ball of Rd of center c ∈ Rd and radius a > 0, and by
B(c, a) its closure.
- Λ the Lebesgue measure on Rd.

In this subsection we prove that for all x, y ∈ Rd
reg, the measure mµ

x,y

is absolute continuous with respect to the Lebesgue measure on Rd.
Proposition 6.5. Let t0 ∈ Rd and a > 0, We consider the sequence

{fn}n∈N\{0} of functions in D(Rd)W , positive increasing such that

∀n ∈ N\{0}, supp fn ⊂ B(t0, a−
1

n
), fn(z) = 1,

and

∀z ∈ Rd, lim
n→+∞

fn(z) = 1B(t0,a)(z),

where 1B(t0,a) is the characteristic function of the ball B(t0, a). We have

∀y ∈ Rd, lim
n→+∞

T W,µx (fn)(y) = lim
n→+∞

∫
Rd

fn(z)dmµ
x,y(z),

=

∫
Rd

1B(t0,a)(z)dmµ
x,y(z).

The function y −→ mµ
x,y(B(t0, a)) =

∫
Rd

1B(t0,a)(z)dmµ
x,y(z) which can

also be denoted by T W,µx (1B(t0,a))(y) is defined almost every where on
Rd, measurable and for all function h in D(Rd)W , we have∫

Rd

mµ
x,y(B(t0, a))h(y)Ak(y)dy =

∫
B(t0,a)

T W,µx (h̆)(−z)Ak(z)dz, (6.11)

where h̆ is the function given by

∀u ∈ Rd, h̆(u) = h(−u).

Proof. For all x ∈ Rd and n ∈ N\{0}, the function T W,µx (fn) belongs
to D(Rd)W . Then we obtain the results of this proposition from the
monotonic convergence theorem and the relations (3.27),(3.40).
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Remark 6.6. There exists a σ − algebra M in Rd which contains
all Borel sets in Rd. Then for all E ∈M, the function y −→ mµ

x,y(E) is

defined almost every where on Rd, measurable and we have the following
relation∫

Rd

mµ
x,y(E)h(y)Ak(y)dy =

∫
E

T W,µx (h̆)(−z)Ak(z)dz, (6.12)

Proposition 6.7. For x, y ∈ Rd
reg, there exists a unique positive

function ΘW (x, y, .) integrable on Rd with respect to the Lebesgue mea-
sure Λ, and a positive measure mµ,s

x,y on Rd such that for every Borel set
E, we have

mµ
x,y(E) =

∫
E

ΘW (x, y, z)dz +mµ,s
x,y(E). (6.13)

Proof. We deduce (6.13) from (6.7) and [18, Theorems 6.9 and 8.6].

Remarks 6.8.

i) The supports of the function z −→ Θ(x, y, z) and the measure
mµ,s
x,y, are contained in the set {z ∈ Rd, ||z|| ≤ ||x||+ ||y||}.

ii) Suppose ν1 and ν2 are measures on M and suppose that there exists
a pair of disjoint sets X1 and X2 such that ν1 is concentrated on
X1 and ν2 concentrated on X2. Then we say that ν1 and ν2 are
mutually singular (see Definition 6.7 of [18] p.128). In our case the
measures mµ,s

x,y and the Lebesgue measure Λ are mutually singular.
iii) From [18, Theorem 8.6 and Definition 8.3], we have

ΘW (x, y, z) = lim
a→0

mµ
x,y(B(z, a))

Λ(B(z, a))
. (6.14)

Proposition 6.9. We consider x ∈ Rd
reg and a positive function h

in D(Rd)W with support contained in the ball B(0, R), R > 0.

i) For all Borel set E, we have∫
E

N h
x (z)dz =

∫
B(0,R)

h(y)mµ,s
x,y(E)Ak(y)dy, (6.15)

where

N h
x (z) = T W,µx (h̆)(−z)Ak(z)−

∫
B(0,R)

ΘW (x, y, z)h(y)Ak(y)dy. (6.16)
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ii) We have

∀z ∈ Rd, N h
x (z) ≥ 0. (6.17)

Proof. i) By using the relations (6.12),(6.13) we obtain∫
E

T W,µx (h̆)(−z)Ak(z)dz

=

∫
B(0,R)

mµ
x,y(E)h(y)Ak(y)dy

=

∫
B(0,R)

[

∫
E

ΘW (x, y, z)h(y)dz +mµ,s
x,y(E)]h(y)Ak(y)dy.

We deduce (6.15) by applying Fubini-Tonelli’s theorem to the last
member.

ii) From the relation (6.15), the positivity of the measure mµ,s
x,y implies

that for all Borel sets E, we have∫
E

N h
x (z)dz ≥ 0.

Thus

∀z ∈ Rd, N h
x (z) ≥ 0.

Proposition 6.10. The measure ηhx on Rd given for all Borel sets
E by

ηhx(E) =

∫
E

N h
x (z)dz (6.18)

is positive and bounded.

Proof. - The relation (6.17) gives the positivity of the measure ηhx .
- From the relations (6.18),(6.15), for all Borel sets E we have

ηhx(E) ≤
∫
B(0,R)

||mµ,s
x,y||h(y)Ak(y)dy. (6.19)

On the other hand by using (6.13), we obtain for all y ∈ Rd
reg :

mµ,s
x,y(E) ≤ mµ

x,y(E).

Thus

||mµ,s
x,y|| ≤ ||mµ

x,y|| = 1.
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By using this result, the relation (6.19) implies that for all Borel sets E,
we have

ηhx(E) ≤Mh,

where

Mh =

∫
B(0,R)

h(y)Ak(y)dy.

Thus the measure ηhx is bounded.

Proposition 6.11.

i) For all Borel sets E we have

ηhx(E) = 0. (6.20)

ii) For x, z ∈ Rd
reg, we have

T W,µx (h̆)(−z) =
1

Ak(z)

∫
B(0,R)

ΘW (x, y, z)h(y)Ak(y)dy. (6.21)

Proof. i) From the relations (6.18), (6.15), for all Borel set E the
measure ηhx possesses also the following form

ηhx(E) =

∫
B(0,R)

mµ,s
x,y(E)h(y)Ak(y)dy. (6.22)

On the other hand from Proposition 6.10 the measure ηhx is abso-
lute continuous with respect to the Lebesgue measure Λ and from
Remark 6.8 ii) the measure mµ,s

x,y and the Lebesgue measure Λ are
mutually singular.
Then from [18, Proposition 6.8 (f)], the measures ηhx and mµ,s

x,y, are
mutually singular. We deduce (6.20) from (6.22) and Remark 6.8
i).

ii) By using the i) and (6.18), (6.16), we get

T W,µx (h̆)(−z)Ak(z)dz =

∫
B(0,R)

ΘW (x, y, z)h(y)Ak(y)dy.

As

z ∈ Rd
reg ⇐⇒ Ak(z) 6= 0,

then we deduce (6.21) from this relation.
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Theorem 6.12. For all f in E(Rd)W and x, y ∈ Rd
reg we have

T W,µx (f)(y) =

∫
Rd

f(z)WW (x, y, z)Ak(z)dz, (6.23)

where

WW (x, y, z) =
ΘW (x,−z,−y)

Ak(y)
. (6.24)

Proof. We obtain (6.23),(6.24), by writing f = f+− f− and by using
the relation (6.21) and the properties of the operator T W,µx .

Remark 6.13. Theorem 6.12 shows that for all x, y ∈ Rd
reg, the mea-

sure mµ
x,y is absolute continuous with respect to the measure Ak(z)dz.

More precisely for all z ∈ Rd, we have

dmµ
x,y(z) =WW (x, y, z)Ak(z)dz. (6.25)

Corollary 6.14

i) For all λ ∈ Cd and x, y ∈ Rd
reg, we have

Fλ(x)Fλ(y) =

∫
Rd

Fλ(z)WW (x, y, z)Ak(z)dz. (6.26)

ii) For all x, y ∈ Rd
reg, we have∫

Rd

WW (x, y, z)Ak(z)dz = 1. (6.27)

iii) For all x, y ∈ Rd
reg, the support of the function z −→ WW (x, y, z)

is contained in the set {z ∈ Rd, ||z|| ≤ ||x||+ ||y||}.

Proof. We deduce the results of this Corollary from (6.5),(6.25) and
Theorem 6.12.

Corollary 6.15.

i) We have

∀x, y, z ∈ Rd, WW (x, y, z) =WW (y, x, z). (6.28)

ii) We have
∀x, y, z ∈ Rd,WW (x,−y, z)Ak(y)Ak(z)dzdy

=WW (x,−z, y)Ak(y)Ak(z)dzdy. (6.29)

Proof. i) We deduce the result from the relations (6.23),(3.20).
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ii) Let f, g be in D(Rd)W . From Corollary 3.12.i) we have

∀x ∈ Rd, f ∗µHW g(x) = g ∗µHW f(x).

Then be using (3.31),(6.23) we obtain for all x ∈ Rd:∫
Rd

T W,µx (f)(−y)g(y)Ak(y)dy =

∫
Rd

T W,µx (g)(−z)f(z)Ak(z)dz,

thus∫
Rd

∫
Rd

T W,µx (f)(−y)g(y)Ak(y)Ak(z)dzdy =∫
Rd

∫
Rd

T W,µx (g)(−z)f(z)Ak(z)Ak(y)dydz.

We deduce (6.29) from this relation and (6.23).

6.3. The hypergeometric convolution product on W-invariant
LpAk

-spaces.

Proposition 6.16. The operator T W,µx , x ∈ Rd, is bounded on
LpAk

(Rd)W , 1 ≤ p ≤ +∞, and we have

||T W,µx (f)||Ak,p ≤ ||f ||Ak,p. (6.30)

Proof. From the relation (6.23), for all f in D(Rd)W we have

∀y ∈ Rd, T W,µx (f)(y) =

∫
Rd

f(z)WW (x, y, z)Ak(z)dz.

As the function equal to 1 belongs to the space Lq(Rd,WW (x, y, z)Ak(z)dz),
1 ≤ q ≤ +∞, then Hölder’s inequality and the relation (6.27) imply

∀y ∈ Rd, |T W,µx (f)(y)|p ≤
∫
Rd

|f(z)|pWW (x, y, z)Ak(z)dz.

Thus∫
Rd

|T W,µx (f)(y)|pAk(y)dy ≤
∫
Rd

∫
Rd

|f(z)|pWW (x, y, z)Ak(z)Ak(y)dzdy

≤
∫
Rd

∫
Rd

|f(z)|pWW (x,−y, z)Ak(z)Ak(y)dzdy.
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By applying the relation (6.29), Fubini-Tonelli’s theorem and the relation
(6.27) to the second member, we obtain∫

Rd

|T W,µx (f)(y)|pAk(y)dy ≤
∫
Rd

|f(z)|pAk(z)dz.

This completes the proof of the relation (6.30).

Theorem 6.17. Let f, g be in L1
Ak

(Rd)W . Then

i) The function f ∗µHW g defined almost every where by

f ∗µHW g(x) =

∫
Rd

T W,µx (f)(−y)g(y)Ak(y)dy, x ∈ Rd, (6.31)

belongs to L1
Ak

(Rd)W and we have

||f ∗µHW g||Ak,1 ≤ ||f ||Ak,1||g||Ak,1. (6.32)

ii) We have

∀λ ∈ Rd, HW,µ(f ∗µHW g)(λ) = HW,µ(f)(λ).HW,µ(g)(λ). (6.33)

Proof. i) From Fubini-Tonelli’s theorem and (6.30) we have∫
Rd

[

∫
Rd

|T W,µx (f)(−y)|Ak(x)dx]|g(y)|Ak(y)dy

≤
∫
Rd

||f ||Ak,1|g(y)|Ak(y)dy ≤ ||f ||Ak,1||g||Ak,1.

Thus the function (x, y) −→ T W,µx (f)(−y)g(y) belongs to L1
Ak

(Rd)W .

Then from Fubini’s theorem for almost all x ∈ Rd, the function
y −→ T W,µx (f)(−y)g(y) is in L1

Ak
(Rd)W and the function f ∗µHW g

defined by (6.31) belongs to L1
Ak

(Rd)W .
On the other hand we have

|f ∗µHW g|(x) ≤
∫
Rd

|T W,µx (f)(−y)||g(y)|Ak(y)dy.

Thus∫
Rd

|f ∗µHW g(x)|Ak(x)dx ≤
∫
Rd

∫
Rd

|T W,µx (f)(−y)||g(y)|Ak(y)Ak(x)dydx.

By applying Fubini’s theorem and the relation (6.30), to the second
member, we obtain (6.32).

ii) For all λ ∈ Rd we have

HW,µ(f ∗µHW g)(λ) =

∫
Rd

f ∗µHW g(x)F µ
BC(−λ, x)Ak(x)dx.
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By using Fubini’s theorem and (6.31) we obtain
∀λ ∈ Rd, HW,µ(f ∗µHW g)(λ)

=

∫
Rd

[

∫
Rd

T W,µx (f)(−y)F µ
BC(−λ, x)Ak(x)dx]g(y)Ak(y)dy. (6.34)

But by using (3.20), (3.27),(3.40),(6.8) we obtain∫
Rd

T W,µx (f)(−y)F µ
BC(−λ, x)Ak(x)dx

=

∫
Rd

T W,µ−y (f)(x)F µ
BC(−λ, x)Ak(x)dx

=

∫
Rd

f(x)tT W,µ−y (F µ
BC(−λ, .))(x)Ak(x)dx

=

∫
Rd

f(x)T W,µ−y (F̆ µ
BC(−λ, .))(−x)Ak(x)dx

=

∫
Rd

f(x)F̆ µ
BC(−λ,−x)F̆ µ

BC(−λ,−y)Ak(x)dx

= F µ
BC(−λ, y)

∫
Rd

f(x)F µ
BC(−λ, x)Ak(x)dx.

Thus∫
Rd

T W,µx (f)(−y)F µ
BC(−λ, x)Ak(x)dx = F µ

BC(−λ, y)HW,µ(f)(λ). (6.35)

The relations (6.34), (6.35) imply (6.33).

Remark 6.18 From the relation (6.33) we deduce that the hyperge-
ometric convolution product given by (6.31) is commutative and asso-
ciative

Corollary 6.19. The space L1
Ak

(Rd)W with the hypergeometric con-
volution product ∗µHW is a commutative Banach algebra.

Theorem 6.20. Let f be in LpAk
(Rd)W , 1 < p ≤ +∞, and g in

L1
Ak

(Rd)W . Then the function f ∗µHW g defined almost everywhere on Rd

by

f ∗µHW g(x) =

∫
Rd

T W,µx (f)(−y)g(y)Ak(y)dy, (6.36)

belongs to LpAk
(Rd)W and we have

||f ∗µHW g||Ak,p ≤ ||f ||Ak,p||g||Ak,1. (6.37)
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Proof. We obtain the results of this theorem by using the relation
(6.30), and by making the same proof as for Theorem 4.9

Theorem 6.21. Let ϕε, ε > 0, the function given by the relation
(4.12). Then for all f in LpAk

(Rd)W , 1 ≤ p < +∞, we have

lim
ε→0
||f ∗µHW ϕε − f ||Ak,p = 0. (6.38)

Proof. The relation (6.30) and the same proof as for Theorem 4.10
imply the relation (6.38).

Theorem 6.22. Let f be in LpAk
(Rd)W , 1 < p ≤ +∞, and g in

LqAk
(Rd)W with q such that 1

p
+ 1

q
= 1. Then the function f ∗µHW g defined

on Rd by

f ∗µHW g(x) =

∫
Rd

T W,µx (f)(−y)g(y)Ak(y)dy, (6.39)

is continuous on Rd, tends to zero at the infinity and we have

sup
x∈Rd

|f ∗µHW g| ≤ ||f ||Ak,p||g||Ak,q. (6.40)

Proof. By using the relation (6.30) and by applying the same proof
as for Theorem 4.11, we obtain the results of this theorem.

6.4. The maximal ideal space of the algebra L1
Ak

(Rd)W . In this

subsection we give the maximal ideal space S of the algebra L1
Ak

(Rd)W ,
and we prove that S is homeomorphic to the set Σ equipped with the
usual topology.

Theorem 6.23. To each complex homomorphism X of L1
Ak

(Rd)W

corresponds to a unique element λ ∈ Σ such that

∀f ∈ L1
Ak

(Rd)W , X (f) = HW,µ(f)(λ). (6.41)

To prove this theorem we need the following Lemma.
Lemma 6.24. Let ψ be a function in L∞Ak

(Rd)W , satisfying the rela-
tion

T W,µx (ψ̆)(y) = ψ̆(x)ψ̆(y), a.e. x, y ∈ Rd, (6.42)

where ψ̆ is the function given by

ψ̆(x) = ψ(−x), x ∈ Rd.
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Then

i) The function ψ̆ is of class C∞ on Rd.

ii) We have

ψ̆(0) = 1. (6.43)

iii) There exists a unique λ ∈ Σ such that

∀x ∈ Rd, ψ̆(x) = F µ
BC(λ, x). (6.44)

Proof. i) We choose h in D(Rd)W satisfying∫
Rd

ψ̆(x)h(x)Ak(x)dx = 1. (6.45)

We have for x ∈ Rd :

ψ̆ ∗µHW h(x) =

∫
Rd

T W,µx (ψ̆)(−y)h(y)Ak(y)dy,

the relations (6.42),(6.45) imply for x ∈ Rd :

ψ̆ ∗µHW h(x) = ψ̆(x),

thus by using the relations (3.33),(3.40) we obtain

ψ̆(x) =

∫
Rd

ψ̆(y)T W,µx (h)(y)Ak(y)dy, x ∈ Rd. (6.46)

From this relation we deduce that the function ψ̆ is of class C∞ on
Rd, because from (3.40),(3.30) for all x ∈ Rd the function T W,µx (h)
belongs to D(Rd)W .

ii) We obtain (6.43) from (6.42) and the i).
iii ) By using (6.46),(3.20), we obtain

T W,µz (ψ̆)(x) =

∫
Rd

ψ̆(y)T W,µz (T W,µy (h))(x)Ak(y)dy. (6.47)

For all operator p(T ) = p(T1, T2, ..., Td), where p is a W -invariant
polynomial on Cd, the relations (3.22), (3.23) imply

p(T )zT W,µz (ψ̆)(x) =

∫
Rd

ψ̆(y)p(T )zT W,µz (T W,µy (h))(y)Ak(y)dy,

=

∫
Rd

ψ̆(y)p(T )xT W,µz (T W,µy (h))(y)Ak(y)dy.
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Thus by using the relation (6.47) we get

p(T )zT W,µz (ψ̆)(x) = p(T )xT W,µz (ψ̆)(x), (6.48)

and

p(T )ψ̆(x) = p(T )xT W,µz (ψ̆)(x)/z=0,

= p(T )zT W,µz (ψ̆)(x)/z=0.

Then

p(T )ψ̆(x) = σψ̆(p)ψ̆(x), (6.49)

with

σψ̆(p) = p(T )ψ̆(0).

Thus from ([17] p.2796), there exists a unique λ ∈ Cd such that

σψ̆(p) = p(iλ). (6.50)

From the relations (6.49),(6.50),(6.43) the function ψ̆ satisfies the differ-
ential system {

p(T )ψ̆(x) = p(iλ)ψ̆(x), x ∈ Rd,

ψ̆(0) = 1,

corresponding to the root system of type BCd attached to the multiplic-
ity function kµ.
As the solution of this system is unique, it follows from (2.11) that

∀x ∈ Rd, ψ̆(x) = F µ
BC(λ, x).

But the function ψ̆ is bounded, then from (6.6) and Remarks 6.3 i), λ
belongs to Σ.

Proof of Theorem 6.23
Let X be the linear functional from L1

Ak
(Rd)W into Cd defined for

λ ∈ Σ by

X (f) = HW,µ(f)(λ) =

∫
Rd

f(x)F µ
BC(λ,−x)Ak(x)dx.

From the relation (6.6) we have

|X (f)| ≤ ||f ||Ak,1,

and from (6.33), for all f, g in L1
Ak

(Rd)W we get

X (f ∗µHW g) = X (f)X (g).
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Then X is a complex homomorphism of the algebra L1
Ak

(Rd)W .

Conversely, Let X be a complex homomorphism of the algebra L1
Ak

(Rd)W .

The mapping f −→ X (f) is a linear functional from L1
Ak

(Rd)W into

Cd of norm at most 1. Then there exists a function ψ in L∞Ak
(Rd)W such

that

X (f) =

∫
Rd

f(x)ψ(x)Ak(x)dx. (6.51)

From the relation
X (f ∗µHW g) = X (f)X (g),

with f, g in D(Rd)W , we obtain from (6.30), (6.31) and Fubini’s theorem

X (f ∗µHW g) =

∫
Rd

f ∗µHW g(x)ψ(x)Ak(x)dx

=

∫
Rd

[

∫
Rd

T W,µx (f)(−y)ψ(x)Ak(x)dx]g(y)Ak(y)dy.

But from (3.20),(3.27) (3.40) we have∫
Rd

T W,µx (f)(−y)ψ(x)Ak(x)dx =

∫
Rd

T W,µ−y (f)(x)ψ(x)Ak(x)dx

=

∫
Rd

f(x)T W,µ−y (ψ)(x)Ak(x)dx

=

∫
Rd

f(x)T W,µ−y (ψ̆)(−x)Ak(x)dx.

Thus

X (f ∗µHW g) =

∫
Rd

∫
Rd

T W,µ−y (ψ̆)(−x)f(x)g(y)Ak(x)Ak(y)dxdy. (6.52)

On the other hand we have

X (f)X (g) =

∫
Rd

∫
Rd

ψ(x)ψ(y)f(x)g(y)Ak(x)Ak(y)dxdy. (6.53)

From the relations (6.52), (6.53) we deduce

T W,µ−y (ψ̆)(−x) = ψ(x).ψ(y), a.e, x, y ∈ Rd.

This relation can also be written in the form of the relation (6.42).
Thus from Lemma 6.24 and the relation (6.51), there exists a unique
λ ∈ Σ such that for all f in L1

Ak
(Rd)W we have

X (f) =

∫
Rd

f(x)F µ
BC(λ,−x)Ak(x)dx,
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Thus
X (f) = HW,µ(f)(λ).

This completes the proof.
Remarks 6.25.

i) Theorem 6.23 proves that the hypergeometric Fourier transform
HW,µ is the Gelfand transform defined on L1

Ak
(Rd)W by

G(f)(x) = X (f), X ∈ S, (6.54)

where S denotes the set of all complex homomorphisms X of L1
Ak

(Rd)W .

ii) Let G(L1
Ak

(Rd)W ) be the space of all G(f) for f in L1
Ak

(Rd)W . The

Gelfand topology of S is the weak topology induced by G(L1
Ak

(Rd)W )
that is the weakest topology that makes every G(f) continuous.
Then we have

G(L1
Ak

(Rd)W ) ⊂ C(S), (6.55)

where C(S) is the space of complex continuous functions on S.
iii) The set S equipped with the Gelfand topology is usually called the

maximal ideal space of L1
Ak

(Rd)W .

Theorem 6.26. The maximal ideal space S of L1
Ak

(Rd)W is homeo-
morphic to Σ equipped with the usual topology.

Proof. We deduce the result from Theorem 6.22, the relations (6.54),(6.55)
and Theorem 5 G of [10] p.12.

6.5. The hypergeometric Fourier transform on the W -invariant
measures spaces.

Notations. We denote by
- Cb(Rd)W the space of continuous and bounded functions on Rd.
- Mb(Rd)W the space of bounded Borel measures on Rd, which are W -
invariant.
- M1(Rd)W the subset of probability measures on Rd which are W -
invariant.

Definition 6.27. The hypergeometric Fourier transform of a mea-
sure η in Mb(Rd)W is the function HW,µ(η) defined on Σ by

HW,µ(η)(λ) =

∫
Rd

F µ
BC(−λ, x)dη(x). (6.56)

Proposition 6.28.

i) For η in Mb(Rd)W the function HW,µ(η) is continuous in Σ and

holomorphic in
o

Σ.
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ii) For η in Mb(Rd)W we have

∀λ ∈ Σ, |HW,µ(η)(λ)| ≤ ||η||. (6.57)

Proof. i) - For all x ∈ Rd, the function λ −→ F µ
BC(−λ, x) is con-

tinuous in Σ and from the relation (6.6) it satisfies

∀λ ∈ Σ, ∀x ∈ Rd, |F µ
BC(−λ, x)| ≤ 1.

Then the dominated convergence theorem implies the continuity of
the function HW,µ(η) in Σ.

- As for all x ∈ Rd, the function λ −→ F µ
BC(−λ, x) is entire on

Cd, then from Fubini’s theorem and Cauchy’s formula we deduce

that the function HW,µ(η) is holomorphic in
o

Σ.

ii) We deduce (6.57) from (6.56) and (6.6).

Proposition 6.29. Let η, ν two measures in Mb(Rd)W such that

∀λ ∈ Rd, HW,µ(η)(λ) = HW,µ(ν)(λ). (6.58)

Then

η = ν. (6.59)

Proof. We denote by σ the measure of Mb(Rd)W given by

σ = η − ν.
We have

∀λ ∈ Rd, HW,µ(σ)(λ) = 0.

On the other hand for all f in D(Rd)W , we deduce from Theorem 3.4,
iii) the relation (3.7) and Fubuni’s theorem∫

Rd

f(x)dσ(x) =

∫
Rd

∫
Rd

HW,µ(f)(λ)F µ
BC(λ, x)CWk (λ)dλdσ(x)

=

∫
Rd

∫
Rd

HW,µ(f̆)(−λ)F µ
BC(λ, x)CWk (λ)dλdσ(x)

=

∫
Rd

∫
Rd

HW,µ(f̆)(λ)F µ
BC(−λ, x)CWk (λ)dλdσ(x)

=

∫
Rd

HW,µ(f̆)(λ)HW,µ(σ)(λ)CWk (λ)dλ = 0.
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Thus for all f in D(Rd)W we have∫
Rd

f(x)dσ(x) = 0,

Then

σ = 0⇐⇒ η = ν.

6.6. The hypergeometric convolution product on the W -invariant
measures spaces.

Definition 6.30. The hypergeometric convolution product η ∗µHW ν

of the measures η, ν in Mb(Rd)W is defined by

η ∗µHW ν(f) =

∫
Rd

∫
Rd

T W,µx (f)(y)dη(x)dν(y), f ∈ Cb(Rd)W . (6.60)

The following propositions give some properties of the convolution
product ∗µHW .

Proposition 6.31.

i) We have

∀x, y ∈ Rd, δx ∗µHW δy(f) = T W,µx (f). (6.61)

ii) - The measure η ∗µHW ν belongs to Mb(Rd)W and we have

||η ∗µHW ν|| ≤ ||η||||ν||. (6.62)

- For all η, ν in M1(Rd)W , the measure η ∗µHW ν belongs to

M1(Rd)W .

Proposition 6.32. Let η, ν in Mb(Rd)W . Then we have

∀λ ∈ Rd, HW,µ(η ∗µHW ν)(λ) = HW,µ(η)(λ).HW,µ(ν)(λ). (6.63)

Proof. We deduce (6.63) from the relations (6.60), (6.56),(6.8).

Corollary 6.33. The hypergeometric convolution product ∗µHW of

measures in Mb(Rd)W is commutative and associative.

Proof. We deduce these results from Proposition 6.32.
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6.7. The hypergroup associated to the root system BCd relating
to the multiplicity function kµ. The notion of an abstract algebraic
hypergroup has its origins in the studies of F.Marty and H.S.Wail in the
1930s, and harmonic analysis on hypergroups dates back to J.Delsart’s
and B.M.Levitan’s work during the 1930s and 1940s, but the substantial
development had to wait till the 1970s when C.F. Dunkl [5], R. Spector
[20] and R.I. Jewett [8] put hypergroups in the right setting for harmonic
analysis. There have been many fruitful development of the theory of
hypergroups and their applications in analysis, probability theory and
approximation theory (see [1,21]).

In the subsection 6.6 we have considered the hypergeometric con-
volution product ∗µHW of measure on Rd, parameterized by µ. In this

subsection we shall show that (Rd, ∗µHW ) are commutative hypergroups,
having the Heckman-Opdam’s hypergeometric function F µ(λ, x), x ∈
Rd, λ ∈ Σ, as characters. In the group theory cases corresponding to
µ = pd0

2
these hypergroups are given by the double coset convolution

associated with the Gelfand pairs (G,K). In the rank one case, they
coincide with the one variable Jacobi hypergroups (see [1] p.235) which
are particular cases of the Chébli-Trimèche’s hypergroups (see [1] p.202
and 209, [21]).

In [17] M.Rösler has proved that (C, ∗µHW ) where C is the closure of
the Weyl chamber a+ given by (6.4), are commutative hypergroups.

We consider the probability measure mµ
x,y given for x, y ∈ Rd by (6.5).

From the relations (6.7), (6.61) we obtain

δx ∗µHW δy = mµ
x,y. (6.64)

Theorem 6.34. The relation (6.64) define the commutative hyper-
groups (Rd, ∗µHW ). The neutral element is zero and the involution is the
identity mapping.

Proof. We obtain the results of this theorem by applying the proof
of ([17] p.2793-2799), used to prove that (C, ∗µHW ), are commutative
hypergroups.
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