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A HIGH-ORDER MODEL FOR SPIKE AND BUBBLE IN

IMPULSIVELY ACCELERATED INTERFACE

Sung-Ik Sohn

Abstract. We present a high-order potential flow model for the
motion of the impulsively accelerated unstable interface of infinite
density jump. The Layzer model for the evolution of the interface
is extended to high-order. The time-evolution solutions of the bub-
ble and the spike in the interface are obtained from the high-order
model. We show that the high-order model gives improvement on
the prediction of the evolution of the bubble and the spike.

1. Introduction

An interface between two fluids of different densities accelerated by
a shock wave is hydrodynamically unstable and is known as Richtmyer-
Meshkov (RM) instability [1]. The RM instability plays important roles
in many fields ranging from astrophysics to inertial confinement fusion,
and has many common features with Rayleigh-Taylor (RT) instability [2,
3], which is driven by a gravitational acceleration.

The key characteristic of the RT and RM unstable interfaces is fingers,
known as bubble and spike, of each phase extending into the region occu-
pied by the opposite phase [4]. Thus a bubble (spike) is a portion of the
light (heavy) fluid penetrating into the heavy (light) fluid. Eventually, a
turbulent mixing caused by vortex structures around spikes breaks the
ordered fluid motion.
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The main purpose of this paper is to develop a high-order model for
the evolution of the bubble and the spike in the single-mode RM in-
stability. Layzer [5] proposed a potential flow model for comprehensive
description of the motion of hydrodynamically unstable interfaces. The
Layzer model approximates the shape of the interface near the bubble
(or spike) tip as a parabola and give a set of ordinary differential equa-
tions to determine the position, velocity and curvature of the bubble
(or spike). In the last decades there have been significant progresses in
the Layzer-type model. For the RM instability of infinite density jump
(fluid/vaccum), Hecht et al. [6] and Zhang [7] obtained the asymptotic
solutions of the bubble and the spike, respectively. Goncharov [8] and
Sohn [9, 10] then extended the Layzer-type model to the interfaces of
finite density jumps. Sohn [11, 12] recently applied the model to the mul-
tiple bubble interaction, and succeeded in the extension of the model to
the unstable interfaces with surface tension and viscosity.

The Layzer model provides good predictions for the growth of the
bubble in the RM instability, but there were differences in the spike
velocity and the bubble curvature between the solution of the model
and numerical results [7, 13]. In this paper, we present a high-order
Layzer model to give improvement on the solutions of the RM bubble
and spike of infinite density jump. Note that there have been few studies
on the motion of the spike in the RM instability, while various models
have been proposed for the bubble motion.

In Section 2, we describe the Layzer model, of low-order, for the
evolution of the unstable interface. In Section 3, we present the high-
order Layzer model for the motion of the interface. Section 4 gives the
time-evolution solutions of the RM bubble and spike from the high-order
model, in comparisons with the low-order model and numerical results.
Section 5 gives conclusions.

2. Layzer model

In this section, we briefly describe the Layzer model for the evolution
of hydrodynamically unstable interfaces. We consider an initial single-
mode interface of infinite density jump in two dimensions

(1) y = η(x, t = 0) = h0 cos(kx),



High-order model for spike and bubble 325

where k = 2π/L represents the wave-number of the interface and L is
the wave-length of the interface. The fluid is assumed as incompressible
and inviscid. In the Layzer model [5], the interface near the tip of the
bubble or the spike is approximated as

(2) y = η(x, t) = ζ0(t) + ζ1(t) x
2.

Here, ζ0 represents the longitudinal position of the bubble (or spike)
tip, and dζ0/dt is the velocity of the bubble (or spike) tip. The velocity
potential is given by

(3) ϕ(x, y, t) = a1(t) cos(kx) e
−ky.

The evolution of the interface is determined by the kinematic condi-
tion and the Bernoulli equation

∂η

∂t
+ u

∂η

∂x
= v at y = η,(4)

∂ϕ

∂t
+

1

2
|∇ϕ|2 + gη = const at y = η,(5)

where u and v are x and y components of the interface velocity, and g is
an external acceleration. The RM instability is modeled by setting g = 0
and giving a nonzero initial velocity, via the impulsive acceleration [1].
The kinematic condition implies the continuity of the normal component
of the fluid velocity across the interface.

Substituting the expressions (2) and (3) into the kinematic condition
and satisfying up to the second-order in x, one can obtain the following
equations

dζ0
dt

= −a1k e−kζ0 ,(6)

dζ1
dt

= a1k
2

(
3ζ1 +

1

2
k

)
e−kζ0 .(7)

The second order equation from the Bernoulli equation is given by

(8) k

(
ζ1 +

1

2
k

)
e−kζ0

da1
dt

= −a21k
3ζ1e

−2kζ0 + gζ1.

Equations (6)-(8) determine the evolution of the bubble and the spike.
The initial condition for the bubble is ζ0 > 0, U0 > 0 and ζ1 < 0,

while the spike has the initial condition ζ0 < 0, U0 < 0 and ζ1 > 0,
where U0 represents the initial velocity. The asymptotic solution of the
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bubble and the spike can be obtained by taking the large time limit for
Eqs. (6)-(8). The asymptotic velocity and curvature of the bubble [6] is

(9) U bb ∼ 2

3kt
, ξbb → −k

3
,

and the asymptotic velocity and curvature of the spike [7] is

(10) U sp → U0

√
6ζ2 + 3k

6ζ2 + k
, ξsp → ∞,

where ξ = 2ζ1 represents the curvature. This solution implies that the
growth rate of the bubble decays to zero, and the spike velocity converges
to a constant limit which is dependent on the initial velocity and the
curvature. The curvature of the spike diverges to infinity, which indicates
a shape of a long filament.

3. High-order model

We present the high-order extension of the Layzer model. The inter-
face near the tip of the bubble or the spike can be written as

(11) y = η(x, t) =
∞∑
j=0

ζj(t) x
2j,

and the velocity potential is generalized to

(12) ϕ(x, y, t) =
∞∑
j=1

j: odd

aj(t) cos(jkx) e−jky.

The evolution of the interface is again governed by the kinematic
condition and the Bernoulli equation. One may apply the similar proce-
dure as Section 2, to derive high-order equations. The velocities at the
interface are given approximately by

u =
∂ϕ

∂x
= −

∑
j

aj(t)jk sin(jkx) e−jky

≈ −k2
∑
j

ajj
2

[
x− jk

(
ζ1 +

1

6
jk

)
x3

]
e−jkζ0 ,



High-order model for spike and bubble 327

v =
∂ϕ

∂y
= −

∑
j

aj(t)jk cos(jkx) e−jky

≈ −k
∑
j

ajj

[
1−

(
1

2
j2k2 + jkζ1

)
x2

+

(
1

2
j2k2ζ21 − jkζ2 +

1

2
j3k3ζ1 +

1

24
j4k4

)
x4

]
e−jkζ0 .

Using this expression and satisfying the kinematic condition up to the
fourth order in x, we obtain the equations

dζ0
dt

= −k
∑
j

jaj e
−jkζ0 ,(13)

dζ1
dt

= k2
∑
j

j2
(
3ζ1 +

1

2
jk

)
aj e

−jkζ0 ,(14)

dζ2
dt

= k2
∑
j

j2
(
5ζ2 −

5

2
jkζ21 −

5

6
j2k2ζ1 −

1

24
j3k3

)
aj e

−jkζ0 ,(15)

where all the summations are taken for j = 1 and 3. The second and
fourth order equations from the Bernoulli equation are given by

k
∑
j

j

(
ζ1 +

1

2
jk

)
e−jkζ0

daj
dt

=
1

2
k4

(∑
j

j2aje
−jkζ0

)2

(16)

−k3

(∑
j

jaje
−jkζ0

)[∑
j

j2aj

(
ζ1 +

1

2
jk

)
e−jkζ0

]
+ gζ1,

k
∑
j

j

(
ζ2 −

1

2
jkζ21 −

1

2
j2k2ζ1 −

1

24
j3k3

)
e−jkζ0

daj
dt

(17)

=
1

2
k4

[∑
j

j2
(
ζ1 +

1

2
jk

)
aje

−jkζ0

]2
+ k3

(∑
j

jaje
−jkζ0

)

×

[∑
j

j2
(
−ζ2 +

1

2
jkζ21 +

1

2
j2k2ζ1 +

1

24
j3k3

)
aje

−jkζ0

]

−k5

(∑
j

j2aje
−jkζ0

)[∑
j

j3
(
ζ1 +

1

6
jk

)
aje

−jkζ0

]
+ gζ2.
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Figure 1. Bubble velocity from the low- and high-order
models and the numerical result.

Equations (13)-(17) are the main equations we study in this paper. The
asymptotic solution is not obtained in the high-order model, due to the
complexity of the equations. We calculate the time-evolution solutions
of the bubble and the spike from the model in the next section.

4. Results of the model

We now examine the agreement of the model by comparing the finite-
time solutions of the model with numerical results. The time-evolution
solution of the high-order model can be obtained by solving Eqs. (13)-
(17) numerically. We employ the standard fourth-order Runge-Kutta
method for numerical integrations.

In Figure 1, we compare the solutions of the bubble velocity from the
low- and high-order Layzer models with the numerical result taken from
Sohn [13]. The numerical simulations in [13] are performed by the point
vortex method based on the vortex sheet model. The wave number is set
to k = 1. The initial amplitude of the interface is given by 0.5 and the
initial velocity of the interface is 0.8. In Fig. 1, we see that the bubble
velocity decays to zero at a late time. The low-order and high-order
solutions have little difference, and both solutions agree well with the
numerical result.
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Figure 2. Spike velocity from the low- and high-order
models and the numerical result.
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Figure 3. Bubble curvature from the low- and high-order
models and the numerical result.

Figure 2 is the plot of the spike velocity of the low- and high-order
models and the numerical result. In Fig. 2, the sign of the velocity is
reversed. The solution of the high-order model converges to a constant
limit and is in excellent agreement with the numerical solution. This
indicates that the present model indeed improves the solution of the
Layzer model.

Figure 3 shows the comparison of the bubble curvature from the low-
and high-order models and the numerical result. In Fig. 3, the sign of the
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curvature is reversed. The high-order solution of the bubble curvature
also converges asymptotically to a constant limit. The difference of the
solution of the model and the numerical result is reduced by the high-
order model, but is still fairly large. The terminal values of the bubble
curvature are 0.488 for the numerical result, 0.377 for the high-order
model, and 0.333 for the low-order model.

5. Conclusions

We have presented the high-order solution for the bubble and spike
evolution in the RM instability from the Layzer-type potential flow
model. The high-order model gives better predictions for both the bub-
ble and spike velocity than the low-order model. The results presented
in the paper validates that the high-order model provides an appropriate
description for the evolution of the unstable interface.

We have also found a limitation of the present model. The difference
of the high-order solution for the bubble curvature with the numerical
result is fairly large. In order to give a quantitatively accurate solution
for the bubble curvature, the model would require even higher-order
expansions, which is a formidable work.

The present high-order model is only for the interface of the infinite
density jump. In fact, it is possible to develop a high-order Layzer model
for the cases of finite density jump, but we have found that the equations
in that model are quite coupled and it is difficult to solve them. Even
if one succeeds in solving the high-order model for the cases of finite
density jump, it may not be directly applicable to the spike evolution.
It is because for finite density jump, the mushroom-like vortex structure
is pronounced around the spike, which results increase of the drag, and
therefore this effect should be considered in the modelling. So far, no
quantitative model for the spike evolution of finite density jump has been
established. Development of the model for the motion of the spike of
finite density jump would be a challenging subject.

References

[1] R. D. Richtmyer, Taylor instability in shock acceleration of compressible fluids,
Comm. Pure Appl. Math. 13 (1960), 297–319.

[2] Lord Rayleigh, Investigation of the character of the equilibrium of an incompress-
ible heavy fluid of variable density, Proc. Lond. Math. Soc. 14 (1883), 170–177.



High-order model for spike and bubble 331

[3] G. I. Taylor, The instability of liquid surfaces when accelerated in a direction
perpendicular to their planes I, Proc. R. Soc. London Ser. A 201 (1950), 192–
196.

[4] D. Sharp, An overview of Rayleigh-Taylor instability, Phys. D 12 (1984), 3–10.
[5] D. Layzer, On the instability of superimposed fluids in a gravitational field, As-

trophys. J. 122 (1955), 1–12.
[6] J. Hecht, U. Alon and D. Shvarts, Potential flow models of Rayleigh-Taylor and

Richtmyer-Meshkov bubble fronts, Phys. Fluids 6 (1994), 4019–4030.
[7] Q. Zhang, Analytical solutions of Layzer-type approach to unstable interfacial

fluid mixing, Phys. Rev. Lett. 81 (1998), 3391–3394.
[8] V. N. Goncharov, Analytic model of nonlinear, single-mode, classical Rayleigh-

Taylor instability at arbitrary Atwood numbers, Phys. Rev. Lett. 88 (2002),
134502: 1–4.

[9] S.-I. Sohn, Density dependence of a Zufiria-type model for Rayleigh-Taylor and
Richtmyer-Meshkov bubble fronts, Phys. Rev. E 70 (2004), 045301: 1–4.

[10] S.-I. Sohn, Analytic solutions of unstable interfaces for all density ratios in ax-
isymmetric flows, J. Comput. Appl. Math. 177 (2005), 367–374.

[11] S.-I. Sohn, Quantitative modeling of bubble competition in Richtmyer-Meshkov
instability, Phys. Rev. E 78 (2008), 0173022: 1–4.

[12] S.-I. Sohn, Effects of surface tension and viscosity on the growth rates of
Rayleigh-Taylor and Richtmyer-Meshkov instabilities, Phys. Rev. E 80 (2009),
055302: 1–4.

[13] S.-I. Sohn, Vortex simulations for impulsively accelerated unstable interface,
Math. Comput. Modelling 40 (2004), 627–636.

Department of Mathematics
Gangneung-Wonju National University
Gangneung 210-702, Korea
E-mail : sohnsi@gwnu.ac.kr


