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THE HARMONIC ANALYSIS ASSOCIATED TO THE
HECKMAN-OPDAM’S THEORY AND ITS
APPLICATION TO A ROOT SYSTEM OF TYPE BCy

KHALIFA TRIMECHE

ABSTRACT. In the five first sections of this paper we define and
study the hypergeometric transmutation operators V¥ and VW
called also the trigonometric Dunkl intertwining operator and its
dual corresponding to the Heckman-Opdam’s theory on R¢. By us-
ing these operators we define the hypergeometric translation opera-
tor 7;W, z € R%, and its dual t7;W, z € R%, we express them in terms
of the hypergeometric Fourier transform H", we give their proper-
ties and we deduce simple proofs of the Plancherel formula and the
Plancherel theorem for the transform H"'. We study also the hyper-
geometric convolution product on W-invariant L’;‘k—spaces, and we
obtain some interesting results. In the sixth section we consider a
some root system of type BCy (see [17]) of whom the corresponding
hypergeometric translation operator is a positive integral operator.
By using this positivity we improve the results of the previous sec-
tions and we prove others more general results.
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1. Introduction

In [2] I. Cherednik introduced a family of differential-difference oper-
ators 1,7 = 1,2,...,d, on R?, associated with a root system R and a
multiplicity function k. These operators play a crucial role in Heckman-
Opdam’s theory of hypergeometric functions, which generalizes the Harish-
Chandra’s theory of spherical fucntions on Riemannian symmetric spaces
(see [3, 6, 7, 14, 15, 19]).

The Heckman-Opdam’s theory is based on the Heckman-Opdam hy-
pergeometric function Fy, A € C?, which is the unique analytic solution
of the system

{ p(Tu(z) = 117(2)\)u(93), A e CdxeRY,

Y

<
—~
(=)
~—
I

for all polynomials p which are invariant with respect to the Weyl group
W associated with R, and p(T) = p(T}, T, ..., Ty).
We have

Ve C! Fy(z) = (K, &™),
where K is a W-invariant distribution on R¢ with compact support.
By using this distribution we define in the five first sections of this paper,

the hypergeometric transmutation operator V¥ on £(R%)" (the space
of C*®-functions on R?, which are W-invariant) by

v e RLVY(f)(@) = (K, ), f € ERDY.

We define also its dual 'V, on D(R?)W (the space of C*°-functions
on R? with compact support and which are W-invariant) by

/R ) V() w)g(y)dy

— [ V(o) @) f@)Ala)dr, feDERYY, ge RV,

R4
with
Vo eR, A(x) = [] |2$inh(%,x>]2k(“),
a€ER 4+
and R, is a positive subsystem of R.

The operators V¥ and *VV are called also the trigonometric Dunkl
intertwining operator and its dual.
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We study the properties of the operators V¥ and 'V and we use
them to define and study the hypergeometric translation operator TV, z €
R? and its dual ‘7Y,z € RY, by

vy e RETV (W) = (VDD IVE) T + )], f € ERDY
vy € RL TV (Ny) = V)V — @), f € DRDY

From these relations we deduce the product formula for the function
Fy,\ € C¢ and the relation between the operators 7.V, z € R¢, and
W,z e RY

VyeRY TV (F\)(y) = F(z).Faly),
VyeR, V() ="T(f)(—y), f € DRHY

where f is the function given by
VieR:, f(z) = f(-a).

We express the operators TV, x € RY, and *TV, z € RY, by using the
hypergeometric Fourier transform H" given on D(R%)" by

Ve ClHY (s /f ) A dm—/ F(2) Fy(—) Au(z)da

and we deduce simple proofs for the Plancherel formula and the Plancherel
theorem for the transform H" (See [14]).

Next we consider the spaces L% (RHW p € [1, +oo[, of W-invariant
functions on R? which are p'* integrable on R? with respect to the mea-
sure Ag(z)dr. We define first the operator 7",z € R, on L% (R")"W
and we prove that it is continuous from L2 (R?)" into itself. This result
permits to study the hypergeometric convolution product on the spaces
LA (RHYW, p e [1,2], and to establish the Kunze and Stein’s phenome-
non for the Heckman-Opdam’s theory, and Paley-Wiener’s theorem for
the hypergeometric Fourier transform H" on L2 (R%)"

We remark that in this harmonic analysis we don’t know if the hy-
pergeometric translation operator TV, z € R, is positive or not.

In the sixth section we consider a root system of type BCy (see [17])
of whom the corresponding hypergeometric translation operator denoted
by T+ x € RY p a positive real parameter, is a positive integral op-
erator given by a probability measure. We prove first that this measure
is absolutely continuous with respect to the Lebesgue measure. Next by
using this positivity we improve the results of the previous sections and
we prove the following others results.
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- The Heckman-Opdam’s hypergeometric function denoted by F'5~ (A, z)
satisfies for all A in >~ = R?+iconv(W.p), where conv(W.p) is the convex
hull for the Weyl group orbit W.p, the estimate

sup |[Fho(\, z)| = 1.
rER

- The hypergeometric translation operator T**, x € R?, is continuous
from Lf (RY)" into itself for p € [1, +oc].

- We determine the maximal ideal space of the commutative Banach
algebra L}4k (RH)W for the hypergeometric convolution product K

- By applying the same proof as in [17], we show that (RY, ) is a
commutative hypergroup.

I point out that the harmonic analysis given in this paper is very use-
ful to study many applications relating to the Heckman-opdam theory,
by examples the multiplier operators, the Calderon’s reproducing for-
mula related to the cherednik operators and inverse formulas by using
cherednick wavelets.

2. The Cherednik’s operators and their eigenfunctions

We consider R? with the standard basis {e;,i = 1,2,...,d} and the
inner product (.,.) for which this basis is orthonormal. We extend this
inner product to a complex bilinear form on C?.

2.1. The root system, the multiplicity function and the Chered-

2
nik’s operators. Let a € R\ {0} and & = Wa. We denote by
a

ro(z) =2 — (&, 2)a, z€RY (2.1)

the reflection in the hyperplan H, C R¢ orthogonal to a.

A finite set R C R\ {0} is called a root system if R "R, = {+a}
and r,R =R, for all @« € R. For a given root system R the reflections
Ta,@ € R, generate a finite group W C O(d), called the Weyl group
associated with R. For a given 8 € R? which belongs to no hyperplane
H, = {x € R (a,2) = 0},a € R, we fix the positive subsystem R, =
{a € R,{a, B) > 0}, then for each a € R either &« € R, or —a € R.
We denote by RY the set of positive indivisible roots.

Let

at ={z cR"VacR,(az) >0} (2.2)
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be the positive Weyl chamber. We denote by a* its closure. Let also
]Rfeg = RN\U,er H, be the set of regular elements in R?.

A function k : R — [0, +o00[ on the root system R is called a multi-
plicity function if it is invariant under the action of the reflection group

W. We introduce the index

y=7(R)= ) kla). (2.3)

a€ER 4

Moreover, let Ay be the weight function

e o
VzeR!, Az)= ][] \2smh<§,x>|2k< ), (2.4)

aER 4

which is W-invariant.

The Cherednik’s operators Tj,j = 1,2,...,d, on R? associated with
the reflection group W and the multiplicity function k are defined for f
of class C!' on R? and =z € R¢ by

reg

T1(0) = 510+ 30 TR @) = )} = ) (25)
where
pj = % Z k(a)a?, and o’ = {a,e;). (2.6)
a€ER ¢

In the case k(a) = 0, for all @« € R, the operators T},j = 1,2,...d,
reduce to the corresponding partial derivatives. We suppose in the fol-
lowing that &k # 0.

The Cherednik’s operators form a commutative system of differential-
difference operators.

For f of class C' on R? with compact support, and g of class C* on
R?, we have for j =1,2,....d :

| Tr@e) Aarde = = [ F@(T+ S)a@dia)de, )

with
vV eRY Sg(x) = Z k(a)a? g(rax). (2.8)

a€ER 4
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2.2. The Opdam-Cherednik’s kernel and the Heckman-Opdam’s
hypergeometric function (see [3, 6, 14, 19]). We denote by G, \ €
C4, the eigenfunction of the operators T}, j = 1,2, ...,d. It is the unique
analytic function on R? which satisfies the differential-difference system

T;Gy(z) =iNGa(z), j=1,2,...d,x € RY, (2.9)
GA(0) =1. :
It is called the Opdam-Cherednik kernel.
We consider the function F) defined by
1
VzeRY Fy(z)= 7 > Gi(wz). (2.10)

weW
This function is the unique analytic function on R?, which satisfies the
differential system

{ Z;AT(af’A(x) if(i)\)FA@)’ z € R, (2.11)

for all W-invariant polynomials p on C¢ and p(T) = p(Ty, T3, ..., Ty).
The function F)(z) called the Heckman-Opdam’s hypergeometric func-
tion, is W-invariant both in A and .
The functions G and F) possess the following properties
i) - For all A\ € C4, the functions z — G,(z) and x — F\(x) are of
class C* on R%.
- For all z € RY, the functions A — Gy(x) and A — F\(z) are

entire on C%.
ii) - For all x € R? and A € C?, we have

Gi(x) =G_5(z) and Fy(z)=F_5(z). (2.12)
iii) For all z € R? and X € R?, we have
(Ga(2)] < [W[Y? and |Ey(x)] < [W['2. (2.13)

iv) As the function f(z) = G;,(x) is the unique solution of the system
0 k(a)ad o
oz, (x)+ > m{f@) — flrax)} =0, =1,2,...d
aER 4
f0)=1

and the constant function f(x) = 1, is also a solution of this system.
Then, from the unicity of the solution of this system, we obtain

VzeRY Gilr)=1. (2.14)
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From this relation and (2.10), we get
VaeRYF,(z) =1 (2.15)

v) Let p and ¢ be polynomials of degree m and n. Then there exists a
positive constant M such that for all A € C? and « € R?, we have

0 0

P(50)a(5-)Ga(@)] < ML+ [[l)™ (1 + [[A[])" Fp(w)e™ mexwew fmiwde),
ON " 0x
(2.16)
The same inequality is also true for the function F)(x).
vi) The function Fy(z) satisfies the estimate
Vaeay, Fy(zr) < e P H (14 (o, x)). (2.17)

0
aERJr

vii) The function Gy, A € C?, admits the following Laplace type repre-
sentation

Ve RY Gy(z) = (K, &™), (2.18)
where K is a distribution on R? with support in I' = conv{wz,w €
W} (the convex hull for the orbit of x under W).

ix) From (2.10), (2.18) we deduce that the function Fy(z),\ € C¢,
possesses the Laplace type representation

Ve R Fy(z) = (KY, ™), (2.19)
where K" is the distribution on R? with support in T, given by
1
EY =— > Ky (2.20)
|W| a€R ¢

3. The harmonic analysis associated to the Heckman-Opdam’s
theory on W-invariant C'°-functions

NoTATIONS. We denote by

- E(RHW the space of C*®-functions on R?, which are W-invariant.

- D(RY)W the space of C* functions on RY, with compact support
and W-invariant.

- S(RHYW the space of W-invariant functions of the classical Schwartz
space S(RY).
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- S(RHYW the space of C*®-functions on R¢, which are W-invariant,
and such that for all /,n € N,

Pen(f) = s (L +[lz[D(Fo(2) T D" f(x)| < +o0,  (3.1)

z€R?

where

OlHl -
D = g = () €N =Y
=1

Its topology is defined by the semi-norms py,, ¢, n € N.
- PW,(CHW a > 0, the space of entire functions on C?, which are
W-invariant and satisfy

Vm €N, gn(g) = sup (14 [|A])"e 1" g(N)] < +o0. (3.2)
AeCd

The topology of PW,(C?) is defined by the semi-norms ¢,,, m € N.
We set

PW(CHW = Uusg PW,(CHWY. (3.3)
This space is called the Paley-Wiener’s space. It is equipped with the
inductive limit topology.

3.1. The hypergeometric Fourier transform.

DEFINITION 3.1. The hypergeometric Fourier transform H"W is de-
fined for f in D(RH)W (resp. So(RH)W) by

VAeCLHY(HN) = ) f(x)F_x(z)Ap(x)dz. (3.4)
REMARK 3.2. We have also the r]zlation
VAeCLHY (NN = g f(z)F\(—z)Ag(x)dz. (3.5)
(see [19]).

PROPOSITION 3.3. For all f in D(RHW (resp. Sy(RH)W) we have
the following relations

VA eRLHY(F(A) =HY (F(N), (3.6)
VAeRLHY(F)(A) =HY (F)(=N), (3.7)
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where f is the function defined by
VzeR! f(z)=f(-a).

Proof. We deduce these relations from (2.12), (3.4), (3.5). O

THEOREM 3.4.

i) The hypergeometric Fourier transform HW is a topological isomor-

phism from
o DERHYY onto PW(CHW.
o  S(RHYY onto S(RHW .

ii) A function f belongs to D(RHYW with supp f C B(0,a) the closed
ball of center 0 and radius a > 0, if and only if its hypergeometric
Fourier transform HY (f) belongs to PW,(CH)W.

iii) The inverse transform (HW)™! is given by

Vo RLHY) @) = [ AVB@C WA (8)
R4
where
Ci'(A) = ol CR(V)[ 7, (3.9)
with c, a positive constant chosen in such a way that C}¥ (—p) = 1,

and

- D((iX, &) + 3Kk(%))
AN =11 s e+ hw) + 20@)

aER
with k(5) =0 if § € R.
REMARK 3.5. The function ;" is continuous on R and satisfies the
estimate

(3.10)

VA e R ICY (N < const.(14 ||\, (3.11)
for some b > 0.
3.2. The hypergeometric transmutation operators V} and V¥

(see also [22]). By using the distribution K" given by (2.19) we define
the hypergeometric transmutation operator V;'¥ on £(RH)W by

Ve eR, Vi (g)(2) = (K", g). (3.12)

This operator is called also the trigonometric Dunkl intertwining opera-
tor. It satisfies the relation

VzeR: Vel VIV(eM) = Fy(x). (3.13)
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The operator V' is the unique linear topological isomorphism from
E(RHYW onto itself satisfying the transmutation relations

v e R p(T) VY (9)(2) = Vi (p(D)g)(2), g € ERDY,  (3.14)

for all W-invariant polynomials p on C¢, p(T) = p(T1, T3, ..., Ty) and
p(D) = p(Dy, D, ..., Dy) with D; = %, j =1,2,...,d, and the condition

V" (9)(0) = g(0). (3.15)
The dual 'V} of the operator V'V is defined by the following duality
relation

[ e = [ VE@@i@atds, (310

Rd

with f in D(RHYY (resp. Sa(RHYW) and g in E(RHW.

The operator 'V, is a linear topological isomorphism from

- D(RHW onto itself

- So(RHYW onto S(RY)W | satisfying the transmutation relations
vy e RLV (0(T) ) () = (D) Vi (F)(y), f € D(Rd)w(resp-«Sz((Rd)v)V)

3.17

for all W-invariant polynomials p on C% p(T) = p(T1,Ts,..,Ty) and

: 0 :
p(D,) = p(D1py, Dap,, ..oy Dap,) with D; . = Frele 20, 7=1,2,...,d.
j
REMARK 3.6. By applying the relation (3.16) with the function
g(y) = e X € R? we deduce from the relations (3.13),(3.4) that the
operator 'V, satisfies for f in D(RH)W (resp. So(R¥)W), the following
relation

VAERY Fo'Vi(f)(N) =HY (N, (3.18)

where F is the classical Fourier transform on R<.

3.3. The hypergeometric translation operator 7. and its dual
TV (see also [23]). By using the hypergeometric transmutation oper-
ator V' we define the hypergeometric translation operator TV, z € R,
on E(RHW by

Vy e RETV () = V)V [(VE) TN +y). (3.19)
The operator T,z € R?, satisfies the following properties:

1. For all z € R%, the operator T,V is continuous from &(R%)"W into
itself.
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2. For all fin ERY)Y and z,y € RY, we have

T (£)(0) = f(z) and T, (f)(y) = T," (f)(). (3.20)
3. For all z,y € R? and A\ € C?, we have the product formula
T." (F\)(y) = Fa(x)-Fx(y), (3.21)
where F) is the Heckman-Opdam’s hypergeometric function given
by (2.10).
4. For all fin ERYY, and x,y € R, we have
p(T) T () =T ((T) ) (), (3.22)
p(T), T2V () = TV (0(T)f)(y). (3.23)

for all W-invariant polynomials pon C? and p(T) = p(Ty, T, ..., Ty).

5. Let f be in £(RY)W. Then the function u(x,y) = TV (f)(y) is the
unique solution of class O on R? with respect to each variable, of
the system

u(0,y) = f(y),

for all W-invariant polynomials p on C¢, and p(T) = p(T1, T, ..., Ty).
By using the hypergeometric transmutation operators V¥ and ‘V,V

we define the hypergeometric translation operator dual ‘T z € R?, on
D(RHW (resp. So(RHW) by

Vy e RUTV(Hy) = VNV (D — o). (3.25)
The operator ‘T, x € R?, possesses the following properties

1. For all z € RY, the operator TV is continuous from D(R?)W (resp.
S»(R?)) into itself.
2. For all f in D(RH)W (resp. So(RH)W) and z,y € R?, we have

TN ="TE () (=) (3.26)
3. For all f in D(RHW (resp. So(RH)W) and h in E(RY)W we have
L Owme Ay = [ FoT 0o Al G20

PROPOSITION 3.7
i) For all f in DRHW (resp. So(RHYWY) and x € R?, we have

VA e CLHY (T ()N = Faal@)HY (V). (3.28)

{ p(T)eu(e,y) = p(T)yulz,y), (3.24)
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ii) For all f in DRYW (resp. So(RHYW) and x,y € R, we have
TN = [ FA@BER (DO WA (329
Proof. i) From the relations (3.4), (3.27), (3.21), we have

VASCLHY TN = [ TP Ay
= | SO FED) WAy,

= F.\(z) Rdf(y)F—A(y)Ak(y)dya

thus
Ve HY TV ()N = Fox(@)HY (FN).

ii) We deduce (3.29) from (3.28) and (3.8).
[

COROLLARY 3.8. For all f in D(RY)W with support in the closed ball
B(0,a) of center 0 and radius a > 0, and x € R, we have

supp' T, (f) € B(0,a + ||])). (3.30)
Proof. We obtain (3.30) from the relations (3.28), (2.16) and Theorem

3.4 ii). 0

3.4. The hypergeometric convolution product.

DEFINITION 3.9. The hypergeometric convolution product f sxgzw g
of the functions f, g in D(RH)W (resp. S2(R%)"W) is defined by

Vo e B fom o) = [ TVOE000 Ay (331
REMARK 3.10. We have
VaeRY, fryw g(z) = 5 72" ()W) 3(y) Ax(y)dy, (3.32)

where ¢ is the function defined by
vy e R g(y) = g(~y),
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then by applying the relation (3.27), the relation (3.32) can also be
written in the form

Vi eRY, frywg(a) = » F@) T (9)(y) Aw(y)dy. (3.33)

PROPOSITION 3.11

i) For all f,g in DIRHYW (resp. So(RHOW) the function f xgw g be-
longs to D(RHW (resp. Sy(RH)W).

ii) For all f,g in DRHYW (resp. So(RHYW) we have

VA ERLHY (faw g)(A) = HY(H(N)HY (9. (3.34)

Proof. 1) We deduce the result from the relation (3.33) and the
properties of the function ‘T (§)(y).
ii) We have

VA eRLHY(f xpw g)(N) = 5 fxpw g(z)F_x(z) Ap(x)dz.

By using the relations (3.33), (3.26) and Fubini’s theorem we obtain
VA€ RLHY(f s g)() =

Lol [ ool A (639
But from (3.5), (3.4), (3.28), (3.7) we get

L @R @At = [ TR0 A,

thus
/R T (§) () (@) Ac(w)dz = (=) HY (9)V).
We put this relation in (3.35) and we obtain
VA ERLHY (frgw g)(A) = HY (9)(N) | SWEE) Ay)dy.

we deduce (3.34) by applying (3.5). O
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COROLLARY 3.12

i) The hypergeometric convolution product is commutative and asso-
ciative on D(RHW and Sy(RH)W.
ii) For all f,g in D(RYW with supp f C B(0,a),a > 0, and
supp g C B(0,b),b > 0, we have
suppf *gw g C B(0,a +b), (3.36)
where B(0,c¢),c > 0, is the closed ball of center 0 and radius c.
iii) For all f,g in D(RHW (resp. S;(RHYW) we have

Vy e REp(T)(f %30v 9)(y) = (p(T)f) #w g(y), (3.37)

and

Vy € RLp(T)(f *uw 9)(y) = (f *uw (p(T)g))(y), (3.38)

for all W -invariant polynomials p on C* and p(T) = p(Ty, Ty, ..., Ty).
iv) For all f,g in DRYWY (resp. So(RHW), we have

vy € RLVEY(f xmw g)(y) = ViV (f) * Vi (9)(w), (3.39)

where * is the classical convolution product on RY.

Proof. i) We deduce the result from Proposition 3.11 ii) and The-
orem 3.4.1).

ii) Proposition 3.11 ii), the relation (2.16) and Theorem 3.4 ii) imply
the relation (3.36).

iii) We consider the hypergeometric Fourier transform of the first mem-
ber of the relations (3.37), (3.38). Next we apply the relations (3.4),
(2.11) and we deduce (3.37), (3.38), from Theorem 3.4.i).

iv) We obtain (3.39) from (3.34), (3.18).

O

COROLLARY 3.13. For all f in D(RH)W (resp. So(RHW), we have
Va,yeRY TV()) =T (N (=v), (3.40)
where f 15 the function defined by
VzeR?!, f(z) = f(—2).
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Proof. From Corollary 3.12 1) the hypergeometric convolution product
is commutative, then we have

Vi eR? . T (9) (=) f () Ar(y)dy = 5 T." (N (=1)9(y) Ax(y)dy.
On the other hand from the relation (3.33) we have
VaeR, . T (9)(=y) [ (y) Ax(y)dy = /Rd T W)9w) Ar(y)dy.
Thus for all 2 € R? and g in DRYW (resp. So(RY)W) we have
L[ 0 =7 (Dw]swai - o

This relation implies (3.40). O

PROPOSITION 3.14
i) For all f in D(RHYY (resp. So(RHW) and z € RY, we have

VA e CLHY (T ()N = Ba@)HY (H ). (3.41)
ii) For all f in DRHYW (resp. So(RHW), we have

Yoy eRLTY(N0) = [ R@REH (WA N (3.42)

Proof. i) From the relations (3.5), (3.27) for all f in D(R)" (resp.
So(RHW) and z € RY, we have

VAeCLHM (T ()N = TV () () Faly) Arly)dy,
= | fW)'T(F)(y)Aly)dy,

= | F)'TY(E)(—y)Ar(y)dy.

R4
By using the relations (3.40), (3.21) we obtain

ASCLY TN = [ FOT (B A

= B@ | F@) Fx(y) Ar(y)dy,

= F\(v) Rdf(y)FA(—y)Ak(y)dy-
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The relation (3.5) implies (3.41).
ii) We deduce (3.42) from the relations (3.41), (3.8).
O

COROLLARY 3.15. For all f in D(RHW (resp. So(RHYW) and x € R,

we have

T (H) ) Arly)dy = 5 F(y)A(y)dy. (3.43)

Rd

Proof. From the relations (3.5), (3.41) we have

T (D) P9 Aclody = Fila) [ 1) P il
Rd
We obtain (3.43) from the relation (2.15). O

THEOREM 3.16 (Plancherel’s formula). For all f, g in D(RH)W (resp.
So(RHW) we have

Rdf(y)@flk(y)dy: HY(HNHT (g)NCT (VA (3.44)

Rd

Proof. By applying the relation (3.8) to the relation (3.34) we obtain
ViR fa 5@ = [ R@HY(OOHY GO Oix
R

The relations (3.31), (3.6) permit to write this relation in the following
form

vaeR [ T NWaAd = [ B (0TGN (i

We obtain (3.44) by changing ¢ by ¢ in the two members, by taking
x = 0, and by using the relations

VyeRLT (f)y) = fly) and VAeRYF\(0)=1.
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4. The harmonic analysis associated to the Heckman-Opdam’s
theory on the L, (RY)" spaces

k

4.1. The hypergeometric Fourier transform.

NoTATIONS. We denote by
- L5, (RHW 1 < p < +o0o, the space of measurable functions f on R?
which are W-invariant and satisfy

1/p
flaw = ([ P Ao)is) ™ < +oo, 1<p< 4,

| flla,co = esssup |f(x)] < +oo.
zeR?

- L?,’W (RHW 1 < p < 400, the space of measurable functions f on
k

R?, which are W-invariant and satisfy

1/p
s = ([, lrrel man)" < 4001 <p < 4o
R

[fllep oo = ess sup FAQVIE
€

PROPOSITION 4.1. Let p € [1,2[ and q its conjugate exponent. Then
Ve Rda ||F)\||Ak,q < C(p)a (41)

where C(p) is a positive constant which depends only on p.

Proof. - For q €]2, +o0].
As the function © — F\(z) and Ag(x) are W-invariant, then to obtain
the result it suffices to prove that for all A € R¢, we have

I= /|F,\(:1:)]qu(:c)d:c < +o0.
at
But from the relations (2.4), (2.16) (2.17) we have

Vo e at, Ay(z) < 227eXP)

and
V€ at, |Fy(z)| < const.( H (1+ (a,z)))e P,

0
aER+
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Thus
q
I < const. / H (1+ (a, ) e~ (a=2){p2) 1,
at

0
a€RY

The integral of the second member is convergent for ¢ €]2, +00[. From
this result we deduce that there exists a positive constant Cy(p) which
depends only on p €]1,2[ such that

VAERY [[Fllag < Colp). (4.2)
- For ¢ = +o0
From (2.13) we have
VA eR? sup |Fy(z)| < |[W|V2 (4.3)
z€RY

We obtain (4.1) from (4.2), (4.3), with C(p) = Maz(Cy(p), |[W|*/?). O

THEOREM 4.2. (Plancherel’s theorem). The hypergeometric Fourier

transform HW defined by (3.4) extends uniquely to an isometric isomor-
phism from L% (R onto L2, (R4)"W.
k

Proof. We deduce the result from the relation (3.44) and the fact that
the space S(R?)" is dense in L% (RY)". O

COROLLARY 4.3. For all f in L2 (R)W, such that H" (f) belongs
k

to LéZV (R%), we have the inversion formula

f@)= [ HY(HN)Fa(2)C (N)dA, ae. x€R?. (4.4)

Rd

COROLLARY 4.4. The hypergeometric Fourier transform HY is in-
jective on Lfy (R?),1<p < 2.

Proof. - For p = 2, the result follows from Theorem 4.2.

- We assume that p € [1,2[. Let ¢ be the conjugate exponent of p.
For fin LY (R%)" and g in D(R?)", we obtain from Holder’s inequality
and Proposition 4.1 the following relations

(/s 9) il = \/Rdf(m)mflk(x)dxl < N Fllawpllgll v
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and

(HY (). HY (9))ep

[ Y O0HTGCY (A,
< I ()l ol " (9l

(
CONflacalH™ (@l
) H

Then the mappings f — (f, g)4, and f — (HV(f
tinuous functionals on L%, (R)"

On the other hand from Theorem 4.2, we have for all f in L (R")"
L%, RHY

IN

Wi(g ))ew are con-

(f,9)a, = (HY (). H" (9))ew- (4.5)
Then by continuity this equality is also true for f in L) (R*)". We
consider f in Lf; (RY)" such that H"(f) = 0. Then from (4.5), for all
g in D(RHYWY we have
(;9)a, = (H (), H" (9))ew = 0.
Thus
f=0.
This completes the proof. n
4.2. The hypergeometric translation operator.
DEFINITION 4.5. The hypergeometric translation operator TV, z €
R?, is defined on L%, (R")" by
HY(T ()N = Ea(@)HY ()N, AeR™ (4.6)

REMARK 4.6. Note that this definition makes sense because the

hypergeometric Fourier transform is, from Theorem 4.2, an isomorphism
from L2 (R)" onto L2y (R%)"W, and from (2.13), for all A € R? and
k

x € R% the function Fy(x) is bounded.
PROPOSITION 4.7.

i) For all f in L% (R)™ we have
1T (Dl ae < W2 fllage- (4.7)
ii) Forall f in L% (RYY such that HY (f) belongs to Ly (RH)W, and
k

x € R4, we have

TV () = / Ey@)B@)HY (HNCY (WA, ae. yeRL (48)

R4
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Proof. 1) We deduce the relation (4.7) from (4.6), Theorem 4.2 and
(2.13).
ii) We obtain (4.8) from (4.6) and the inversion formula (4.4).
U

PROPOSITION 4.8. For all f in L% (R)W the mapping x — T, (f)
is continuous from R? into L% (R%)W

Proof. Let 7y € R%. By using Theorem 4.2 and the relation (4.6), we
obtain

1T () =T Dl = I T () = - T (D)o
N / |[Fa(z) = Fa(zo) P[HY (H) (NPT (\)dA.

From the relation (2.13) and the fact that for all A € R? the function
x — F\(x) is continuous on R¢, the dominated convergence theorem
implies

lim | 72" (f) = Tog (F)lla.2 = 0.

T—x0

4.3. The hypergeometric convolution product.

THEOREM 4.9. Let f be in L2 (RY)W and g in LYy, (R)W. Then the
function f xyw g defined almost everywhere on R? by

o g(@) = [ T (N)(=9)g(y) Ax(y)dy, (4.9)
R
belongs to L2, (R)W and we have
1F #300 gllace < IWIV21F acellglaca: (4.10)

Proof. Let f, g, in D(RY)W. From (3.20) and Fubini’s theorem we
have

[ st = [ o) ([ 700 Adr) Aty
= [Law( [ 7 (O Aedr) Aty
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By using Holder’s inequality and (4.7), we obtain

/df s 9(2)p(2) Ap(@)de| < [WIV2Iflaallgllaallollae (4.11)
R

As the relation (4.11) remain true for all functions g in L (R%)", and
froin L2 (R)W. So we obtain (4.10). O

THEOREM 4.10. Let ¢ be a positive function in D(RHW such that
suppyp C B(0,1) the closed ball of center 0 and radius 1, and ||¢|| 4,1 = 1.
For e > 0, we consider the function @. given by

Ve R g (z) = ;jii) 0 g). (4.12)

Then for all f in L2, (RM)W, we have
lm || f #w e — fllagz = 0. (4.13)
e—0

Proof. Using the fact that [|¢p.||4,1 = 1, we deduce that for z € R?
we have

P e (2)— f(2)] < / (e ()2 (02 () 2T () (— ) £ () | s () dy.

Rd
By applying Hoélder’s inequality to the second member, we obtain

1 s 9u(2) — f(2)]? < / e )T () (=) — f(2)P Ax(y)dy.

Rd
Thus

[ psote=t@Paade < [ ] el T (0= @R A) Aue)dyds

By using the relation (3.20) and Fubini-Tonelli’s theorem we deduce that

Lf #30v 0e = flI,2 < / eI (F) = fI%, 2Aw(y)dy.

R4
the change of variables y = et gives

I 00 e = B < [ OIS = B s A

From Proposition 4.8, the relation (4.7) and the dominated convergence
theorem, we deduce (4.13). O
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NOTATION. We denote by H" the mapping on LéW(Rd) defined by
k
VaeREHY(F)(z) = / h(X) Ex(2)CY (N)dA. (4.14)
R4

We remark that for h in S(R)", we have
Y (h) = (M) (1),
THEOREM 4.11. Let f and g be in L (R?). Then
i) The function f *yw g defined on R? by

Feo o) = [ TVNCDa) A, (@419
is continuous on R?, tends to zero at the infinity and we have
sup £ 9lo) < WIS Lacalollae: (410
ii) We have
Vo€ B fr o) = Y V(MY (@)). (417)

Proof. i) Let {fn}nen and {g,}nen be two sequences in D(RY)W
which converge respectively to f and g in L% (RY)". By using the
fact that the operator TV, € R% is continuous from D(R¥)" into
itself, we deduce that the sequence { f,, *»w gn }nen Which belongs to
D(RH)W | converges to f xyw g uniformly on RY. Then the function
f *4w g is continuous on R? and tends to zero at the infinity.

ii) Let {fu}nen and {gn }nen be two sequences in So(RY)W which con-
verge respectively to f and g in L2 (R%)". From (3.34) and The-
orem 3.4, for all n € N, we have

Va € RY, foxpw galx) = [ HY(f2) OHY (g2) V) Er(2)C (A)dA.

Rd
(4.18)
On the other hand as the sequence {f, *yw gn}nen converges uni-

formly to f *yw g, and the sequence {H"™ (f,)H" (g,) }nen converges to
HY(f). 1Y (9) in Ly (RY)W. Then we obtain (4.17) when n goes to
k

infinity in (4.18). O
COROLLARY 4.12 We have
L2 (RO sggw L, (R = HY (Lew (R)™Y). (4.19)



The harmonic analysis associated to the Heckman-Opdam’s theory 243
Proof. From Theorem 4.11, we have
2 d\W 2 d\W W 1 d\W
L2 (R s L2, (RY)Y € HY (L (R)™).

conversely let f be in H" (L., (RY)W). There exists a function h in
oY
LéZV (RYW such that f = HW(h).

We write h in the following form

h = hy.h,
with
(X)) =[R2, ) € R,
and
N
BN A e R0
hah) = § oy 1 RO
0, if A = 0.

These functions are in L3y (R?). By applying Theorem 4.11 to the
k
functions (H")~1(hy) and (H")~!(hy), we obtain

(H"Y) 7 (ha) sqew (HY) M (ho) = HY (ha, ha) = HY (h) = .
Thus
7:[W)(Lé,gv (RHY) c L2, RYY sqw L2 (RN

This completes the proof. O

4.4. The Kunze and Stein’s phenomenon for the Heckman-
Opdam’s theory. The Kunze and Stein’s phenomenon has been proved
first by R.A.Kunze and E.M.Stein [9] for the harmonic analysis of the
2 x 2 real unimodular groups.

In this section we shall prove this phenomenon for the Heckman-
Opdam’s theory.

THEOREM 4.13. Let p € [1,2[. For all function f in L% (R%)" and
g in L% (RY)W, the function f *yw g belongs to L% (RY)" and we have

1 *20w gllace < COfllapllgllacz, (4.20)

where C'(p) is the constant given in Proposition 4.1.
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Proof. Let f, g, be in D(R)W. From (3.31) and Fubini’s theorem,
we have

[0 sla)ole) Auta)s

= /Rdf(y)< g Ew(g)(—y)w(w)Ak(x)dx) Arly)dy.

But from Theorem 3.16 and the relations (3.41), (3.6) we have

T (9)(~y)e(a) An(a)dz = / Fx(=y)H" (9) (VHW (2)(A)CT (\)dA.

R4 R4

Thus
[0 sl Autays

= | F@BE( [ H OOHTERC W) Adly)dy

By applying Theorem 3.16, Holder’s inequality and Proposition 4.1 to
the second member, we obtain

[ oo ola)o@ Aa)da

This inequality remains true for the functions g and ¢ in L% (R?) and
for all function f in L) (R?)". Then we obtain (4.20) from (4.21). [

< C)lgllas2llell a2l llagp  (4.21)

THEOREM 4.14. Let p € [1,2[ and q the conjugate exponent of p.
Then for all functions f and g in Lik (RHYW | the function f*yw g belongs
to LY (R?), and we have

1f #20w gllarg < CS Nl 2llgll a2 (4.22)

where C(p) is the constant given in Proposition 4.1.

Proof. Let f, g bein D(RY)" and ¢ in L% (RY)". From (3.33), (3.40),
3.20) and Fubini’s theorem we have

» f v g(@)p(2) Ax(z)dz = » F(@)(g #aw @)(2) Ar(a)de.

By applying to the second member the same method used to obtain
(4.21) we get

[, o o) o@ Ala)da

< OO fllag2llglla2llellagp-
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Thus this inequality implies (4.22). O

5. Paley-Winer’s theorem for the Hypergeometric Fourier
transform on the L% (RY)" space

In this section we describe a class of holomorphe functions which arise
in this manner. This class consists of all functions f of the form

Ve f()) = /R () B () As(a)d, (5.1)

where h belongs to Lilk (RHW ant its support is contained in the closed
ball B(0,a) of center 0 and radius a > 0. We can write also (5.1) in the
form

YA€l f(N) =HY(R)(N). (5.2)

From the relation (5.1) and the derivation theorem under the integral
sign, the function f is entire on C? and satisfies the growth condition

Ve Ch|f(\)] < const.edlT™ (5.3)

Then every function f of the form (5.1) is an entire function on C% which

satisfies (5.3) and by Theorem 4.2 its restriction to R? lies in L2, (R)".
k

It is remarkable fact that the converse of the previous result is true.
This is the content of the following theorem called Paley-Wiener’s the-
orem for the Hypergeometric Fourier transform %" on the L% (R%)"W
space.

THEOREM 5.1. Let f be an entire function on C? satisfying the
conditions

i) We have
VYA e CL|f(N)] < const.e®™Al g > 0. (5.4)

ii) The restriction figa of f to RY, belongs to L% (R)W. Then there
exists a function h in L2, (R) with support in the closed ball B(0, a)
such that

Ve f() = /R () B () As(a)d. (5.5)

To prove this theorem we need the following lemma.
LEMMA 5.2. Let f be in L% (RD)Y and g in D(R")Y. Then
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i) The function fxyw g is continuous on R?, belongs to L% (R)™ N
L2, (RDY and we have

1F #200 gllace < IWIV2(1F Laczllglaca: (5.6)
ii) We have

HY (f 53w g)(N) = HY (HHN).HY (9)(N), a.e. X € RY. (5.7)

Proof. i) From Theorem 4.11 the function f *yw g is continuous
on R? and belongs to L% (RY)W, and from Theorem 4.9 it is in
L2, (R)W and satisfies the relation (5.6).

ii) Let {f,|lnen be the sequence in D(R?)" which converges to f in
L2, (R)Y. From (3.34) we have

VA€ REHY (fuxaw ) = HY (Fa) N)-H (9)(N). (5-8)

By using Theorem 4.2 and the relation (5.6), the sequence {H"W (f,%yw
9) }nen converges to H'W (f sgw g) in L (RH)W.
Theorem 4.2 implies also that the sequence {HY (f,,).H" (9)}nen con-
verges to H" (f). 1" (g) in L2 (RY)".
Thus we deduce (5.7) from the relation (5.8). O

PROOF OF THEOREM 5.1
We consider the function h given by

h(z) = (HY) " (fira)(@), @€ R, (5.9)

From Theorem 4.2 it belongs to L% (R%)".

Let ¢.,e > 0, be the function defined by (5.9). From Lemma 5.2 the
function h #yw @ is continuous on R? belongs to L% (R?)" and we
have

HY (hsgw o) (N) = HY (W) VHY () (N),  a.e. A € RE
Thus by using (5.9) we obtain
HY (hxagw 02)(A) = Frra(A).HY (¢)(N), a.e. A€ R% (5.10)

As the function ¢, is in D(RY)W | then from Theorem 3.4 ii) the function
HWY (p.) is entire on C? and satisfies

Ve N,EI C’? > O,V = (cd7 ’HW(SOs)()\H < C?(l + ||>\H)465”1m)‘H.
(5.11)
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By using (5.11) and the fact that the function f is entire on C% and
satisfies the condition (5.4), we deduce that the function f.H" (p.) is
entire on C? verifying

VLeEN,IC>0,¥Y e Ch|FN)HY (p)(N)] < Co(1+||A]])CeletalirmAl

thus from Theorem 3.4 ii) we deduce that the function f.H" (¢.) is the
hypergeometric Fourier transform of a function in D(R4)" which has its
support contained in the closed ball B(0,a + ¢) of center 0 and radius
(a+ ¢€). Then the relation (5.10) implies

supph xyw p. C B(0,a + ¢). (5.12)
On the other hand from Theorem 4.9, we have
tim [ 0 02 — hlla2 =0, (5.13)
this relation and (5.12) imply that
supph C B(0, a). (5.14)
On the other hand from the relation (5.13) and Theorem 4.2, we have
tim [ (s ) — HY ()]0 = 0. (5.15)

By using this relation and (5.9), we obtain
sy [V (h sy ) = fsall o = 0. (5.16)

Thus from the relations (5.14), (5.15), (5.16), we deduce that
Frra(V) = / h(z)Fy(—2) Au(z)dz, ae. )€ RY,
R4

as the two members are entire on C?, then we obtain (5.5).

6. The harmonic analysis associated to the Heckman-Opdam’s
theory attached to a root system of type BCjy

The root system on R of type BC; can be identified with the set R
given by

R ={=*2¢;, tde;, 1 <i<d}U{2(zxe;Le;), 1<i<j<d}. (6.1)
We denote by R the set of positive roots
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The Weyl group associated with R is isomorphic to the hyperoctahe-
dral group which is generated by permutations and sign changes of the
e, 1=1,2,....d.

The multiplicity function k£ : R — [0, +oo[ can be written in the
form k = (ky, k2, k3) where k; and ky are the values on the roots +2e;
and +4e;, 1 < @ < d, respectively, and k3 is the value on the roots

The positive Weyl chamber denoted by a* is given by

at = {z = (z1,29,...,24) ERY, 1 > 29 > ... > 24 > 0}. (6.3)
The closed chamber at corresponds to the set
C={x=(r1,19,...,09) ERY 21 > 19> ...> 135>0} (6.4

)

One of the indefinite orthogonal, unitary or symplectic groups SO, (p, d),
SU(p,d) or Sp(p,d) with maximal compact subgroup K = SO(p) x
SO(d), S(U(p) x U(d)) or Sy(p) x S,(d), respectively (see [17]).

Let p € N such that p > d > 1, dy = 1,2,4 and g € R such that
,u>70—1with%:d0(d—%)+1.

We consider in this section the root system of type BC, corresponding
to the multiplicity function k, = (ki, ko, k3) with &y = p — d-do f, =

d02—17 kS — d?O 2
We denote by Fi (A, ) the Heckman-Opdam’s hypergeometric func-

tion associated to this root system.
REMARK 6.1. For 1 = p%, the function F (), z) can be identified
with the spherical function on the Grasmann manifolds G|K where G is
one of the indefinite orthogonal, unitary or symplectic groups SOy(p, d), SU(p, d)
or Sy (p, d) with maximal compact subgroup K = SO(p)xSO(d), S(U(p)x
U(d)) or Sy(p) x Sy(d), respectively (see [17]).

6.1. The product formula for the function F},..

NOTATION. We denote by ¥ = R? + iconv(W.p), where conv(W.v) is

the convex hull of the Weyl group orbit W.p, and by f} the interior of X.
In [17] p.2789-2792, the author has proved that the function Fi, (), ),
A€ C4 z € R? admits the following product formula

V.T, y e Rd> Fgo()‘v x)'F]FS’LC()‘a y) = / Fgc()‘a Z)dmg,y(z)> (6'5)

Rd

where m/  is a probability measure on R<.
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THEOREM 6.2. For all A € X we have
sup | Flio (A, )] = 1. (6.6)

z€Rd

Proof. In [17] p.2798-2799, the author has proved that for all A € ¥
the function x — F5 (A, z) is bounded.
On the other hand as for all z,y € R?, the measure mf; , is a probability
measure, then from the relation (6.5), for all A € 3, we obtain
vxv ye Rdv ‘FEC()‘vxﬂ‘FgC()‘vy)‘ < sup ‘Fgc()‘v Z)’

z€R4

We deduce (6.6) from this inequality and the fact that Fi,(A,0) =1. O

REMARKS 6.3.

1. The function + — FE, (A, x) is unbounded for A ¢ . (see [17,
Corollary 5.6]).

2. All the results of the previous five sections remain true for the root
system of type BCy considered in this section.

The hypergeometric translation operator defined by the relation (3.19),
will be denoted by TV#, x € R4

By using the relations (6.5), (3.21), the operator T*, x € R¢, pos-
sesses the following integral representation

Yy € RY, TVH(f)(y) = . f(z)dmk (z), fe€ ERHY, (6.7)

and then the relation (6.5) can also be written in the form

Va,y € RY m M (Fpo)(y) = Fpo(r) Fpe(y)- (6.8)
PROPOSITION 6.4.
i) We have
mgp =4, and m&y =4y, (6.9)

where §, is the Dirac measure at z € R%.

ii) For all z,y € R? we have
supp miy, C {z € RY, ||z]] < [ +[[ylI}- (6.10)
Proof. 1) We deduce the results from the relation (6.7),(3.20).
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ii) The relation (6.10) is given in [17] p.2794.

6.2. Absolute continuity of the measure m/ .

NoTATIONS. We denote by
- B(c,a) the open ball of R? of center ¢ € R? and radius a > 0, and by
B(c, a) its closure.
- A the Lebesgue measure on R,

In this subsection we prove that for all x,y € Rfeg, the measure mf

is absolute continuous with respect to the Lebesgue measure on R,
PROPOSITION 6.5. Let ty € R% and a > 0, We consider the sequence
{2 }nem oy of functions in D(RH)W, positive increasing such that
— 1
Vn € N\{O}a supp f’n C B(t07a - E)u fn(z) = ]-7
and

Vz € Rd, nggloo fn(z) = 1B(t0,a)(z>7

where 15,4 is the characteristic function of the ball B(ty, a). We have

Yy €RY lim TH(f)(y) = lim [ fu(2)dml, (2),
n—-+oo R ’

n—-+oo

= / 1B(t,a) (z)dmg7y(z) .
Rd

The function y — mf  (B(tg,a)) = / 1B(tg,a) (2)dmly ,(2) which can
Rd

also be denoted by TV*(1p(1.0))(y) is defined almost every where on
R? measurable and for all function h in D(RH)W | we have

iy (Blto, () Acl)dy = [ TH(h)(-2) Au(a)dz. (611)

Rd B(to,a)

where h is the function given by
VueRY,  h(u) = h(—u).

Proof. For all z € R? and n € N\{0}, the function T,;**(f,) belongs
to D(RH)™W. Then we obtain the results of this proposition from the
monotonic convergence theorem and the relations (3.27),(3.40). O
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REMARK 6.6. There exists a 0 — algebra 9 in R? which contains
all Borel sets in R?. Then for all E € 9, the function y — m# (E) is
defined almost every where on R?, measurable and we have the following
relation

it (E)h(y) Ax(y)dy = [E TV (—2) A2z (6.12)

Rd

PrROPOSITION 6.7. For x,y € Rfeg, there exists a unique positive
function O (z,y,.) integrable on R with respect to the Lebesque mea-
sure A, and a positive measure m** on R? such that for every Borel set

x?y
E, we have

$7y

mk (E):/EQW(x,y,z)dz—l—mg:;(E). (6.13)

Proof. We deduce (6.13) from (6.7) and [18, Theorems 6.9 and 8.6].
[

REMARKS 6.8.

i) The supports of the function z — ©(z,y,z) and the measure
mks, are contained in the set {z € RY, ||z|| < [|z[| + [|y[|}.
ii) Suppose v; and v, are measures on 9t and suppose that there exists
a pair of disjoint sets X; and X5 such that v; is concentrated on
X1 and vy concentrated on X,. Then we say that v, and v, are
mutually singular (see Definition 6.7 of [18] p.128). In our case the
measures mf: and the Lebesgue measure A are mutually singular.
iii) From [18, Theorem 8.6 and Definition 8.3], we have
my,(B(z,a))

. i ey PZ0))
6% (z,y,2) = lim A(B(z,a))

PROPOSITION 6.9. We consider v € R%_ and a positive function h

reg

in D(RHYW with support contained in the ball B(0, R), R > 0.
i) For all Borel set E, we have

/E N (2)dz = / o B A0}y (6.15)

(6.14)

where

NP (z) = TV () (—2) Au(z) — / OV (2, , 2)h(y) Au(y)dy. (6.16)

B(0,R)
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ii) We have
VzeRY NI(z)>0. (6.17)

Proof. 1) By using the relations (6.12),(6.13) we obtain
JRACUICOPNEE
E

B(O,R

= [, (B Ay

)
_ / [ /E O (. . 2)h(y)dz + m (E)|h(y) Auly)dy.

B(0,R)

We deduce (6.15) by applying Fubini-Tonelli’s theorem to the last
member.

ii) From the relation (6.15), the positivity of the measure m/> implies
that for all Borel sets E, we have

/ N (2)dz > 0.
E
Thus
VzeRY,  Nz)>0.
O

PROPOSITION 6.10. The measure " on R? given for all Borel sets
E by

n(E) :/Nf(z)dz (6.18)
E
18 positive and bounded.

Proof. - The relation (6.17) gives the positivity of the measure n/.
- From the relations (6.18),(6.15), for all Borel sets £ we have

BB [ (il Auo)dy, (6.9
B(0,R)
On the other hand by using (6.13), we obtain for all y € R,/ :
miy(B) < mip (E).
Thus

[Imill < Jlmf || = 1.
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By using this result, the relation (6.19) implies that for all Borel sets F,
we have

U;L(E) < Mh>
where
M, = / h(y)Ax(y)dy.
B(0,R)
Thus the measure 7 is bounded. O

PROPOSITION 6.11.

i) For all Borel sets E we have

n(E) = 0. (6.20)
ii) For z,z € RY,,, we have
» 1
T = s [ OV kA (621)
A (2) B(0,R)

Proof. 1) From the relations (6.18), (6.15), for all Borel set E the
measure 7 possesses also the following form

BB = [ s B A )y (6:22)
B(0,R)

On the other hand from Proposition 6.10 the measure 7 is abso-

lute continuous with respect to the Lebesgue measure A and from

Remark 6.8 ii) the measure m/; and the Lebesgue measure A are

mutually singular.

Then from [18, Proposition 6.8 (f)], the measures n” and m/?, are

:E’y )

mutually singular. We deduce (6.20) from (6.22) and Remark 6.8

i).
ii) By using the i) and (6.18), (6.16), we get

TV () (—2) Ay(2)dz = / 0% (., 2)h(y) Ax(y)dy.
B(0,R)
As
z€RY = Au(2) #0,

reg

then we deduce (6.21) from this relation.
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THEOREM 6.12. For all f in E(RN)Y and z,y € RY, we have

reg

TN = | FEW (g, 2) A(z)dz, (6.23)
R
where W )
0% (r,—z,—y
WY (x,y,2) = - 6.24
(2,9, 2) 40 (6.24)
Proof. We obtain (6.23),(6.24), by writing f = f* — f~ and by using
the relation (6.21) and the properties of the operator TV*. ]

REMARK 6.13. Theorem 6.12 shows that for all z,y € R% . the mea-

regr

sure mk  is absolute continuous with respect to the measure Ay (2)dz.

More precisely for all z € RY, we have

dmt ,(z) = WY (z,y, 2) Aw(2)dz. (6.25)

COROLLARY 6.14
i) For all \ € C? and z,y € RY,_, we have

Teg’

R@RW) = [ BEW @A (620
R
ii) For all z,y € RY,,, we have
WW(z,y, 2)Ap(2)dz = 1. (6.27)
R4

iii) For all z,y € RY,_, the support of the function z — WW(x,y, 2)

reg’

is contained in the set {z € R ||z|| < ||z|| + ||y||}-
Proof. We deduce the results of this Corollary from (6.5),(6.25) and

Theorem 6.12. ]
COROLLARY 6.15.
i) We have
Va,y,z € RY, WW(x, y, 2) =WW(y,z,2). (6.28)
ii) We have
Va,y, 2z € REWWY (2, —y, 2) A (y) A (2)dzdy

WY (1, =2, ) A Ar()dzdy.  (6.29)
Proof. 1) We deduce the result from the relations (6.23),(3.20).
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ii) Let f,g be in D(RY)Y. From Corollary 3.12.i) we have
Va € ]Rda / */;[W g(z) =g *;flw f(x).
Then be using (3.31),(6.23) we obtain for all z € R%:
[ s Aoy = [ T 1A
R R

thus
T (=) 9(y)Ar(y) Ar(z)dzdy =

R4 J R4

/Rd i EW’M(Q)(_Z)f(z)Ak(z)Ak(y)dydz,

We deduce (6.29) from this relation and (6.23).
[

6.3. The hypergeometric convolution product on W-invariant

L%, -spaces.

PROPOSITION 6.16. The operator TV* z € R?, is bounded on
L (RHYW, 1 < p < +o0, and we have

17 (D < 1114 (6.30)

Proof. From the relation (6.23), for all f in D(R%)" we have
vy e R T (y) = | FWY (2,y, 2) A(2)dz.
Rd

As the function equal to 1 belongs to the space LI(RE, WW (z,y, 2) Ap(2)dz),
1 < ¢ < 400, then Hélder’s inequality and the relation (6.27) imply

Ve R TP < [ FEPWY 2 A

Thus

9 T2V (F) () P Aw(y)dy

IN

/R o o |F(2)PWY (2, y, 2) A(2) A (y)dzdy

IN

/Rd e |F()PWY (2, —y, 2) Aw(2) Ar(y)dzdy.
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By applying the relation (6.29), Fubini-Tonelli’s theorem and the relation
(6.27) to the second member, we obtain

LI nwr A < [ 1P

This completes the proof of the relation (6.30). O

THEOREM 6.17. Let f, g be in LY (RY)W. Then
i) The function f % g defined almost every where by

Fog o) = [ TIHOnew A, o R (63)

belongs to Lhk (RHYW and we have

1 *3w gllacr < 1 Lacallglacr (6.32)
ii) We have
VA E R, HWH(f e g)(A) = HY()()H () (V). (6.33)
Proof. ) From Fubini-Tonelli’s theorem and (6.30) we have

L / S

< /dHfHAk,llg(y)!Ak(y)dy < |Ifllacallgllac-

Thus the function (ijy) — T""(f)(—y)g(y) belongs to LY (RH)W.
Then from Fubini’s theorem for almost all z € R?, the function
y — TVH(f)(=y)g(y) is in LY (RY)"Y and the function f ., g
defined by (6.31) belongs to L} (R4)"W

On the other hand we have

1+ gl / T F) () g ()] A ()dy
Thus
/ F e g(2) | Au(z)de < /R d / TP (=) 9 | A () Ae () dyd.

By applying Fubini’s theorem and the relation (6.30), to the second
member, we obtain (6.32).
ii) For all A € R? we have

HIS(F g )00 = [ F i 0) (= 0) Ao
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By using Fubini’s theorem and (6.31) we obtain
YA eRY HVH(f i g)(N)

= [ TR0 PN ) Aadelg) Aoy, (63
But by using (3.20), (3.27),(3.40),(6.8) we obtain
/ TWr(f —yY)FEo (=, 2) Ag(x)dx

= [ T D@ oA dila)ds

= | S@ T (P2 ) @) Aula)da

= | F@T (Fo= D) A
= [ F@ BN ~a) B =) (o)

= Fe(-A) [ F@)Fhe(=2) Aua)do

Thus
» T M=) Fho(= @) Aw(x)dz = Fo (=X, y)H"(f)(A). (6.35)
The relations (6.34), (6.35) imply (6.33). O

REMARK 6.18 From the relation (6.33) we deduce that the hyperge-
ometric convolution product given by (6.31) is commutative and asso-
ciative

COROLLARY 6.19. The space L}Lt,c (RHW with the hypergeometric con-
volution product *%W 1s a commutative Banach algebra.

THEOREM 6.20. Let f be in Lik(Rd)W, 1 <p < +4oo, and g in
[l)&k (RHOW. Then the function f *hw g defined almost everywhere on R?

Y

Fg o) = [ T na Ay, (636)
belongs to LYy, (R)W and we have
1 3w 9llaie < A1F1lacollgllar (6.37)
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Proof. We obtain the results of this theorem by using the relation
(6.30), and by making the same proof as for Theorem 4.9 O

THEOREM 6.21. Let ., € > 0, the function given by the relation
(4.12). Then for all f in LY (R)", 1< p < +oo, we have

11_% | f *%W Pe — fHAk,p =0. (6.38)

Proof. The relation (6.30) and the same proof as for Theorem 4.10
imply the relation (6.38). O

THEOREM 6.22. Let f be in Ly (R)", 1 < p < +oo, and g in
LY, (RHW with q such that %+% = 1. Then the function f*}. g defined
on RY by

fot 9@ = [ TPl Ay, (639)
R
is continuous on R?, tends to zero at the infinity and we have
sup f w9l < 1 f a9l (6.40)
S

Proof. By using the relation (6.30) and by applying the same proof
as for Theorem 4.11, we obtain the results of this theorem. n

6.4. The maximal ideal space of the algebra L) (RY)". In this
subsection we give the maximal ideal space S of the algebra Lhk (RHW
and we prove that S is homeomorphic to the set > equipped with the
usual topology.

THEOREM 6.23. To each complex homomorphism X of L}4k (RHW
corresponds to a unique element A\ € X such that

Vfe Ly RYY,  X(f)=H"(F)N). (6.41)

To prove this theorem we need the following Lemma.
LEMMA 6.24. Let ¢ be a function in LY (R, satisfying the rela-
tion

TV (y) = d(2)d(y), ae. z,y€RY, (6.42)

where Q,Z 1s the function given by

v

Y(z) =¢(-2), v €R"
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Then
i) The function 1; is of class C™ on R<.

ii) We have
(0) = 1. (6.43)
iii) There exists a unique X\ € X such that
Ve e RY, i(z) = Fho(\ ). (6.44)

Proof. i) We choose h in D(RH)W satisfying
N () h(x) Ag(z)dz = 1. (6.45)
We have for z € R? :
Uy h(x) = » T () (=) hly) Ax(y)dy,
the relations (6.42),(6.45) imply for z € R :

777) *%W h(x) = 12(95)7
thus by using the relations (3.33),(3.40) we obtain

V)

d(a) = [ )TV h) () A(y)dy, ©eR? (6.46)

R4

From this relation we deduce that the function @E is of class C'*° on
R?, because from (3.40),(3.30) for all x € R? the function TV*(h)
belongs to D(R%)W.

ii) We obtain (6.43) from (6.42) and the i).

iii ) By using (6.46),(3.20), we obtain

T @) () = Rdﬁ(y)ﬁw’“(ﬁw(h))(x)Ak(y)dy- (6.47)

For all operator p(T') = p(11, 15, ...,T,;), where p is a W-invariant
polynomial on C%, the relations (3.22), (3.23) imply

p(T). TV W) (z) =

T

d D(y)p(T) TV (T () (y) Ax(y)dy,

R

B /Rd‘Z<y>p<T>w72W’“<7;W’“<h>><y>Ak<y>dy.



260 Khalifa Trimeche

Thus by using the relation (6.47) we get

p(T).TVH(W)(x) = p(T), TV () (x), (6.48)
and
p(M)(x) = p(T)T.""(¥) ()20,
= p(T).TV"(4)(2) .0
Then 5 }
p(T)Y(x) = o(p)Y(z), (6.49)
with

a5(p) = p(T)1(0).
Thus from ([17] p.2796), there exists a unique A € C? such that
o5 (p) = p(iA). (6.50)

From the relations (6.49),(6.50),(6.43) the function ¢ satisfies the differ-
ential system
{ p(T)d(x) = p(iNd(z), = eRY
¥(0) =1,
corresponding to the root system of type BC, attached to the multiplic-
ity function k.
As the solution of this system is unique, it follows from (2.11) that
Vo e R (z) = Fhio(\ ).

But the function 1 is bounded, then from (6.6) and Remarks 6.3 i), A
belongs to X. O]

PROOF OF THEOREM 6.23
Let X be the linear functional from LY (R")" into C* defined for
A€ X by

X(f) =H""(f)(N) = y f(@)Fpo (A, —2) Ax(z)da.

From the relation (6.6) we have

[X(OI < 1 fllap1s
and from (6.33), for all f,g in LY (R")" we get

X(f #3w 9) = X(f)X(g).
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Then X is a complex homomorphism of the algebra L}4k (RHW
Conversely, Let X be a complex homomorphism of the algebra LY, (R%)"
The mapping f — X(f) is a linear functional from L (R?)" into

C? of norm at most 1. Then there exists a function ¢ in L% (R?)" such
that

X(f) = [ fa)y(e)Ax(z)de. (6.51)
R4
From the relation
X(f #5w 9) = X(f)X(9),
with f, g in D(RY)W | we obtain from (6.30), (6.31) and Fubini’s theorem

X(f *%W g) = e / *%W g(x)p(x) Ay (x)dx

= [ ) A dala A
But from (3.20),(3.27) (3.40) we have

L@ At = [ @) A
= [ 1T @) Ada)da
= [ F@ T @) oA

Thus
(40 9) = [ [ TG s @) Ao Ay dady. (652)
On the other hand we have
0= [ [ v @) @Aty (653)
From the relations (6.52), (6.53) we deduce
T (@) (—2) = ¥(2) (y), ae .y R

This relation can also be written in the form of the relation (6.42).
Thus from Lemma 6.24 and the relation (6.51), there exists a unique
A € X such that for all fin L} (RY)" we have

/f Flio(\, —2) Ay(2)dz
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Thus
X(f)=H"(F)N).
This completes the proof.
REMARKS 6.25.

i) Theorem 6.23 proves that the hypergeometric Fourier transform
H"W# is the Gelfand transform defined on LYy (R*)W by

G(f)(x) =X(f), XE€ES, (6.54)

where S denotes the set of all complex homomorphisms X of LY (R%)".
i) Let G(LY, (R)W) be the space of all G(f) for f in L (RY)". The
Gelfand topology of S'is the weak topology induced by G(LY (RH)W)
that is the weakest topology that makes every G(f) continuous.
Then we have
G(LL, (RH™) c C(9), (6.55)
where C(S) is the space of complex continuous functions on S.
iii) The set S equipped with the Gelfand topology is usually called the
maximal ideal space of L (R)".

THEOREM 6.26. The mazimal ideal space S of LYy (RY)W is homeo-
morphic to % equipped with the usual topology.

Proof. We deduce the result from Theorem 6.22, the relations (6.54),(6.55)
and Theorem 5 G of [10] p.12. O

6.5. The hypergeometric Fourier transform on the I¥-invariant
measures spaces.

NotAaTIONS. We denote by
- Cy(RHW the space of continuous and bounded functions on R
- My(RHW the space of bounded Borel measures on R, which are -
invariant.
- MY RYHW the subset of probability measures on R? which are -
invariant.

DEFINITION 6.27. The hypergeometric Fourier transform of a mea-
sure 7 in My(RY)W is the function H"#(n) defined on ¥ by

HH)0) = [ Fho(-Aa)dn(o) (6.56)

R4
PROPOSITION 6.28.
i) For n in My(RYW the function HW*(n) is continuous in ¥ and

holomorphic in f}
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ii) Forn in My(RHW we have
vaes, MmO < Inll. (6.57)

Proof. i) - For all z € R?, the function A — F5.(—\, z) is con-
tinuous in ¥ and from the relation (6.6) it satisfies

VA€ X, Vo € RY |Fho(—\ ) < 1.

Then the dominated convergence theorem implies the continuity of
the function H"#(n) in X.
- As for all z € R?, the function A\ — Fh(—\, ) is entire on
C?, then from Fubini’s theorem and Cauchy’s formula we deduce
o

that the function H"*(n) is holomorphic in Y.

ii) We deduce (6.57) from (6.56) and (6.6).

[l
PROPOSITION 6.29. Let n,v two measures in My(RHOW such that
YA € RY HYH()(N) = HVH(w)(N). (6.58)
Then
n=v. (6.59)

Proof. We denote by o the measure of M(R%)" given by
o=n—u.

We have

VA e R HYH(o)(N) = 0.
On the other hand for all f in D(RY)Y, we deduce from Theorem 3.4,
iii) the relation (3.7) and Fubuni’s theorem

[twir) = [ [ #0000 (o)
= [ [ NP0 e (arda)
_ /R | A DOFpe-h n)et (Axdo )

= [ HYHHNOH(o)(NCY (N)dA = 0.

Rd
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Thus for all f in D(RY)" we have

f(z)do(z) =0,
Rd
Then
c=0<=n=r.
O

6.6. The hypergeometric convolution product on the W-invariant
measures spaces.

DEFINITION 6.30. The hypergeometric convolution product 7 *’;[W v
of the measures 7, v in M,(R%)W is defined by

) = [ [ TN @), f e GEYY. (060)

The following propositions give some properties of the convolution
product 5y, .
PROPOSITION 6.31.

i) We have
o,y €RY 8 K 6,(F) = TVH(S). (6.61)
ii) - The measure 1 %4, v belongs to My(R)Y and we have
[ VI < [Inll]v]- (6.62)

- For all n,v in M'(R)W, the measure 0+l v belongs to
M (RHW.
PROPOSITION 6.32. Let n,v in My(RH)W. Then we have

VYA ERY, HWH (sl v)(N) = HT () (A).HY* (v)(N). (6.63)

Proof. We deduce (6.63) from the relations (6.60), (6.56),(6.8). O

COROLLARY 6.33. The hypergeometric convolution product *‘;{W of
measures in My(ROWY is commutative and associative.

Proof. We deduce these results from Proposition 6.32. O]
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6.7. The hypergroup associated to the root system BC; relating
to the multiplicity function £,. The notion of an abstract algebraic
hypergroup has its origins in the studies of F.Marty and H.S.Walil in the
1930s, and harmonic analysis on hypergroups dates back to J.Delsart’s
and B.M.Levitan’s work during the 1930s and 1940s, but the substantial
development had to wait till the 1970s when C.F. Dunkl [5], R. Spector
[20] and R.I. Jewett [8] put hypergroups in the right setting for harmonic
analysis. There have been many fruitful development of the theory of
hypergroups and their applications in analysis, probability theory and
approximation theory (see [1,21]).

In the subsection 6.6 we have considered the hypergeometric con-
volution product *%W of measure on R? parameterized by p. In this
subsection we shall show that (R¢, 4w ) are commutative hypergroups,
having the Heckman-Opdam’s hypergeometric function FH*(\, x), = €
R4, X € 3, as characters. In the group theory cases corresponding to
o= pd2—° these hypergroups are given by the double coset convolution
associated with the Gelfand pairs (G, K). In the rank one case, they
coincide with the one variable Jacobi hypergroups (see [1] p.235) which
are particular cases of the Chébli-Trimeche’s hypergroups (see [1] p.202
and 209, [21]).

In [17] M.Résler has proved that (C, 4, ) where C'is the closure of
the Weyl chamber at given by (6.4), are commutative hypergroups.

We consider the probability measure m/; , given for z,y € R? by (6.5).
From the relations (6.7), (6.61) we obtain

I (6.64)

THEOREM 6.34. The relation (6.64) define the commutative hyper-
groups (RY, *%W) The neutral element 1s zero and the involution is the
identity mapping.

Proof. We obtain the results of this theorem by applying the proof
of ([17] p.2793-2799), used to prove that (C,#}, ), are commutative

hypergroups. O]
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