ROTA-BAXTER OPERATORS OF 3-DIMENSIONAL HEISENBERG LIE ALGEBRA

Guangzhi JI ${ }^{\dagger}$ and Xiuying Hua*

Abstract

In this paper, we consider the question of the RotaBaxter operators of 3-dimensional Heisenberg Lie algebra on \mathbb{F}, where \mathbb{F} is an algebraic closed field. By using the Lie product of the basis elements of Heisenberg Lie algebras, all Rota-Baxter operators of 3dimensional Heisenberg Lie algebras are calculated and left symmetric algebras of 3 -dimensional Heisenberg Lie algebra are determined by using the Yang-Baxter operators.

1. Introduction

Baxter proposed the concept of Rota-Baxter operator in 1960 (see [3]), while Rota further promoted the study of Baxter operator (see [8]). Rota-Baxter operator in various fields of mathematics has been widely used (see $[2,4]$). This year, many people have described the Rota-Baxter operator on low-dimensional algebra, for example, in $[1,6]$ give the RotaBaxter operators on low-dimensional pre-Lie algebras, in $[7,9]$ give all Rota-Baxter operators on finite-dimensional Hamilton algebras and 3-, 4 - and 5 -dimensional Heisenberg Superalgebras. In [4] gives the RotaBaxter operators on exterior algebras of two variables. By using the

[^0]Lie product of the basis elements of Heisenberg Lie algebras, all RotaBaxter operators of 3-dimensional Heisenberg Lie algebras are calculated and left symmetric algebras of 3-dimensional Heisenberg Lie algebra are determined by using the Yang-Baxter operators.

2. Definition and basic properties

Definition 2.1. Let G be Lie algebra on \mathbb{F} where \mathbb{F} is a field, we say that R is a Rota-Baxter operator on G, if the following condition holds for any x, y in G :

$$
\begin{equation*}
[R(x), R(y)]+\lambda R([x, y])=R([R(x), y])+R([(x), R(y)], \tag{1}
\end{equation*}
$$

$\forall x, y \in G, \lambda \in \mathbb{F}$.
In particular, we say that R is a Yang-Baxter operator of G it is the Rota-Baxter operator of the weight $\lambda=0$. In this case the equation (1) becomes

$$
\begin{equation*}
[R(x), R(y)]=R([R(x), y])+R([(x), R(y)], \quad \forall x, y \in G \tag{2}
\end{equation*}
$$

which is called the classical Yang-Baxter equation of G and the RotaBaxter of weight $\lambda=0$ will be a solution of the classical Yang-Baxter equation of G.

Obviously, $\lambda^{-1} R$ is the Rota-Baxter operator of the weight 1 when $\lambda \neq 0$, hence, We can get all Rota-Baxter operators of non-zero weight by applying the Rota-Baxter operator of weight 1 . Hence, we only need to calculate Rota-Baxter operators of the weights 0 and 1 .

One of the applications of the Yang-Baxter operators is to construct left symmetric algebras by using these operators and defining a new operation on G as Lemma 2.2.

Lemma 2.2. Let G be a Lie algebra and R a solution of the classical Yang-Baxter equation of G. We define a new operation on G as follows:

$$
\begin{aligned}
& *: G \times G \longrightarrow \mathbb{F} \\
& \quad(x, y) \longrightarrow x * y:=[R(x), y] \quad \forall x, y \in G
\end{aligned}
$$

then $(G, *)$ will be a left symmetric algebra.
Now let us to consider the 3-dimensional Heisenberg Lie algebra G with base elements $\{c, e, f\}$ satisfying in the relation

$$
\left\{\begin{array}{l}
{[e, f]=-[f, e]=c} \\
{[x, y]=0 \quad \text { if } x, y \notin\{c, e, f\}}
\end{array}\right.
$$

Now let R be a linear operator on G such that

$$
\left\{\begin{array}{l}
R(c)=a_{11} c+a_{21} e+a_{31} f \\
R(e)=a_{12} c+a_{22} e+a_{32} f \\
R(f)=a_{13} c+a_{23} e+a_{33} f
\end{array}\right.
$$

where $a_{i j} \in \mathbb{F}$ for $i, j \in\{1,2,3\}$.
In other words we can write

$$
(R(c), R(e), R(f))=(c, e, f)\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

3. Main Results

Theorem 3.1. There is three types of the Rota-Baxter operators of weight 0 for the 3-dimensional Heisenberg Lie algebra G, which are as follows:

$$
\begin{gathered}
R_{1}=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{22} & a_{23} \\
0 & a_{32} & \frac{a_{11} a_{22}+a_{23} a_{32}}{a_{22}-a_{11}}
\end{array}\right] \text { where } a_{22}-a_{11} \neq 0 \\
R_{2}=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{22} & a_{23} \\
0 & \frac{-a_{11}^{2}}{a_{23}} & a_{33}
\end{array}\right] \text { where } a_{22}=a_{11}, a_{23} \neq 0 \\
R_{3}=\left[\begin{array}{ccc}
0 & a_{12} & a_{13} \\
0 & 0 & 0 \\
0 & a_{32} & a_{33}
\end{array}\right] \text { where } a_{i j} \in \mathbb{F}
\end{gathered}
$$

Proof. Since R is linear operator, so we only need to consider the base elements which are satisfying in the equation (2) which come from
the equation (1) by substituting 0 in stead of λ and also we have the equations:

$$
\left\{\begin{array}{l}
a_{21}=0 \tag{3}\\
a_{31}=0 \\
\left(a_{22}-a_{11}\right) a_{33}=a_{11} a_{22}+a_{23} a_{32}
\end{array}\right.
$$

where

$$
\begin{gathered}
{[R(c), R(e)]=R([R(c), e])+R([c, R(e)]) \Longrightarrow a_{31}=0} \\
{[R(c), R(f)]=R([R(c), f])+R([c, R(f)]) \Longrightarrow a_{21}=0} \\
{[R(e), R(f)]=R([R(e), f])+R([e, R(f)])} \\
\Longrightarrow\left(a_{22}-a_{11}\right) a_{33}=a_{11} a_{22}+a_{23} a_{32}
\end{gathered}
$$

Discuss the situation:
Situation 1: If $a_{22} \neq a_{11}$, then (3) becomes

$$
\left\{\begin{array}{l}
a_{21}=0 \\
a_{31}=0 \\
a_{33}=\frac{a_{11} a_{22}+a_{23} a_{32}}{a_{22}-a_{11}}
\end{array}\right.
$$

and this will yield us to the Rota-Baxter operator

$$
R_{1}=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{22} & a_{23} \\
0 & a_{32} & \frac{a_{11} a_{22}+a_{23} a_{32}}{a_{22}-a_{11}}
\end{array}\right] \text { where } a_{22}-a_{11} \neq 0 .
$$

Situation 2: If $a_{22}=a_{11}, a_{23} \neq 0$, then (3) becomes

$$
\left\{\begin{array}{l}
a_{21}=0 \\
a_{31}=0 \\
a_{32}=\frac{-a_{11}^{2}}{a_{23}}
\end{array}\right.
$$

and this will yield us to the Rota-Baxter operator

$$
R_{2}=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{22} & a_{23} \\
0 & \frac{-a_{11}^{2}}{a_{23}} & a_{33}
\end{array}\right] \text { where } a_{22}=a_{11}, a_{23} \neq 0
$$

Situation 3: If $a_{11}=a_{22}, a_{23}=0$, then (3) becomes

$$
\left\{\begin{array}{l}
a_{21}=0 \\
a_{31}=0 \\
a_{11}=a_{22}=a_{23}
\end{array}\right.
$$

and this will yield us to the Rota-Baxter operator

$$
R_{3}=\left[\begin{array}{ccc}
0 & a_{12} & a_{13} \\
0 & 0 & 0 \\
0 & a_{32} & a_{33}
\end{array}\right] \text { where } a_{i j} \in \mathbb{F} \text {. }
$$

Theorem 3.2. The Rota-Baxter operators of weight 1 of 3-dimensional Heisenberg Lie algebra G are the following:

$$
\begin{gathered}
R_{1}=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{22} & a_{23} \\
0 & a_{32} & \frac{a_{11} a_{22}-a_{11}+a_{23} a_{32}}{a_{22}-a_{11}}
\end{array}\right] \text { where } a_{22}-a_{11} \neq 0 \\
R_{2}=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{22} & a_{23} \\
0 & \frac{a_{11}-a_{11}^{2}}{a_{23}} & a_{33}
\end{array}\right] \text { where } a_{22}=a_{11}, a_{23} \neq 0 \\
R_{3}=\left[\begin{array}{ccc}
0 & a_{12} & a_{13} \\
0 & 0 & 0 \\
0 & a_{32} & a_{33}
\end{array}\right] \text { where } a_{i j} \in \mathbb{F} \\
R_{4}=\left[\begin{array}{ccc}
1 & a_{12} & a_{13} \\
0 & 1 & 0 \\
0 & a_{32} & a_{33}
\end{array}\right] \text { where } a_{i j} \in \mathbb{F}
\end{gathered}
$$

Proof. Since R is linear operator, hence we only need to consider the base elements which are satisfying in the equation

$$
[R(x), R(y)]+R([x, y])=R([R(x), y])+R([(x), R(y)]
$$

which come from the equation (1) by substituting 1 in stead of λ and also we have the equations:

$$
\left\{\begin{array}{l}
a_{21}=0 \tag{4}\\
a_{31}=0 \\
\left(a_{22}-a_{11}\right) a_{33}=a_{11} a_{22}-a_{11}+a_{23} a_{32}
\end{array}\right.
$$

where

$$
\begin{gathered}
{[R(c), R(e)]=R([R(c), e])+R([c, R(e)]) \Longrightarrow a_{31}=0} \\
{[R(c), R(f)]=R([R(c), f])+R([c, R(f)]) \Longrightarrow a_{21}=0} \\
{[R(e), R(f)]=R([R(e), f])+R([e, R(f)])}
\end{gathered}
$$

$$
\Longrightarrow\left(a_{22}-a_{11}\right) a_{33}=a_{11} a_{22}-a_{11}+a_{23} a_{32}
$$

Discuss the situation:
Situation 1: If $a_{22} \neq a_{11}$, then (4) becomes

$$
\left\{\begin{array}{l}
a_{21}=0 \\
a_{31}=0 \\
a_{33}=\frac{a_{11} a_{22}-a_{11}+a_{23} a_{32}}{a_{22}-a_{11}}
\end{array}\right.
$$

and this will yield us to the Rota-Baxter operator

$$
R_{1}=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{22} & a_{23} \\
0 & a_{32} & \frac{a_{11} a_{22}-a_{11}+a_{23} a_{32}}{a_{22}-a_{11}}
\end{array}\right] \text { where } a_{22}-a_{11} \neq 0
$$

Situation 2: If $a_{22}=a_{11}, a_{23} \neq 0$, then (4) becomes

$$
\left\{\begin{array}{l}
a_{21}=0 \\
a_{31}=0 \\
a_{32}=\frac{a_{11}-a_{11}^{2}}{a_{23}}
\end{array}\right.
$$

and this will yield us to the Rota-Baxter operator

$$
R_{2}=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{22} & a_{23} \\
0 & \frac{a_{11}-a_{11}^{2}}{a_{23}} & a_{33}
\end{array}\right] \text { where } a_{22}=a_{11}, a_{23} \neq 0
$$

Situation 3: If $a_{11}=a_{22}, a_{23}=0$, then $a_{11}^{2}-a_{11}=0$
(1). If $a_{11}=0$, then (4) becomes

$$
\left\{\begin{array}{l}
a_{21}=0 \\
a_{31}=0 \\
a_{11}=a_{22}=a_{23}=0
\end{array}\right.
$$

which will yield us to the Rota-Baxter operator

$$
R_{3}=\left[\begin{array}{ccc}
0 & a_{12} & a_{13} \\
0 & 0 & 0 \\
0 & a_{32} & a_{33}
\end{array}\right] \text { where } a_{i j} \in \mathbb{F}
$$

(2). If $a_{11}=1$, then (4) becomes

$$
\left\{\begin{array}{l}
a_{21}=0 \\
a_{31}=0 \\
a_{23}=0 \\
a_{11}=a_{22}=1
\end{array}\right.
$$

which will yield us to the Rota-Baxter operator

$$
R_{4}=\left[\begin{array}{ccc}
1 & a_{12} & a_{13} \\
0 & 1 & 0 \\
0 & a_{32} & a_{33}
\end{array}\right] \text { where } a_{i j} \in \mathbb{F}
$$

THEOREM 3.3. The structure of left symmetric algebra of 3-dimensional Heisenberg Lie algebra

1) $e * e=-a_{32} c, f * f=a_{23} c, e * f=a_{22} c, f * e=\frac{a_{23} a_{32}-a_{11} a_{22}}{a_{22}-a_{11}} c$.
2) $e * e=\frac{a_{11}^{2}}{a_{23}} c, f * f=a_{23} c, e * f=a_{22} c, f * e=-a_{33} c$.
3) $e * e=-a_{32} c, f * e=-a_{33} c$.

Proof. Considering the application of Yang-Baxter operators, we can calculate directly the structure of left symmetric algebra of Heisenberg Lie algebra by lemma 2.2 and theorem 3.1.

Corollary 3.4. The homomorphic operator of 3-dimensional Heisenberg Lie algebra of weight 0 is

$$
R_{3}=\left[\begin{array}{ccc}
0 & a_{12} & a_{13} \\
0 & 0 & 0 \\
0 & a_{32} & a_{33}
\end{array}\right]
$$

where $a_{i j} \in \mathbb{F}$
The homomorphic operator of 3-dimensional Heisenberg Lie algebra of weight 1 is

$$
R_{3}=\left[\begin{array}{ccc}
0 & a_{12} & a_{13} \\
0 & 0 & 0 \\
0 & a_{32} & a_{33}
\end{array}\right]
$$

where $a_{i j} \in \mathbb{F}$.
Corollary 3.5. Neither of the 3-dimensional Heisenberg Lie algebra of weight 0 and weight 1 have isomorphic operators.

References

[1] H.H.An and C.M.Bai From Rota-Baxter algebras to pre-Lie algebras, J. Phys. A: Math. Theor. 41 (2008), 015201-015219.
[2] F.V.Atkinson, Some aspects of Baxter's functional equation, J. Math. Anal. Appl. 07 (1963), 1-30.
[3] G.Baxter, An analytic problem whose solution follows from a simple algebraic identity, Pacific J. Math. 10 (1960), 731-742.
[4] G.C.Rota, Ten mathematics problems I will never solve, Mitt. Dtsch. Math,-Ver. 02 (1998), 45-52.
[5] X.Y.Hua and W.D.Liu, Rota-Baxter Operators on Exterior Algebra, Journal of Harbin University of Science and Technology. 18 (4) (2013), 125-128.
[6] G.Li and Keigher W, Baxter algebras and shuffle products, Adv. Math. 150 (2000), 117-149.
[7] X.X.Li, D.P.Hou, and C.M.Bai, Rota-Baxter operators on pre-lie algebras, Nonlinear Math. Phys. 14 (2) (2007), 269-289.
[8] S.Q.Lv and W.D.Liu, Rota-Baxter Operators on Heisenberg Lie Superalgebras of Dimension Five, Journal of Mathematics in Practice and Theory. 46 (20) (2016), 248-258.
[9] H.Y.Wen, Rota-Baxter Operators on Hamilton algebra and Heisenberg Lie Superalgebras, Harbin Normal University. (2014).

Guangzhi Ji

No. 52 xuefu road, nangang district, Harbin city, heilongjiang province College of Science
Harbin University of Science and Technology
Harbin 150080, China
E-mail: 245368609@qq.com

Xiuying Hua

No. 52 xuefu road, nangang district, Harbin city, heilongjiang province College of Science
Harbin University of Science and Technology
Harbin 150080, China
E-mail: huaxiuyingnihao@163.com

[^0]: Received December 19, 2017. Revised March 13, 2018. Accepted March 15, 2018. 2010 Mathematics Subject Classification: 17B05, 17B65.
 Key words and phrases: Rota-Baxter operators, Heisenberg Lie algebra, YangBaxter operators.
 \dagger This work was supported by College of Science, Harbin University of Science and Technology.

 * Corresponding author.
 (c) The Kangwon-Kyungki Mathematical Society, 2018.

 This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

