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CONSTRUCTION OF Γ-ALGEBRA AND Γ-LIE

ADMISSIBLE ALGEBRAS

A. H. Rezaei and B. Davvaz∗

Abstract. In this paper, at first we generalize the notion of algebra
over a field. A Γ-algebra is an algebraic structure consisting of a
vector space V , a groupoid Γ together with a map from V × Γ× V
to V . Then, on every associative Γ-algebra V and for every α ∈ Γ we
construct an α-Lie algebra. Also, we discuss some properties about
Γ-Lie algebras when V and Γ are the sets of m×n and n×m matrices
over a field F respectively. Finally, we define the notions of α-
derivation, α-representation, α-nilpotency and prove Engel theorem
in this case.

1. Γ-Lie algebras

In [7], Nobusawa introduced the notion of Γ-rings, as a generalization
of rings. Barnes [2] weakened slightly the conditions in the definition of
the Γ-ring in the sense of Nobusawa. After these two papers are pub-
lished, many mathematicians made good works on Γ-ring in the sense
of Barnes and Nobusawa. Luh [6] and Kyuno [5] studied the structure
of Γ-rings and obtained various generalization analogous to correspond-
ing parts in ring theory. In [1], Chakraborty and Pau defined an iso-
morphism, an anti-isomorphism and a Jordan isomorphism in a Γ-ring

Received December 1, 2017. Revised March 27, 2018. Accepted April 3, 2018.
2010 Mathematics Subject Classification: 17B60.
Key words and phrases: Γ-algebra, α-Lie algebra, α-ideal, α-derivation, α-

representation, α-nilpotent.
∗ Corresponding author.
c© The Kangwon-Kyungki Mathematical Society, 2018.
This is an Open Access article distributed under the terms of the Creative com-

mons Attribution Non-Commercial License (http://creativecommons.org/licenses/by
-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduc-
tion in any medium, provided the original work is properly cited.

https://doi.org/10.11568/kjm.2018.26.2.175


176 A. H. Rezaei and B. Davvaz

and developed some important results relating to these concepts, also
see [8, 9].

Definition 1.1. Let Γ be a groupoid and V be a vector space over
a field F . Then, V is called a Γ-algebra over the field F if there exists a
mapping V × Γ × V −→ V (the image is denoted by xαy for x, y ∈ V
and α ∈ Γ) such that the following conditions hold:

(1) (x+ y)αz = xαz + yαz, xα(y + z) = xαy + xαz,
(2) x(α + β)y = xαy + xβy,
(3) (cx)αy = c(xαy) = xα(cy),

for all x, y, z ∈ V , c ∈ F and α, β ∈ Γ.
Moreover, a Γ- algebra is called associative if

(4) (xαy)βz = xα(yβz),

and unital if for every α ∈ Γ, there is an element 1α in V such that
1ααv = v = vα1α for all non-zero elements of V . From part (1) of the
definition we have 0αx = xα0 = 0 for all x ∈ V, α ∈ Γ.

A non-empty subset V
′

of a Γ-algebra V is called a Γ-subalgebra if it
is a subspace of V and for all x, y ∈ V ′

and α ∈ Γ we have xαy ∈ V ′
.

A subset I of a Γ- algebra V is called a left (right) ideal if it is a Γ-
subalgebra of V and for all a ∈ I and v ∈ V and α ∈ Γ we have vαa ∈ I
(aαv ∈ I) and is a (two-sided) ideal if it is both a left and right ideal.
It easy to see that V and {0} are ideals of V . An ideal I such that
{0} ⊂ I ⊂ V is called proper.

Let X be a subset of Γ-algebra V . Then, the smallest left (right, two-
sided) ideal of V containing X exists and we shall call it the left (right
or two-sided) ideal generated by X, and will be denoted by < X >l

(< X >r or < X >). If X = {x}, then we also write < x > instead of
< {x} >.

Example 1.2. Let V be a vector space and Γ be a groupoid. For
every x, y ∈ V and α ∈ Γ we define xαy = 0. Then, V is a Γ-algebra.

Example 1.3. Let F be a field, V and W be two vector spaces and
A = HomF (V,W ), Γ = HomF (W,V ). For every f, g ∈ A and α ∈ Γ
we define fαg = f ◦ α ◦ g, where ◦ is the combination operation. Then,
A is an associative Γ-algebra. Equivalently, let A and Γ be the sets of
n×m and m× n matrices over the field F , respectively. Then, A is an
associative Γ-algebra.
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Example 1.4. Consider the pervious example. Let A be the set of
3× 2 matrices over the field of real numbers R and

Γ =

{(
a 0 0
0 b 0

)
: a, b ∈ R

}
.

Then, A is an associative Γ-algebra and

B =


 x 0

0 y
0 0

 : x, y ∈ R

 ,

is a Γ-subalgebra of A.

The central role of Lie algebras in particle physics is well known.
Starting from fundamental mathematical tools such as the Lie algebras
of the Poincare group, the rotational group and the isospin group, the
interest for Lie algebras received a determining impulse with the cele-
brated Racah lectures at Princeton in 1951. Finally in 1959 there has
been the beginning of the use of the Lie algebras of the unitary compact
groups whose importance for hadron physics is today well known [10].

Lie algebras are generally introduced in particle physics in terms of
the product [x y] = x · y − y · x, where a · b is an associative product.
However, according to Albert, a Lie algebra can also be introduced in
terms of the product [x y] = x · y − y · x, where x · y is the product of a
non-associative algebra. More exactly, any algebra A with the product
x·y is called a Lie admissible algebra if the attached algebra A−, which is
the same vector space as A but with the new product [x y] = x ·y−y ·x,
is a Lie algebra [3, 10].

The present paper is devoted to an elementary introduction to the
theory of Γ-Lie admissible algebras.

Definition 1.5. Let V be an associative Γ-algebra over a field F .
Then, for every α ∈ Γ one can construct an α- Lie algebra Lα(V ). As a
vector space, Lα(V ) is the same as V . The Lie bracket of two elements
of Lα(V ) is defined to be their commutator in V :

[x y]α = xαy − yαx

Note that [x y]α = −[y x]α for every x, y ∈ V and α ∈ Γ. Also, Lα(V )
is abelian if char(F ) = 2 or if char(F ) 6= 2 then, [x y]α = 0 for every
x, y ∈ V . From now on we suppose that char(F ) 6= 2 and V is a finite
dimensional vector space .
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LetW be a non-empty subset of an associative Γ-algebra V and α ∈ Γ.
Then, we say that W is an α-Lie subalgebra of Lα(V ) if it is a subspace
of V and [x y]α ∈ W for all x, y ∈ W . A subset I of Lα(V ) is called
a left (right) α-ideal if it is an α-Lie subalgebra and for all a ∈ I and
v ∈ V we have [v a]α ∈ I ([a v]α ∈ I) and is a (two-sided) α-ideal if it is
both a left and right α-ideal. Since [x y]α = −[y x]α for every x, y ∈ V
so every left (right) α-ideal is an α-ideal. Clearly 0 and V are α-ideals
of V .

Example 1.6. Let W be a Γ-subalgebra of Γ-algebra V . Then, for
every α ∈ Γ, Lα(W ) is an α-Lie subalgebra of Lα(V ). If I is an ideal of
V , then for every α ∈ Γ, I is an α-ideal of Lα(V ).

Note that if I and J be α-ideals of Lα(V ), then also I + J = {x+ y :

x ∈ I, y ∈ J} and [I J ]α = {
i=n∑
i=1

xiαyi : xi ∈ I, yi ∈ J, n ∈ N} are

α-ideals of Lα(V ).

Definition 1.7. Let V be an associative Γ algebra over a field F , α ∈
Γ and I be a non-zero α-ideal of Lα(V ). Then the construction of a
quotient algebra Lα(V/I) is formally the same as the construction of
a quotient ring: as vector space V/I is just the quotient space, while
its Lie multiplication is defined by [x + I y + I]α = [x y]α + I for all
x, y ∈ V . This is unambiguous, since if x + I = x

′
+ I, y + I = y

′
+ I,

then we have x
′

= x + u(u ∈ I), y
′

= y + v(v ∈ I), whence [x
′
y

′
]α =

[x y]α+([u y]α+[x v]α+[u v]α) and therefore [x
′
+I y

′
+I]α = [x+I y+I]α,

since the terms in parentheses are all lie in I.

Note that since as a vector space Lα(V ) is the same as V , for simplicity
we use V instead of Lα(V ).

Definition 1.8. Let V and V
′

be two associative Γ algebras over
a field F and α ∈ Γ. A linear transformation φα : V −→ V

′
is called

an α-homomorphism if φα([x y]α) = [φα(x) φα(y)]α, for all x, y ∈ V .
φα is called an α-monomorphism if Kerφα = 0, an α-epimorphism if
Imφα = V

′
, an α-isomorphism if it is both α-monomorphism and α-

epimorphism.

The first interesting observation to make is that Kerφα is an α-ideal of
Lα(V ): indeed, if φα(x) = 0 and if y ∈ V is arbitrary, then φα([x y]α) =
[φα(x) φα(y)]α = 0. It is also apparent that Imφα is an α-Lie subalgebra
of Lα(V

′
).
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Definition 1.9. Let V be an associative Γ-algebra. Then, the or-
dinary dimension of V as a vector space is called the dimension and
for every α ∈ Γ the dimension of the subspace of V generated by all
products of the form [x y]α is called the α-dimension.

Lemma 1.10. Let V be an associative Γ-algebra and α = α1+...+αk ∈
Γ. Then, for every x, y ∈ V we have [x y]α = [x y]α1 + ...+ [x y]αk .

Proof. [x y]α = xαy − yαx = x(α1 + ... + αk)y − y(α1 + ... + αk)x =
[x y]α1 + ...+ [x y]αk .

Theorem 1.11. Let V be an associative Γ-algebra over a field F
such that Γ be a finite dimensional vector space over the field F and
{e1, ..., ek} be a basis for Γ. Now, suppose that α = ei + ... + ej, where
1 ≤ i < j ≤ k. Then, for every β = ciei+ ...+cjej (ci, ..., cj ∈ F ), Lα(V )
and Lβ(V ) are isomorphic.

Proof. The proof is straightforward by Lemma 1.10 and that Γ is a
vector space over the field F

2. Matrix forms

In this section, we are going to discuss some properties about Γ-Lie
algebras when, V and Γ are the set of m× n and n×m matrices over a
field F , respectively.

Theorem 2.1. Let V be the set of m × n matrices over a field F
where, m < n (m > n) and the columns j1, ..., jk (the rows i1, ..., ik) are
zero and Γ be the set of all n ×m matrices over the field F . Then, for
every α ∈ Γ such that all entries are zero other than the entries in rows
j1, ..., jk (the columns i1, ..., ik) that could be zero or not and for every
A,B ∈ V , [A B]α = 0. So Lα(V ) is abelian and the α-dimension of V is
zero.

Proof. Direct calculation.

Corollary 2.2. Let V be the set of m× n matrices over a field F ,
where m < n (m > n) and the ij entry is zero for all j < m (i < n)
and Γ be the set of all n×m matrices over the field F . Then, for every
α ∈ Γ such that the ij entry is zero for all i ≥ m (j ≥ n) and for every
A,B ∈ V , [A B]α = 0.



180 A. H. Rezaei and B. Davvaz

Proof. By Theorem 2.1, it is straightforward.

Example 2.3. Let V be the set of all real 5× 3 matrices of the form
a b c
0 0 0
d e f
g h i
0 0 0


and Γ be the set of all real 3× 5 matrices. Then, for every α ∈ Γ of the
form  0 β 0 0 δ

0 γ 0 0 θ
0 µ 0 0 λ


and for every A,B ∈ V , [A B]α = 0.

In the paper, we say that a matrix (aij)m×n is diagonal if all of entries
are zero except entries aii, i = 1, ..., n when n < m and aii, i = 1, ...,m
when m < n (these entries could be zero or not). A matrix (aij)m×n
is upper triangular (strictly upper triangular) matrix if all of entries
aij, i > j(aij, i ≥ j) are zero when m > n and when n > m all of
entries aij, i > j or j > m(aij, i ≥ j or j > m) are zero. Similarly, we
have lower triangular(strictly lower triangular) matrix.

Proposition 2.4. Let V be the set of all m × n matrices, Γ be the
set of all n×m matrices and W be the set of all diagonal matrices over
a field F respectively. Then, for every α = (aij)n×m ∈ Γ where aij = 0
for i > j or j > i when i, j ≤ min{m,n}, W is an α-Lie subalgebra of
V where for every A,B ∈ W , [A B]α = 0. So Lα(W ) is abelian and the
α-dimension of W is zero.

Proof. Direct calculation.

Example 2.5. In Proposition 2.4, let m = 5 , n = 3,

A =


a 0 0
0 b 0
0 0 c
0 0 0
0 0 0

 , B =


d 0 0
0 e 0
0 0 f
0 0 0
0 0 0

 ∈ W and



Construction of Γ-Algebra and Γ-Lie Admissible Algebras 181

α =

 β 0 0 η θ
0 γ 0 λ µ
0 0 δ φ ψ

 ∈ Γ.

Then, we can see that [A B]α = 0.

Proposition 2.6. Let V and Γ be the sets of m × n and n × m
matrices over a field F respectively. If W be the subset of V such that
the rows i1, ...ik(i ∈ {1, ...,m})(columns j1, ..., jk′ (k

′ ∈ {1, ..., n}))are
zero then, for every α ∈ Γ, Lα(W ) is an α-Lie subalgebra of V .

Proof. Suppose that A,B ∈ W and the rows is(i ∈ {1, ...,m}) of A,B
are zero and α ∈ Γ. Then the rows is in matrices Aα, Bα, AαB, BαA,
[A B]α = AαB −BαA are zero.

Lemma 2.7. Let V and Γ be the sets of m × n and n ×m matrices
over a field F respectively. If W is the subset of V such that the rows
i1, ...ik(i ∈ {1, ...,m})(columns j1, ..., jk′ (k

′ ∈ {1, ..., n})) are zero, then
W is a right (left) ideal of V but not necessarily an ideal or for α ∈ Γ
an α-ideal of V .

Proof. Suppose that A ∈ W and the row is(i ∈ {1, ...,m}) of A is
zero, B ∈ V and α ∈ Γ. Then, the row is in matrix AαB is zero.

Example 2.8. Let V and Γ be the sets of all real 5 × 3 and 3 × 5
matrices respectively. If we name the set of all matrices in V of the form

a b c
0 0 0
0 0 0
d e f
0 0 0


W , then W is a right ideal of V . Now, let

A =


2 3 −5
0 0 0
0 0 0
7 1 4
0 0 0

 ∈ W, B =


1 −2 4
5 6 −1
−3 7 9
−4 −1 2
6 5 3

 ∈ V,

α =

 1 8 2 5 −4
3 −2 −5 6 −1
4 −5 3 2 −9

 ∈ Γ.
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Then, we have

AαB =


376 198 −167
0 0 0
0 0 0
−453 −75 162

0 0 0

 , BαA =


29 34 −51
451 116 141
423 207 −90
−152 −19 −93
528 165 99

 ,

[A B]α =


374 164 −116
−451 −116 −141
−423 −207 90
−301 −65 255
−528 −165 −99

 .

These shows that W is not a left ideal, ideal or α-ideal of V .

Proposition 2.9. Let V and Γ be the sets of m × n and n × m
matrices over a field F respectively. If W is the set of all upper triangular
matrices in V then, for every α = (aij) ∈ Γ such that aij = 0 for
i > j when i, j ≤ min{m,n}, W is an α-Lie subalgebra of V . The

dimension of W is p(p+1)
2

, where p = min{m,n} and the α-dimension

of W is p(p−1)
2

. (We have the same proposition for lower triangular
matrices).

Proof. By a direct calculation we can see for every A,B ∈ W , [A B]α
is an strictly upper triangular matrix.

Example 2.10. In Proposition 2.9, let m = 5 , n = 3,

A =


a b c
0 d e
0 0 f
0 0 0
0 0 0

 , B =


g h i
0 j k
0 0 l
0 0 0
0 0 0

 ∈ W and

α =

 β 0 0 η θ
0 γ 0 λ µ
0 0 δ φ ψ

 ∈ Γ.
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Then, we can see that

[A B]α

=


0 aβh+ bγj − gβb− hγd aβi+ bγk + cδl − gβc− hγe− iδf
0 0 dγk + eδl − jγe− kδf
0 0 0
0 0 0
0 0 0

 .

We recall from ordinary Lie algebra that: gl(V, F ) or gl(V ) is the Lie
algebra of linear transformations from finite dimensional vector space
V over field F to itself. An, Bn, Cn, Dn are some of Lie subalgebras
of gl(V, F ). For example, suppose that dim(V ) = 2n + 1 and J = 1 0 0

0 0 In
0 In 0

. Then, Bn = {T ∈ gl(V, F ) | T tJ + JT = 0}. When

V be the set of n× n matrices over a field F we use gl(n, F ) instead of
gl(V, F ).

Theorem 2.11. Let V be the set of all m × n (m > n) matrices, Γ
be the set of all n ×m matrices over a field F and W be the set of all
matrices in V of the form

A 0 · · · 0
0 B · · · 0
...

...
. . .

...
0 0 · · · D
0 0 · · · 0
...

... · · · ...
0 0 · · · 0


,

where A,B, · · · , D are matrices in ordinary Lie subalgebras of gl(k1, F ),
gl(k2, F ), · · · , gl(kl, F ) respectively such that k1 + k2 + · · · + kl = n. If
α ∈ Γ is a matrix of the form

Ik1×k1 0 · · · 0 a1n+1 a1n+2 · · · a1m
0 Ik2×k2 · · · 0 a2n+1 a2n+2 · · · a2m
...

...
. . .

...
...

... · · · ...
0 0 · · · Ikl×kl ann+1 ann+2 · · · anm

 ,

where aij ∈ F . Then, Lα(W ) is an α-Lie subalgebra of V . (We have the
same lemma when m < n.)
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Proof. Direct calculation.

Example 2.12. In Theorem 2.11, letW be the set of all 7×5 matrices,
where A ∈ B2. Then, for two elements

P =



0 1 2 3 4
−3 5 6 0 3
−4 −2 3 −3 0
−1 0 4 −5 2
−2 −4 0 −6 −3
0 0 0 0 0
0 0 0 0 0


, Q =



0 5 2 7 8
−7 −1 2 0 −2
−8 −3 4 2 0
−5 0 3 1 3
−2 −3 0 −2 −4
0 0 0 0 0
0 0 0 0 0


in W and

α =


1 0 0 0 0 2 3
0 1 0 0 0 5 1
0 0 1 0 0 −1 2
0 0 0 1 0 4 −3
0 0 0 0 1 2 −7

 ∈ Γ,

we have

[P Q]α =



0 −8 −45 88 −14
−88 −39 42 0 −21
14 4 5 21 0
8 0 −4 39 −4
45 4 0 −42 −5
0 0 0 0 0
0 0 0 0 0


∈ W.

Proposition 2.13. Let V be the set of all m×n (m > n) matrices ,
Γ be the set of all n×m matrices over a field F and I be the set of all
matrices in V where ij entry is zero when i > n. Then, I is an α-ideal
for every α ∈ Γ such that the ij entry is zero for all j 6 n. (we have the
same proposition when m < n.)

Proof. Direct calculation.

Example 2.14. In Proposition 2.13, let m = 5 , n = 3, F = R,

A =


−3 −2 4
5 −6 1
−3 7 9
0 0 0
0 0 0

 ∈ I, B =


2 3 −5
4 −7 6
−5 4 5
2 5 −1
4 −6 2

 ∈ V,
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α =

 0 0 0 4 −3
0 0 0 5 2
0 0 0 −7 1

 ∈ Γ.

Then, we can see that

[A B]α =


−64 −304 68
−118 153 −53

48 −392 104
0 0 0
0 0 0

 ∈ I.
Theorem 2.15. Let V be the set of all m × n matrices , Γ be the

set of all n×m matrices over a field F and ∆ be the set of all matrices
in Γ such that the entries ai1j1 , ..., aikjk are non-zero. Then for every
α, β ∈ ∆, Lα(V ) and Lβ(V ) are isomorphic.

Proof. By Theorem 1.11.

Example 2.16. In Theorem 2.15 (Theorem 1.11), let m = 2 , n = 3
and
∆ = {(aij)|a12, a31 6= 0}. Suppose that

x =

(
a11 a12 a12
a21 a22 a23

)
, y =

(
b11 b12 b13
b21 b22 b23

)
∈ V,

α =

 0 β
0 0
γ 0

 = β

 0 1
0 0
0 0

+ γ

 0 0
0 0
1 0

 = βe12 + γe31 ∈ ∆.

Then,

[x y]α = β

(
a11b21 − a21b11 a11b22 − a22b11 a11b23 − a23b11

0 a21b22 − a22b21 a21b23 − a23b21

)
+γ

(
a13b11 − a11b13 a13b12 − a12b13 0
a23b11 − a11b23 a23b12 − a12b23 a23b13 − a13b23

)
= β[x y]e12 + γ[x y]e31 .

3. Nilpotency

Let V be an associative Γ-algebra over a field F , α ∈ Γ and Lα(V )
be the constructed α- Lie algebra on V . Then, we name the set of all
linear transformations from V to V as an α-lie algebra by gl(α)(V ). It is
clear that gl(α)(V ) is a Lie subalgebra of gl(V ).
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Definition 3.1. Let V be an associative Γ-algebra over a field F ,
α ∈ Γ and δα be a linear transformation from V to V . We say that δα

is an α-derivation if for every x, y ∈ V :

δα([x y]α) = [δα(x) y]α + [x δα(y)]α.

We name Der(α)(V ) as the set of all α-derivations on V .

Lemma 3.2. Der(α)(V ) is a Lie subalgebra of gl(α)(V ).

Proof. Let δα1 , δ
α
2 be arbitrary elements of Der(α)(V ) and c ∈ F . One

can see that δα1 + δα2 and cδα1 are belongs to Der(α)(V ), these means that
Der(α)(V ) is a vector space. Now, it is enough to show that [δα1 δα2 ] ∈
Der(α)(V ). Indeed, we have

[δα1 δ
α
2 ][x y]α = (δα1 δ

α
2 − δα2 δα1 )[x y]α

= (δα1 δ
α
2 )[x y]α − (δα2 δ

α
1 )[x y]α

= δα1 ([δα2 x y]α + [x δα2 y]α)− δα2 ([δα1 x y]α + [x δα1 y]α)
= [δα1 δ

α
2 x y]α + [δα2 x δ

α
1 y]α + [δα1 x δ

α
2 y]α + [x δα1 δ

α
2 y]α

−[δα2 δ
α
1 x y]α − [δα1 x δ

α
2 y]α − [δα2 x δ

α
1 y]α − [x δα2 δ

α
1 y]α

= [δα1 δ
α
2 − δα2 δα1 x y]α + [x δα1 δ

α
2 − δα2 δα1 ]α

= [[δα1 δ
α
2 ]x y]α + [x [δα1 δ

α
2 ]y]α.

Definition 3.3. Let V be an associative Γ-algebra over a field F ,
α ∈ Γ and Lα(V ) be the constructed α- lie algebra on V . For every
x ∈ V , we define adαx : V −→ V as follows:

adαx(y) = [x y]α.

Lemma 3.4. adαx belongs to Der(α)(V ).

Proof. Suppose that y1, y2 ∈ V and c ∈ F . One can check that

adαx(cy1 + y2) = cadαx(y1) + adαx(y2),

this shows that adαx is a linear transformation from V to V . Now, since

adαx [y1 y2]α = [x [y1 y2]α]α
= [[x y1]α y2]α + [y1 [x y2]α]α
= [adαx(y1) y2]α + [y1 ad

α
x(y2)]α,

we have adαx ∈ Der(α)(V ).
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Note that Z(α)(V ) = {z ∈ V : [x z]α = 0 for all x ∈ V } is an α-ideal of
V and Z(α)(V ) =

⋂
x∈V

adαx .

Let V be an associative Γ-algebra over a field F and α ∈ Γ. We say
that Tα : V −→ gl(α)(V ) is an α-representation of V if Tα be a linear
transformation and Tα([x y]α) = [Tα(x) Tα(y)] for all x, y ∈ V .

Proposition 3.5. Let V be an associative Γ-algebra over a field F
and α ∈ Γ. Then, Tα : V −→ gl(α)(V ) which sends x to adαx is an
α-representation of V .

Proof. One can see that Tα is a linear transformation. Now, it is
enough to show that for all x1, x2 ∈ V , Tα([x1 x2]α) = [Tα(x1) T

α(x2)].
Indeed, we have

Tα([x1 x2]α)(y) = (adα[x1 x2]α
)(y)

= [[x1 x2]α y]α

and

([Tα(x1) T
α(x2)])(y) = [adαx1 ad

α
x2

](y)
= (adαx1ad

α
x2

)(y)− (adαx2ad
α
x1

)(y)
= adαx1([x2 y]α)− adαx2([x1 y]α)
= [x1 [x2 y]α]α − [x2 [x1 y]α]α
= [[x1 x2]α y]α.

Definition 3.6. Let V be an associative Γ-algebra over a field F ,
α ∈ Γ, Lα(V ) be the constructed α-Lie algebra on V and x ∈ V . Then,
we say that x is α-nilpotent if there exists n ∈ N such that xn(α) =

xαxα...x = 0. (x appears in this multiplication n times.)

It is clear that if x ∈ V be α-nilpotent, then adαx ∈ gl(α)(V ) ⊆ gl(V ) is
nilpotent.

Definition 3.7. Let V be an associative Γ-algebra over a field F ,
α ∈ Γ, Lα(V ) be the constructed α-Lie algebra on V . Define a sequence
of α-ideals of V (the descending central series, also called the lower
central series) by V 0

(α) = V , V 1
(α) = [V V ]α, V 2

(α) = [V V 1
(α)]α, ... ,

V i
(α) = [V V i−1

(α) ]α. V is called α-nilpotent if V n
(α) = 0 for some n ∈ N.

For example, any abelian α-Lie algebra is α-nilpotent.

Proposition 3.8. Let V be an associative Γ-algebra over a field F ,
α ∈ Γ, Lα(V ) be the constructed α- lie algebra on V .



188 A. H. Rezaei and B. Davvaz

(1) If V is α-nilpotent then, so are all α-Lie subalgebras and
α-homomorphic images of V .

(2) If V/Z(α)(V ) is α-nilpotent then, so is V .
(3) If V is α-nilpotent and non-zero then, Z(α)(V ) 6= 0

Proof. The proof is straightforward.

The condition for V to be α-nilpotent can be rephrased as follows:
For some n ∈ N (depending only on V), adαx1ad

α
x2
...adαxn(y) = 0 for all

xi, y ∈ V . In particular, (adαx)n = 0 for all x ∈ V . Now if V is any
α-Lie algebra and x ∈ V , we call x adα-nilpotent if adαx is a nilpotent
endomorphism. Using this language, our conclusion can be stated: If V
be α-nilpotent then, all elements of V are adα-nilpotent. It is a pleasant
surprise to find that the converse is also true.

Theorem 3.9. (Engle) If all elements of V are adα-nilpotent, then
V is α-nilpotent.

Proof. To proof, at first we recall a theorem from ordinary Lie algebra:
(see [4]). Let L be a subalgebra of gl(V ), V finite dimensional. If L
consists of nilpotent endomorphisms and V 6= 0, then there exists non-
zero v ∈ V for which L.v = 0. In this theorem let L = adα(V ) =
{adαx | x ∈ V } ⊆ gl(α)(V ) ⊆ gl(V ) (we can assume that V 6= 0). Thus,
there exists v 6= 0 in V such that adα(V )(v) = 0. This means that
adαx(v) = 0 for all x ∈ V or v ∈ Z(α)(V ), i.e. Z(α)(V ) 6= 0. Now,
V/Z(α)(V ) evidently consists of adα-nilpotent elements and has smaller
dimension than V . Using induction on dimV , we find that V/Z(α)(V ) is
nilpotent. Part (2) of Proposition 3.8 implies that V itself is α-nilpotent.

Now one can see that many results in ordinary Lie algebra are true here.
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