# THE STUDY ON THE EINSTEIN'S CONNECTION IN 5-DIMENSIONAL ES-MANIFOLD FOR THE SECOND CLASS 

In Ho Hwang


#### Abstract

The manifold ${ }^{*} g-E S X_{n}$ is a generalized $n$-dimensional Riemannian manifold on which the differential geometric structure is imposed by the unified field tensor ${ }^{*} g^{\lambda \nu}$ through the $E S$-connection which is both Einstein and semi-symmetric. The purpose of the present paper is to derive a new set of powerful recurrence relations and to prove a necessary and sufficient condition for a unique Einstein's connection to exist in 5 -dimensional ${ }^{*} g-E S X_{5}$ and to display a surveyable tnesorial representation of 5 -dimensional Einstein's connection in terms of the unified field tensor, employing the powerful recurrence relations in the second class.


## 1. Preliminaries

This section is a brief collection of basic concepts, notations, and results needed in subsequent considerations. They are due to [1],[4] and [5].
(a) $n$-simensional ${ }^{*} g$-unified field theory

Let $X_{n}$ be an $n$-dimensional generalized Riemannian manifold referred to a real coordinate system $x^{\nu}$, which obeys the coordinate transformations $x^{\nu} \rightarrow x^{\nu^{\prime}}$ for which

Received December 14, 2017. Revised March 18, 2018. Accepted March 19, 2018. 2010 Mathematics Subject Classification: 83E50, 83C05, 58A05.
Key words and phrases: ES-manifold, Recurrence relation, Einstein's connection.
This research was supported by Incheon National University Research Grant, 2017-2018.
(c) The Kangwon-Kyungki Mathematical Society, 2018.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

$$
\begin{equation*}
\operatorname{det}\left(\frac{\partial x^{\prime}}{\partial x}\right) \neq 0 \tag{1.1}
\end{equation*}
$$

In $n-g-U F T$ the manifold $X_{n}$ is endowed with a real nonsymmetric tensor $g_{\lambda \mu}$, which may be decomposed into its symmetric part $h_{\lambda \mu}$ and skew-symmetric part $k_{\lambda \mu}$ :

$$
\begin{equation*}
g_{\lambda \mu}=h_{\lambda \mu}+k_{\lambda \mu} \tag{1.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathfrak{g}=\operatorname{det}\left(g_{\lambda \mu}\right) \neq 0, \quad \mathfrak{h}=\operatorname{det}\left(h_{\lambda \mu}\right) \neq 0, \quad \mathfrak{k}=\operatorname{det}\left(k_{\lambda \mu}\right) \tag{1.3}
\end{equation*}
$$

In $n-{ }^{*} g-U F T$ the algebraic structure on $X_{n}$ is imposed by the basic real tensor ${ }^{*} g^{\lambda \nu}$ defined by

$$
\begin{equation*}
g_{\lambda \mu}{ }^{*} g^{\lambda \nu}=g_{\mu \lambda^{*}} g^{\nu \lambda}=\delta_{\mu}^{\nu} \tag{1.4}
\end{equation*}
$$

It may be also decomposed into its symmetric part ${ }^{*} h^{\lambda \nu}$ and skewsymmetric part ${ }^{*} k^{\lambda \nu}$ :

$$
\begin{equation*}
{ }^{*} g^{\lambda \nu}={ }^{*} h^{\lambda \nu}+{ }^{*} k^{\lambda \nu} \tag{1.5}
\end{equation*}
$$

Since $\operatorname{det}\left({ }^{*} h^{\lambda \nu}\right) \neq 0$, we may define a unique tensor ${ }^{*} h_{\lambda \mu}$ by

$$
\begin{equation*}
{ }^{*} h_{\lambda \mu}{ }^{*} h^{\lambda \nu}=\delta_{\mu}^{\nu} \tag{1.6}
\end{equation*}
$$

In $n-{ }^{*} g$-UFT we use both ${ }^{*} h^{\lambda \nu}$ and ${ }^{*} h_{\lambda \mu}$ as tensors for raising and/or lowering indices of all tensors in $X_{n}$ in the usual manner. We then have

$$
\begin{equation*}
{ }^{*} k_{\lambda \mu}={ }^{*} k^{\rho \sigma *} h_{\lambda \rho}{ }^{*} h_{\mu \sigma}, \quad{ }^{*} g_{\lambda \mu}={ }^{*} g^{\rho \sigma *} h_{\lambda \rho}{ }^{*} h_{\mu \sigma} \tag{1.7}
\end{equation*}
$$

so that

$$
\begin{equation*}
{ }^{*} g_{\lambda \mu}={ }^{*} h_{\lambda \mu}+{ }^{*} k_{\lambda \mu} \tag{1.8}
\end{equation*}
$$

The differential geometric structure on $X_{n}$ is imposed by the tensor * $g^{\lambda \nu}$ by means of a connection $\Gamma_{\lambda}{ }^{\nu}{ }_{\mu}$ defined by a system of equations

$$
\begin{equation*}
D_{\omega}{ }^{*} g^{\lambda \nu}=-2 S_{\omega \alpha}{ }^{\nu *} g^{\lambda \alpha} \tag{1.9}
\end{equation*}
$$

where $D_{\omega}$ denotes the symbol of the covariant derivative with respect to $\Gamma_{\lambda}{ }^{\nu}{ }_{\mu}$ and $S_{\lambda \mu}{ }^{\nu}$ is the torsion tensor of $\Gamma_{\lambda}{ }^{\nu}{ }_{\mu}$. Under certain conditions the system (1.9) admits a unique solutions $\Gamma_{\lambda}{ }^{\nu}{ }_{\mu}$.

It has been shown in [4] that if the system (1.9) admits $\Gamma_{\lambda}{ }_{\mu}{ }_{\mu}$, it must be of the form

$$
\Gamma_{\lambda}{ }^{\nu}{ }_{\mu}={ }^{*}\left\{\begin{array}{c}
\nu  \tag{1.10}\\
\lambda \mu
\end{array}\right\}+U^{\nu}{ }_{\lambda \mu}+S_{\lambda \mu}{ }^{\nu}
$$

where

$$
\begin{equation*}
U_{\nu \lambda \mu}=\stackrel{100}{S}_{(\lambda \mu) \nu}+2 \stackrel{(10) 0}{S}_{\nu(\lambda \mu)} . \tag{1.11}
\end{equation*}
$$

(b) Some notations and results

The following quantities are frequently used in our further considerations:

$$
\begin{gather*}
{ }^{*} g=\operatorname{det}\left({ }^{*} g_{\lambda \mu}\right), \quad{ }^{*} h=\operatorname{det}\left({ }^{*} h_{\lambda \mu}\right), \quad{ }^{*} k=\operatorname{det}\left({ }^{*} k_{\lambda \mu}\right)  \tag{1.12}\\
{ }^{*} g=\frac{{ }^{*} g}{{ }^{*} h}, \quad{ }^{*} k=\frac{{ }^{*} k}{{ }^{*} h} .  \tag{1.13}\\
K_{p}={ }^{*} k_{\left[\alpha_{1}\right.}{ }^{\alpha_{1} *} k_{\alpha_{2}}{ }^{\alpha_{2}} \ldots{ }^{*} k_{\left.\alpha_{p}\right]}{ }^{\alpha_{p}}, \quad(p=0,1,2, \cdots) .  \tag{1.14}\\
{ }^{(0) *} k_{\lambda}{ }^{\nu}=\delta_{\lambda}^{\nu},{ }^{(p) *} k_{\lambda}{ }^{\nu}={ }^{*} k_{\lambda}{ }^{\alpha}{ }^{(p-1) *} k_{\alpha}{ }^{\nu} \quad(p=1,2, \cdots) .  \tag{1.15}\\
K_{\omega \mu \nu}=\nabla_{\nu}{ }^{*} k_{\omega \mu}+\nabla_{\omega}{ }^{*} k_{\nu \mu}+\nabla_{\mu}{ }^{*} k_{\omega \nu} \tag{1.16}
\end{gather*}
$$

where $\nabla_{\omega}$ is the symbolic vector of the covariant derivative with respect to the christoffel symbols * $\left\{\begin{array}{c}\nu \\ \lambda \mu\end{array}\right\}$ defined by ${ }^{*} h_{\lambda \mu}$ in the usual way.

In $X_{n}$ it was proved in [4] that
(1.17) $K_{0}=1, K_{n}={ }^{*} k$ if $n$ is even, and $\mathrm{K}_{\mathrm{n}}=0$ if n is odd.

$$
\begin{gather*}
* g=1+K_{2}+\cdots+K_{n-\sigma} .  \tag{1.18}\\
\sum_{s=0}^{n-\sigma} K_{s}^{(n-s) *} k_{\lambda}^{\nu}=0 \quad(p=0,1,2, \cdots) . \tag{1.19}
\end{gather*}
$$

We also use the following useful abbreviations, denoting an arbitrary tensor $T_{\omega \mu \nu}$ skew-symmetric in the first two indices by $T$ :

$$
\begin{equation*}
\stackrel{p q r}{T}=\stackrel{p q r}{T}_{\omega \mu \lambda}=T_{\alpha \beta \gamma}{ }^{(p) *} k_{\omega}{ }^{\alpha(q) *} k_{\mu}{ }^{\beta(r) *} k_{\lambda}{ }^{\gamma} \tag{1.20}
\end{equation*}
$$

and for an arbitrary tensor $T_{\ldots}$.. for $p=1,2,3, \cdots$ :

$$
\begin{equation*}
{ }^{(p)} T_{\ldots \cdots}^{\nu}={ }^{(p-1) ~ *} k^{\nu}{ }_{\alpha} T_{\ldots}^{\alpha \cdots} . \tag{1.21}
\end{equation*}
$$

Definition 1.1. The tensors ${ }^{*} g_{\lambda \mu}$ is said to be
(1) of the first class, if $K_{n-\sigma} \neq 0$
(2) of the second class with jth category $(j>=1)$, if

$$
\begin{equation*}
K_{2 j} \neq 0, \quad K_{2 j+2}=K_{2 j+4}=\cdots=K_{n-\sigma}=0 \tag{1.22}
\end{equation*}
$$

(3) of the third class, if $K_{2}=K_{4}=\cdots=K_{n-\sigma}=0$

In $5-{ }^{*} g-U F T$, there are three classes: namely the first class when $K_{4} \neq 0$, the second class when $K_{4}=0, K_{2} \neq 0$ and the third class when $K_{2}=K_{4}=0$.

It is well known that the basic scalars $M$ are solutions of the characteristic equation
(1.23) $M^{\sigma}\left(M^{n-\sigma}+K_{2} M^{n-2-\sigma}+\cdots+K_{n-2-\sigma} M^{2}+K_{n-\sigma}\right)=0$

On the other hand, it has shown in [5] that the tensor $S_{\lambda \mu}{ }^{\nu}$ satisfies

$$
\begin{equation*}
S=B-3{ }^{(110)} S \tag{1.24}
\end{equation*}
$$

where

$$
\begin{equation*}
\left.2 B_{\omega \mu \nu}=K_{\omega \mu \nu}+3 K_{\alpha[\mu \beta}{ }^{*} k_{\omega}\right]^{\alpha *} k_{\nu}{ }^{\beta} \tag{1.25}
\end{equation*}
$$

In our subsequent chapter, we start with the relation (1.24) to solve the system (1.9). Furthermore, for the second class, the nonholonomic solution of (1.24) is given by

$$
\begin{equation*}
{\underset{x y z}{ } S_{x y z}=B_{x y z}, ~}_{\text {and }} \tag{1.26}
\end{equation*}
$$

or equivalently

$$
\begin{align*}
4 M_{x y z} S_{x y z}=(2+\underset{z}{M} \underset{x}{M}+\underset{z}{M} \underset{y}{M}) K_{x y z} & +\underset{z}{M}(\underset{x}{M}+\underset{z}{M}) K_{z x y} \\
& +\underset{z}{M}(\underset{y}{M}+\underset{z}{M}) K_{y z x} \tag{1.27}
\end{align*}
$$

where

$$
\begin{equation*}
\underset{x y z}{M}=1+\underset{x}{M} \underset{y}{M}+\underset{y}{M_{z}} \underset{z}{M}+\underset{z}{M_{x}} \underset{x}{M} \tag{1.28}
\end{equation*}
$$

Therefore, in virtue of (1.26), we see that a necessary and sufficient condition for the system (1.9) to have a unique solution in the second class is

$$
\begin{equation*}
\underset{x y z}{M} \neq 0 \text { for all } x, y, z \tag{1.29}
\end{equation*}
$$

Definition 1.2. A connection $\Gamma_{\lambda}{ }^{\nu}{ }_{\mu}$ is said to be semi-symmetric if its torsion tensor $S_{\lambda \mu}{ }^{\nu}$ is of the form

$$
\begin{equation*}
S_{\lambda \mu}{ }^{\nu}=2 \delta_{[\lambda}^{\nu} X_{\mu]} . \tag{1.30}
\end{equation*}
$$

for an arbitrary non-null vector $X_{\mu}$.
A connection which is both semi-symmetric and Einstein is called an $E S$ connection. An $n$-dimensional generalized Riemannian manifold $X_{n}$, on which the differential geometric structure is imposed by ${ }^{*} g^{\lambda \nu}$ by means of an $E S$ connection, is called an $n$-dimensional ${ }^{*} g-E S$ manifold. We denote this manifold by ${ }^{*} g-E S X_{n}$ in our further considerations.

Theorem 1.3. In the second class, the basic scalars in ${ }^{*} g-E S X_{5}$ are given by

$$
\begin{equation*}
\underset{1}{M}=-\underset{2}{M}=\sqrt{-K_{2}} \neq 0, \quad \underset{3}{M}=\underset{4}{M}=\underset{5}{M}=0 \tag{1.31}
\end{equation*}
$$

Proof. For the second class of $5-{ }^{*} g-U F T$, the characteristic equation (1.23) is reduced to

$$
\begin{equation*}
M\left(M^{4}+K_{2} M^{2}\right)=0 \tag{1.32}
\end{equation*}
$$

from which our assertion follows.
Theorem 1.4. The main recurrence relation in the second class is

$$
\begin{equation*}
{ }^{(p+3) *} k_{\lambda}{ }^{\nu}=-K_{2}{ }^{(p+1) *} k_{\lambda}^{\nu} \quad(p=0,1,2, \cdots) \tag{1.33}
\end{equation*}
$$

Proof. When ${ }^{*} g_{\lambda \mu}$ belongs to the second class, the characteristic equation (1.23) is reduced to

$$
\begin{equation*}
\sum_{f=0}^{2} K_{f} M^{n-f}=M^{n-2} \sum_{f=0}^{2} K_{f} M^{2-f} \tag{1.34}
\end{equation*}
$$

If $M_{x}$ is a root of (1.34), it satisfies

$$
\begin{equation*}
0=M_{x} \sum_{f=0}^{2} K_{f}{\underset{x}{M}}_{M^{2-f}}=\sum_{f=0}^{2} K_{f} \underset{x}{M^{2-f+1}} \tag{1.35}
\end{equation*}
$$

Multiplying $\delta_{x}^{i}$ to both sides of (1.35) and making use of (1.15), we have (1.33).

The following theorem is a simple consequence of (1.31).

Theorem 1.5. In the second class, the basic scalars ${\underset{x}{M}}^{m}$ satisfy

$$
\begin{equation*}
\underset{1}{M}+\underset{2}{M}=\underset{x}{M}+\underset{y}{M}=0 \quad(x, y=3,4,5) \tag{1.36}
\end{equation*}
$$

$$
\begin{equation*}
\underset{1}{M} \underset{2}{M}=K_{2}, \underset{1}{M} \underset{x}{M}=\underset{2}{M} \underset{x}{M}=\underset{y}{M} \underset{y}{M}=0 \quad(x, y=3,4,5) \tag{1.37}
\end{equation*}
$$

In virtue of the above theorem, we have
Theorem 1.6. In the second class, the following identities hold for all values of $x$ and $y$ when $x \neq y$

$$
\begin{gather*}
\underset{x}{M^{2}} \underset{y}{M^{2}}=K_{2} \underset{x}{M} M_{y}^{M}  \tag{1.38}\\
{ }_{x}^{M} \underset{y}{M^{(2}}{ }_{y}^{1)}=0 \tag{1.39}
\end{gather*}
$$

Theorem 1.7. If $T_{\omega \mu \nu}$ is a tensor skew-symmetric in the first two indices, then the following recurrence relations hold in the second class of ${ }^{*} g-E S X_{5}$ :

$$
\begin{equation*}
\stackrel{(21) r}{T}=0 \tag{1.40}
\end{equation*}
$$

$$
\begin{equation*}
\stackrel{22 r}{T}=K_{2}{ }^{11 r} T \tag{1.41}
\end{equation*}
$$

Proof. The relations (1.40) and (1.41) follow from (1.38) and (1.39). For example, the relation (1.41) is obtained as in the following way:

## 2. Einstein's connection $\Gamma_{\lambda}{ }^{\nu}{ }_{\mu}$ in the second class

In this section, we shall derive surveyable representations of $\Gamma_{\lambda}{ }_{\mu}{ }_{\mu}$ in terms of * $g^{\lambda \nu}$, employing the recurrence relations.

In the following theorem, we shall prove two relations in $X_{n}$. These relations will be used in our subsequent theorem when we are concerned with the solution of (1.9).

$$
\begin{align*}
& \stackrel{22 r}{T}=\sum_{x, y, z} T_{x y z} M_{x}^{2}{\underset{y}{M}}_{2}^{2}{\underset{z}{r}}_{r}^{x} A_{\omega}{ }_{A}^{y}{ }_{\mu}{ }^{z} A_{\nu} \\
& =\sum_{x, y, z} T_{x y z}\left(K_{2} \underset{x}{\left.\underset{y}{M} \underset{z}{M} M^{r}\right)}{ }_{x}^{x} A_{\omega} A_{\mu} A_{\nu}^{z}\right. \\
& =K_{2}{ }^{11 r} \tag{1.42}
\end{align*}
$$

Theorem 2.1. We have

$$
\begin{align*}
& \stackrel{(p q) r}{B}=\stackrel{(p q) r}{S}+\stackrel{\left(p^{\prime} q^{\prime}\right) r}{S}+\stackrel{\left(p^{\prime} q\right) r^{\prime}}{S}+\stackrel{\left(p q^{\prime}\right) r^{\prime}}{S} \tag{2.1}
\end{align*}
$$

where

$$
\begin{equation*}
p^{\prime}=p+1, \quad q^{\prime}=q+1, \quad r^{\prime}=r+1, \quad r^{\prime \prime}=r+2 \tag{2.3}
\end{equation*}
$$

Proof. In virtue of (1.24) and (1.20), the first relation (2.1) is obtained as in the following way:

$$
\begin{gather*}
{ }_{(p q) r}^{B} \quad{ }^{(p q) r} B_{\omega \mu \nu}=\frac{1}{2} B_{\omega \beta \gamma}\left({ }^{(p) *} k_{\omega}{ }^{\alpha(q) *} k_{\mu}{ }^{\beta}+{ }^{(q) *} k_{\omega}{ }^{\alpha(p) *} k_{\mu}{ }^{\beta}\right)^{(r) *} k_{\nu}{ }^{\gamma} \\
=\frac{1}{2}\left(S_{\alpha \beta \gamma}+S_{\left.\epsilon \eta{ }^{*}{ }^{*} k_{\alpha}{ }^{\epsilon *} k_{\beta}{ }^{\eta}+S_{\epsilon \beta\rangle}{ }^{*} k_{\alpha}{ }^{\epsilon *} k_{\gamma}{ }^{\eta}+S_{\alpha \epsilon \eta}{ }^{*} k_{\beta}^{\epsilon *} k_{\gamma}{ }^{\eta}\right) \times} \quad \times\left({ }^{(p) *} k_{\omega}{ }^{\alpha(q) *} k_{\mu}{ }^{\beta}+(q) * k_{\omega}{ }^{\alpha(p) *} k_{\mu}{ }^{\beta}\right)^{(r) *} k_{\nu}{ }^{\gamma}\right.
\end{gather*}
$$

After a lengthy calculation, we note that the right-hand side of the above equation is equal to that of (2.1). Similarly, we verify (2.2) using (1.20) and (1.25).

Theorem 2.2. A necessary and sufficient condition for the system (1.9) to admit a unique solution $\Gamma_{\lambda}{ }^{\nu}{ }_{\mu}$ in the second class is that

$$
\begin{equation*}
1-\left(K_{2}\right)^{2} \neq 0 \tag{2.5}
\end{equation*}
$$

Proof. In virtue of (1.31), the symmetric scalars $M_{x y z}^{M}$ defined by (1.28) takes values as in the following 3 cases:

If two of the indices $x, y, z$ are 1,2 or 3,4 , then

$$
\begin{equation*}
M_{x y z}^{M}=1+K_{2}, \quad 1 \tag{2.6}
\end{equation*}
$$

If at least one of $x, y, z$ is 5 and no two take the values 1,2 nor 3,4 , then

$$
\begin{equation*}
M_{x y z}=1 \tag{2.7}
\end{equation*}
$$

In the remaining cases,

$$
\begin{equation*}
{\underset{x y z}{M}=1-K_{2}, \quad 1 . \quad 1 .}^{M}= \tag{2.8}
\end{equation*}
$$

It is easily verified that the product of two factors in the right of (2.6) is $1+K_{2}$, that of one factor in the right of (2.7) is 1 , and that of two factors in the right of (2.8) is $1-K_{2}$. Hence we have proved our assertion (2.5) in virtue of (1.29).

Theorem 2.3. The system of equations (1.24) in the second class is reduced to the following 5 equations:

$$
\left\{\begin{array}{l}
B=S+2 \stackrel{(10) 1}{S}+\stackrel{110}{S}  \tag{2.9}\\
\stackrel{(10) 1}{B}=\stackrel{(10) 1}{S}+\stackrel{(20) 2}{S}+\stackrel{112}{S} \\
\stackrel{(20) 2}{B}=\left(K_{2}\right)^{2} \stackrel{(10) 1}{S}+\stackrel{(20)^{2}}{S}-K_{2}{ }^{112} \\
\stackrel{110}{B}=\left(1+K_{2}\right) \stackrel{110}{S} \\
{ }^{112} \\
B=\left(1+K_{2}\right)
\end{array}\right.
$$

Proof. This assertion follows from (2.1) using (1.40), (1.41) and (1.33)

Theorem 2.4. If the conditions (2.5) is satisfied, the unique solution of (1.24) is given by
$(2.10)\left(1-K_{2}{ }^{2}\right)(S-B)=-2 \stackrel{(10) 1}{B}^{2}+\left(K_{2}-1\right){ }^{110} B+2 \stackrel{(20) 2}{B}_{B}+2{ }^{112} B^{2}$
Proof. (2.10) is a solution of (2.9).

## References

[1] Datta, D.k., Some theorems on symmetric recurrent tensors of the second order, Tensor (N.S.) 15 (1964), 1105-1136.
[2] Einstein, A., The meaning of relativity, Princeton University Press, 1950
[3] Mishra, R.S., n-dimensional considerations of unified field theory of relativity, Tensor 9 (1959), 217-225.
[4] Chung, K.T., Einstein's connection in terms of ${ }^{*} g^{\lambda \nu}$, Nuovo cimento Soc. Ital. Fis. B, 27 (1963) (X), 1297-1324.
[5] Hlavatý, V., Geometry of Einstein's unified field theory, Noordhoop Ltd., 1957.

In Ho Hwang
Department of Mathematics
Incheon National University
Incheon 22012, Korea
E-mail: ho818@inu.ac.kr

