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SOME RESULTS RELATING TO SUM AND PRODUCT
THEOREMS OF RELATIVE (p,q,t) L-TH ORDER AND
RELATIVE (p,q,t) L-TH TYPE OF ENTIRE FUNCTIONS

TANMAY BISwAS

ABSTRACT. Orders and types of entire functions have been actively
investigated by many authors. In this paper, we investigate some
basic properties in connection with sum and product of relative
(p, q,t) L-th order, relative (p, q,t) L-th type, and relative (p, q,t) L-
th weak type of entire functions with respect to another entire func-
tion where p,g € N and t € NU{-1,0}.

1. Introduction, Definitions and Notations

Let C be the set of all finite complex numbers and f be an en-
tire function defined on C. The maximum modulus function M of
f = > a,2" on |z| = r is defined as My = ﬁax|f(z)|. If f is non-

n=0 z|l=r
constant entire, then its maximum modulus function My (r) is strictly
increasing and continuous and therefore there exists its inverse function
]\4171 : (|f(0)],00) — (0,00) with SILIEOMf_l (s) = oo. Further a non-
constant entire function f is said to have the Property (A) if for any
o > 1 and for all sufficiently large r, [M; (r)]> < M; (r?) holds (see [2]) .

However our notations are standard within the theory of Nevanlinna’s
value distribution of entire functions and therefore we do not explain
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those in detail as available in [11,12]. Moreover for = € [0,00) and
k € N, we define exp!*l z = exp (exp/*~! ) and log™ 2 = log <log[k_1] IE>

where N be the set of all positive integers. We also denote log[O] T =2,
logl s = expz, exp® 2 = 2 and expl™ z = log 2.

Considering the above, let us recall that Juneja, Kapoor and Baj-
pai [6] defined the (p,¢)-th order and (p, ¢)-th lower order of an entire
function f respectively as follows:

pr(pa) _ . sup log” My(r)
Ar(piq)  roee inf o ogldy

where p, ¢ are positive integers with p > q.

The definition of (p, q)-th order (respectively (p, g¢)-th lower order) as
initiated by Juneja, Kapoor and Bajpai [6] extends the notion of general-
ized order pgf] (respectively generalized lower order )\Ef}) of an entire func-
tion f introduced by Sato in [9] for each integer I > 2 as these correspond
to the particular case pgf] = pr(1,1) ( respectively A = Ap(l,1) ). If
p =2 and ¢ = 1 then we write py (2,1) = ps (respectively A\s (2,1) = )
which is known as order (respectively lower order) of an entire function
f.

An entire function for which (p, ¢)-th order and (p, ¢)-th lower order
are the same is said to be of regular (p, ¢)-growth. Functions which are
not of regular (p, q)-growth are said to be of irregular (p, ¢)-growth.

Many authors have investigated the growth properties of composi-
tion of entire functions and derived so many great results. The field
of this investigate may be more influential through the intensive ap-
plications of the theories of slowly changing functions which in fact

means that L (ar) ~ L(r) as r — oo for every positive constant a i.e.,

lim Zter)

o0 L(T)

ing slowly. Considering L (r) = logr and a = 10%°, one can easily show

that lim LL((C; r)) = 1. Somasundaram and Thamizharasi [10] introduced
r—00

the notions of L-order and L-lower order for entire functions.

= 1 where L = L (r) is a positive continuous function increas-

Extending the notion of Somasundaram and Thamizharasi [10], one
may introduce the definition of (p, ¢, t) L-th order and (p, ¢, t) L-th lower
order of an entire function f, where p, ¢ are positive integers with p >
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g>1andteNU{-1,0} in the following way:

pf (prast) _ g osup  log? My(r)
AF(pog,t)  rooo Inf 1ogld 4 expld I (1)

If we consider p = 2, ¢ = 1 and t = —1, then the above definitions
reduces to the definition of L-order and L-lower order of an entire func-
tion f as introduced by Somasundaram and Thamizharasi [10]. Also for
an entire function f, if we consider p =2, ¢ = 1 and ¢ = 0, then we get
the definition of L*-order and L*-lower order of f respectively. However,
if we take L (r) = 1, then the above definitions reduces to the (p, ¢)-th
order and (p, ¢)-th lower order of f as introduced by Juneja et al. [6].

An entire function for which (p, ¢, t) L-th order and (p, ¢, t) L-th lower
order are the same is said to be of regular (p,q,t) growth. Functions
which are not of regular (p, ¢,t) growth are said to be of irregular (p, g, t)
growth.

Mainly the growth investigation of entire functions has usually been
done through its maximum moduli in comparison with those of expo-
nential function. But if one is paying attention to evaluate the growth
rates of any entire function with respect to a new entire function , the
notions of relative growth indicators [1,2] will come. Extending this
notion, Ruiz et al. [8] introduce the definition of relative (p, ¢)-th order
and relative (p, ¢)-th lower order of an entire function f with respect to
another entire function g respectively in the light of index-pair ( detail
about index-pair one may see [6-8| ) which are as follows:

DEFINITION 1. [8] Let f and g be any two entire functions with index-
pairs (m,q) and (m,p) respectively where p, ¢, m are positive integers
such that m > max(p, q). Then the relative (p, ¢)-th order and relative
(p, q)-th lower order of f with respect to g are defined as:

me:mﬁmeEMM_
)\gp,q) (f) roo Inf 1Og[q] r

For details about relative (p,q)-th order and relative (p,q)-th lower
order of f with respect to g, one may see [8].

In order to make some progress in the study of relative order, now we
introduce the idea of relative (p,q,t) L-th order and relative (p,q,t) L-
th lower order of an entire function f with respect to another entire
function g respectively in the following way:
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DEFINITION 2. Let f and g be any two entire functions. Then rel-

ative (p,q,t)L-th order denoted as ppahL (f) and relative (p,q,t)L-th

lower order denoted as )\ép HL (f) of an entire function f with respect

to another entire function g are define by

pPOR(F) o sup log" MMy (r)
(pa.t)L =I5 inf (4] ’
Ag (f)  rooo L Jogldhy 4 expll L (r)

where p,g € Nand t e NU{—1,0}.

An entire function f for which relative (p, ¢, t)L-th order and relative
(p, q,t) L-th lower order with respect to another entire function g are the
same is called a function of regular relative (p, q,t) growth with respect
to g. Otherwise, f is said to be irregular relative (p,q,t) growth with
respect to g.

Now to compare the relative growth of two entire functions having
same non zero finite relative (p,q,t) L-th order with respect to another
entire function, one may introduce the concepts of relative (p, ¢,t) L-th
type and relative (p, ¢,t) L-th lower type in the following manner:

DEFINITION 3. Let f and g be any two entire functions with 0 <

PP () < 00 where p,q € N and ¢ € NU {—1,0}, then the relative

(p,q,t) L-th type and relative (p,q,t) L-th lower type denoted respec-

tively by o240t (f) and gD (f) of f with respect to g are respec-

tively defined as follows:

U!(;p’q’t)L (f) _ lim sup log[pfl] Mg_le (r)
saon () = e

[log[q_l] r - explttil L (r)

Analogously to determine the relative growth of two entire functions
having same non zero finite relative (p, ¢, t) L-th lower order with respect
to another entire function, one may introduce the definition of relative
(p,q,t) L-th weak type in the following way:

DEFINITION 4. Let f and g be any two entire functions with 0 <
)\ép’q’t)L (f) < oo where p,q € N and t € NU {—1,0}, then the relative
(p,q,t) L-th weak type denoted by ripatl (f) of f with respect to g is
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defined as follows:
log[p_” M;le (r)
APty

Tép’q’t)L (f) = lim
T—>00

loglt=U - explt+11 L (7‘)]

Also one may define the growth indicator ?émvt)L (f) of f with respect
to g in the following manner

_ log?~ Y MM, (1)
_( s 7t)L — 1 g f
Tgp q (f) = Tli)I?o ] Agp’q’t>L(f) )

loglt= Yy - explt+1] L (1)
where p,q € Nand t € NU{-1,0}.

Here, in this paper, we aim at investigating some basic properties
of relative (p,q,t) L-th order, relative (p,q,t) L-th type and relative
(p, q,t) L-th weak type of a entire function with respect to another entire
function where p,q € N and ¢t € NU {—1,0} under somewhat different
conditions which in fact extend some results of [3] and [4]. Through-
out this paper, we assume that all the growth indicators are all nonzero
finite.

2. Lemmas

In this section we present some lemmas which will be needed in the
sequel.

LEMMA 1. [2] Suppose that f be an entire function, « > 1,0 < f < a,
s>1and 0 < pu <A Then

My (ar) > My (r) .

LEMMA 2. [2] Let f be an entire function which satisfies the Property
(A) then for any positive integer n and for all sufficiently large r,

(M (r)]" < My (r°)
holds where § > 1.

LeMMA 3. ( [5],p. 18) Let f be an entire function. Then for all
sufficiently large values of r,

Tf(T’) Slong(r) §3Tf(27’) .
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3. Main Results

In this section we present some results which will be needed in the
sequel.

THEOREM 1. Let fi, fo and g, be any three entire functions such that
at least f or fy is of regular relative (p, q,t) growth with respect to g
where p,q € N andt € NU{—1,0}. Then

APl (£ £ fr) < max {APOE(f1)  APeDE ()}

The equality holds when X% (£,) > A\PPDE (f.) with at least f; is of
regular relative (p, q,t) growth with respect to g, wherei = j = 1,2 and

i
Proof. T AP*DE (£, + £,) = 0 then the result is obvious. So we sup-

pose that )\(pqt (fi £ f2) > 0. We can clearly assume that AL (f,)
is finite for £ =1, 2.

Further let max {)\g’j’qt (f1), APl (fg)} = A and f5 is of regular
relative (p, q,t) growth with respect to g;.

Now for any arbitrary ¢ > 0 from the definition of A¥*"* (f1), we
have for a sequence values of r tending to infinity that

My, (r) < M, [exp[p] [()\f}’l”q’t)L (f1) + 5) [log[q] r+exp L (7’)”]

(1)  de, My (r) < M, [exp[p] [(A +¢€) [log[q] r+ expll L (7“)]” .

Also for any arbitrary ¢ > 0 from the definition of
pgf’q’t) Y () <: AE}?WL ( fg)), we obtain for all sufficiently large values of
r that

(2) My, (r) < M, [exp [Pl [()\gf’q’t)L (f2) + &?) [log[q] r+expl! L (7’)]“

(3) de, My (r) < M, [exp[p] [(A +¢€) [log[q] r+expll L (7“)]” :

So in view of (1) and (3), we obtain for a sequence values of 7 tending
to infinity that

(4) Mg, (r) <
My, (1) + My, (r) < 2My, [exp[p} [(A +¢) [log[’ﬂ r+ expl L (7’)}” .
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Therefore in view of Lemma 1 (a), we obtain from (4) for a sequence
values of r tending to infinity that

1

§Mf1if2 (r) < My, [exp [(A +¢€) [log[ Dy +expl L (r )}”

e, Myss, @ < My, [GXP[p] [(A +e) [log[q} r+ expl” L(T)”]

log?” M My, (5)
" logld (5) +expld L (£) +O(1)
Since ¢ > 0 is arbitrary, we get from above

pqt)L (fit fo) <A = max{)\(pqt (f1) APpat) L (fg)} .

7791

ie. <(A+te) .

Similarly, if we consider that f; is of regular relative (p,¢q,t) growth
with respect to g; or both f; and fy are of regular relative (p, ¢, t) growth
with respect to g;, then one can easily verify that

(5)  AZOOE(fiE f2) < A= max {AZOE(£1) AZOE (f)}

7791

Further without loss of generality, let )\pqt (fi) < )\pqt)L (f2),
f1 is of regular relative (p,q,t) growth w1th respect to g1 and f =

f1 % f>. Then Then in view of (5) we get that AP?D" (£) < A\PEOL (1))
As, fo = £(f — f1) and in this case we obtain that )\(pth( fa) <
max {Am%t)L (), Apedt (fl)} . As we assume that AP DL () < AP9DL (1)

therefore we have /\(pqt)L (f2) < /\élf’q’t)L (f) and hence /\(pqt)L (f) =
APO (fy) = max {/\g POE(f) AR (f >} Therefore, \; " (f, & fy)

= APeDL (£ 1 = 1,2 provided APYE () £ AP9DL(£) Thus the
theorem follows. O

THEOREM 2. Let fi, fo and g; be any three entire functions such

that such that pZ®"" (£)) and p*"" (f,) exists where p,q € N and
t e NU{-1,0}. Then

pl et (fi % fo) < max {p@ Ot (f1), o0 (fo)}
The equality holds when ppqt (f1) #, ppqt)L( fa).

We omit the proof of Theorem 2 as it can easily be carried out in the
line of Theorem 1.
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THEOREM 3. Let f1, g1 and g, be any three entire functions such that
APEOL ey and AP (f1) exists where p,q € N and t € NU {—1,0}.
Then

Mrtad™ (fr) = min {ARSOE (1) APad (£1)}

g1£g2 ?7Ng2

The equality holds when A% (f, ) £ AP (p.a,t)L (F1).

Proof. 1f )\gf’i’;y (f1) = oo then the result is obvious. So we suppose

that APED" (f) < oo

We can clearly assume that AP%E (£ is finite for k = 1, 2.
Further let ¥ = min {)\gf )L (fl) Ag’;’q’t)L (fl)} :

Now for any arbitrary ¢ > 0 from the definition of AZ%Y% (), we
have for all sufficiently large values of r that

(6) My, {eXp[p] [()‘(pqt)L (f1) —¢) [log[q] r+expll L (7‘)]” =
My, (r) where k=1,2
i.e, M, [exp Pl [(\I! —€) [log[‘ﬂ r+expl! L (r)”] < My, (r) where k=1,2

Now in view of the first part of Lemma 1(a), we obtain from above
for all sufficiently large values of r that

Mg, +g, [eXp[p] [(‘I’ —¢€) [log[q] T+ exp[t] L(r)
< M, [exp[p] [(\p —6) [log[‘ﬂ r+ expl) L ()] ] N

M,, [exp[p] [(\II £) [log[ 4y 4+ expl! H

—

ie., My 1q, [exp[p] [(\II —¢) [log[ 4y 4+ expl L (r

|
][] < 2M5 )
]

@mmm$mM@%W@wﬂm% }<Mﬁm
U —

log[p] Mgd:gszl (3r)

7 logl! (3r) 4 expll L (3r) + O(1)
Since ¢ > 0 is arbitrary, we get from above that
(7) APEOE () > @ = min {APD (), 22D (£)} .

Now without loss of generality, we may consider that AP*" (f;) <
APEDL (£ and g = g1 + go. Then in view of (7) we get that )\gpqt)L (f1

>
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> /\(pqt )L f1) . Further, g = (g £ ¢2) and in this case we obtain that
APEOL (£) > min {)\(”t (f1), AL (1, )} As we assume that A\2%9 (1)

(

)=
< )\gzqt)L (f1), therefore we have \g (Pa.t)L (f1) > )\gp’q’t (f1) and hence
pqt (f1) = pqt (f1) = mln{ pqt (f1), )\(p’q’t)L (f1 )} Therefore,

Al (fi) = )\g’qt (fi)li=1, 2 provided A\Z4HE (f)#)\Pqt)L(f)

91i92
Thus the theorem is established. O

THEOREM 4. Let fi, g, and g, be any three entire functions such that
f1 is of regular relative (p, q,t) growth with respect to at least any one
of g1 or go where p,q € N andt € NU{—1,0}. Then

,q,t) L .
pP LD (f1) > min {plPeOL (f), paOL (£))

The equality holds when p(pqt)L (f1) < pgqt (f1) with at least fy is of
regular relative (p, q,t) growth with respect to g; wherei = j = 1,2 and

i # 7.
We omit the proof of Theorem 4 as it can easily be carried out in the
line of Theorem 3.

THEOREM 5. Let f1, fa, g1 and go be any four entire functions. Then
for any p,qg € N andt € NU{—1,0},

gfi;gL (f :l:f2)
< max [mm{ppqt)]“(f) pg’;qt fl} mm{pl’qt ), pgqt)L(fz)H

when the following two conditions holds:

(i) pPrIE (1) < p(gfqt (f1) with at least fy is of regular relative (p, q,t)
growth with respect to gj fori =1,2,7=1,2and i # j; and

(ii) p"I" (1) < pB @I (f,) with at least f, is of regular relative (p, g, t)
growth with respect to g; fori =1,2, 7 = 1,2 and i # j.

The equality holds when ppqt)L (fi) < pgfqt (f;) and p(pqt (fi) <
plpat)k (f;) holds simultaneously for i =1,2; j = 1,2 and i # j.

Proof. Let the conditions (7) and (i7) of the theorem hold. Therefore
in view of Theorem 2 and Theorem 4 we get that

max [mln {p(pqt) (f1) ,pgé”qt (f1) } min {p Pabl(f,) qut)L (f2)}}
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= max [p2 )" (1)t ()]
(8) gqu:;z (fi£f2) -

Since pi ™ (fi) < i () and p®" (£) < pE™" (f;) hold
simultaneously for ¢ = 1 2 j=1,2 and i # j, we obtain that

either mm{ppqt)L(f) pg;qt)L }>mm{ppqt)L(f pg;gqt f2)} or
mln{p(pqt (f2), pg’;qt }>m1n{p(pqt (f1), pg’;qt (f1)} holds.

Now in view of the Condltlons (7) and ( i) of the theorem, it fol-
lows from above thateither pglng Y > pg];i_; (f2) or pgfi;gL (f2) >

éligtgL (f1) which is the condition for holding equality in (8).

Hence the theorem follows. O

THEOREM 6. Let f1, fo, g1 and go be any four entire functions. Then
for any p,qg € Nandt € NU{-1,0},

]ii; (fi £ f2)
= min [maX {)‘gllj’qi)L (1) gI;qt (f2) } max{/\ POt (f1), A 92 <f2>}]
when the following two conditions holds:
(i) pB oI (f;) > patt (f;) with at least f; is of regular relative (p, q, t)
growth with respect to g1 fori =1,2,7=1,2and 1 # j; and
(i7) pgzqt)L (f:) > pg]; 2) (fj) with at least f; is of regular relative (p, q,t)
growth with respect to g fori =1,2,7=1,2 and 1 # j.
The equality holds when p(pqt) (f1) < ,ogqt) (f1) and ppqt L (fa) <
péfqt)L (f2) hold simultaneously for i = 1,2; j = 1,2 and i # j.

Proof. Suppose that the conditions (7) and (i7) of the theorem holds.
Therefore in view of Theorem 1 and Theorem 3, we obtain that

min [max{)\fﬁ’q’t)L (f1),A pqt (f2)} max{)\pqt)L (f1), \padL (f2)}]

92

= mln[ AP (£, 4 £y, g’th)L(fliﬁﬂ
9) > MNPEOE(fi f)

Since pi ™ (f1) < p ™" (f1) and 0" (o) < pi 0 (£2) holds
simultaneously for ¢ = 1,2; j = 1,2 and i # j, we get that

either max {AZ00% (1), AptO% (f2)} < max QAZE0% (1) AG*H ()} on
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max {APSOL (f1) AP (f)} < max {APPIE (1), AP9DE ()} holds.
Since condition () and (77) of the theorem holds, it follows from above
that either APPF (f1 £ fo) < AZDE (1 4 ) or AP9IE(f + ) <
)\(p el (f1 £ f2) which is the condltlon for holding equality in (9).
Hence the theorem follows. O

THEOREM 7. Let f1, fo and g, be any three entire functions such that
at least fi or fo is of regular relative (p, q,t) growth with respect to g,
where p,q € N andt € NU{—1,0}. Also let g, satisfy the Property (A).
Then

)\gfluq,t)L (f1- f2) < max {)\gf’q’t)L (f1), Aéf’q’t)L (fQ)} :

The equality holds when A\Z"D% (f,) > A\PPDE (1) with at least f; is of
regular relative (p, q,t) growth with respect to g wherei = j = 1,2 and
i # 7.

Proof. Let A\P2DE (fi - f2) > 0. Otherwise if APl (fi - f2) =0, then
the result is obv1ous Let us consider that f, is of regular relative (p, g, t)

growth with respect to g;. Also suppose that max {)\ pa)L (f1), APl (fg)}

= A . We can clearly assume that A%*Y" (f,) is finite for k = 1,2.

Now for any arbitrary 5 > 0, it follows from the definition of p(p L (f1),
for a sequence values of r tendlng to infinity that

My, (r) < Mg, [exp[p] [(Ag‘l”q’tﬂ (f1) + %) [log[q] r+expl! L (r)}”

(10) d.e., My (r) < M, [expp] [(A + 2) [log[‘”'r + expl’ L(r)”] .

Also for any arbitrary § > 0, we obtain from the definition of pg, (Pa.t)L (f2)
(: AL f2)>, for all sufficiently large values of 7 that

My, (r) < My, [exp? [(AR49% () 4 5 ) [log v + expl L (1)) ]

(11) d.e., My, (r) < M, [exp[p] [(A + g) [log[q] r+expl L (T)”] :

Observe that
A+e

A+

é>1.
2
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explp—1] [(A+s) [log[q] r4explt] L(r)]] for
explp—1] [(A+§) [1Og[q] rexplt] L(T)”

all sufficiently large values of r. Thus for any ¢ > 1, it follows from the
above expression for all sufficiently large values of r, say r > r1 > 1
that

Therefore we consider the expression

explP—1! [(A +¢) [log[q] ro 4+ exp¥ L (TO)H

explr—1l [(A +) [log[‘d ro + expl! L (7"0)”

(12) =

Since Ty,.4, (1) < Ty, () + T}, (r) for all large r, therefore in view of
Lemma 3 we get that

1
3

Now from (10), (11) and in view of above, we have for a sequence
values of r tending to infinity that

o8 M1 () < Blog My, [exp? [ (&4 5) [logr + e L (0]

r
log My, ., (5) <log My, (r) +log My, (1) .

My, .4, (g) < [Mgl [exp[p} [<A+ %) [log[q]r—i-exp[t]L(r)HHG .

Also in view of Lemma 2, we obtain from above for a sequence values
of r tending to infinity that

r

5
Mj g, (2) < My, [exp[p] [(A—ir g) [log[“’]rjtexpm L(T)H } ,

since g; has the Property (A) and ¢ > 1. Therefore in view of (12), it
follows from above for a sequence values of r tending to infinity that

My, s, (g) < M, [exp[p] [(A +¢) [log[‘ﬂ r+exp L (7‘)”] :

So from above we get for a sequence values of r tending to infinity
that

log[p] .7\4;11]\4]01.]02 (%)
log! (&) + expld L (%) + O(1)

Since € > 0 is arbitrary, we get from above that

PO (fr- fo) < A= max (MRS (£) AZ (f2)}

Y g1

<(A+eg) .
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Similarly, if we consider that f; is of regular relative (p,q) growth
with respect to g; or both f; and f; are of regular relative (p, q) growth
with respect to g1, then also one can easily verify that

)\(p,q,t)L (fi - fo) < A = max {)\(p,q,t)L (f1) A\(Pat)L (fQ)} )

7791

Now without loss of generality, let AZDE (£} < AP4DE (£,) and f =
fi+ fo. Then APEOE () < \P2OE (1) Further, f, = % and T}, (r) =
Tﬁ (r)4+O(1). Therefore Ty, (r) < Tf (r)+Ty, (r)+O(1) and in this case

we obtain that AP*9 (£,) <max{)\pqt)L (f), Alpat)E (fl)} . As we as-

sume that Aé’j’q’”L (f1) < Agj’” (f2), therefore we have )\é’;’q’t)L (f2) <
A8 () and henee AT (£) = AESOF (fo) = max AT SOF (£1) AR (1)}

Therefore, \PPDE (£ - ) = APDE (£ | i = 1,2 provided AP (f,)
APaDL (1) Hence the theorem follows. O

Next we prove the result for the quotient f—;, provided % is entire.

THEOREM 8. Let fi, fo and g, be any three entire functions such that
at least fi or fy is of regular relative (p, q,t) growth with respect to g
where p,q € N andt € NU{—1,0}. Also let g, satisty the Property (A).
Then

fi
g0 (5 e A (1) 29 1)

2
The equality holds when at least fs is of regu]ar relative (p, q,t) growth
with respect to g, and )\pqt)L( f1) # )\pqt (f2)-
Proof. Since T, (r)=T, (r)+0O(1) and T, (r) < T, (r)+T, (r),

T2 T2 f2
we get in view of Theorem 7 that

19 g () Smas DO ()R 1)

2
Now in order to prove the equality conditions, we discuss the following
two cases:

Case I. Suppose % (= h) satisfies the following condition

A(pat) L (f1) < Aé};,q,t)L (f2),

g1

and fy is of regular relative (p, ¢,t) growth with respect to g;.
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Now if possible, let AZ40F (;) < AP (£,). Therefore from f; =

h- fo we get that AP9D5 (£) = AP9DE(£,) which is a contradiction.

Therefore APTDE (L) > \P4DL £y and in view of (13), we get that
9 f2 9

AN
et (1) a0t (1)

Case II. Suppose % (= h) satisfies the following condition

AZSOE () > ABIOL (£,).
and f5 is of regular relative (p, ¢,t) growth with respect to g;.

Now from fi = h- f, we get that either A" (f,) <)‘MtL<%) o

)\fff’q’t)L (fr) < /\g]j’q’t (f2). But according to our assumption \g (p.at)L (fr) £
APEDL (£ Therefore A\Z4HE <%) > AP4DL (£ and in view of (13),
we get that

f
et (1) =gt (1)

Thus the theorem follows. O]

Now we state the following theorem which can easily be carried out in
the line of Theorem 7 and Theorem 8 and therefore its proof is omitted.

THEOREM 9. Let fi, fo and g; be any three entire functions such

that such that p(pqt) (f1) and ppqt) (f1) exists where p,q € N and
t e NU{—1,0}. Also let g, satisty the Property (A). Then

pg,qt (fl f2)<max{p(pqt (f) ngfqt (f2)} .

The equality holds when p(pqt) (f1) 7£ 0 pat)L (fg)
Similar results hold for the qu0t1ent prov1ded I js entire.

THEOREM 10. Let f1, g1 and g, be any three entire functions such that
APEOL ey and \PUDE(f1) exists where p,q € N and t € NU {—1,0}.
Also let gy - go satisfy the Property (A). Then

A" (£r) = min (AZEOF (£1), NESOF (f)}

The equality holds when A" (f1) < AP (f) where i = j = 1,2
and 1 # j and g; satisfy the Property (A).
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Similar results hold for the quotient 91, provided 91 is entire and satisfy
the Property (A). The equality holds when Mg, ()t (f1) # ABeDE (g
and g satisfy the Property (A).

Proof. Let AZZDE (1) < 0o, Otherwise if AZZDE (f,) = oo then the
result is obvious. Also suppose that min {)\ Pat)L (f1), Agg’q’t)L ( fl)} =

U . We can clearly assume that A2 () is finite for k = 1,2.
Now for any arbitrary € > 0, Wlth e < ¥, we obtain for all sufficiently
large values of r that

M, [expl? | (AZe9" (1) = 5) [log r + exp L (r)] ] <

My, (r) where k=1,2

(14) i.e., M, [exp[p] [(\If - —) [Iog”r+exp[t]L( )}” <

My, (r) where k=1,2.

Observe that

v-g

v —¢

>1.

X . explp—1] [(\Il—%) [log[q] r+explt] L(r)]]
Now we consider the expression expl 1 [(0—e)[log T r-expl 20|
sufficiently large values of r. Thus for any 6 > 1, it follows from the
above expression for all sufficiently large values of r, say » > ry > rg
that

for all

T E——
explr—1] [(\I’ —¢) [log[q] ro + expltl L (TO)H

Since Ty, .4, (1) < Ty, (1) + Ty, (r) for all large r, therefore in view of
Lemma 3 we get that

(15) =5,

1
3 log My, g, (g) < log My, (r) +log My, (r) .

Now from (14) and in view of above, we have for all sufficiently large
values of r that

1
10g A]Mg1 g2 (5 eXp[P] [(\IJ —_ g) |:10g[q] r -+ exp[t] L (’I‘)]}) S 610g Mfl (T)
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e [ (Seso? [(0 - ) bt et L] )] 010

Also in view of Lemma 2, we obtain from above for all sufficiently
large values of r that

1

My, .4 (B expl”! [(\I/ - %) [log[q] r+expll L (7’)”] 6) < My, (r),

since g; - go has the Property (A) and § > 1.
Therefore in view of (15), it follows from above for all sufficiently large
values of r that

My, .g, ((%) : expl”! [(\If —¢) [log[q] r+expl L (r)“) < My, (1) .

So from above we get for all sufficiently large values of r that

log” M1 My, (r) + O(1)

9192

[log[q] r+ expl! L (r)}

> (U —¢g) .

Since € > 0 is arbitrary, we get from above that

(16)  AZSDE(R) = ¥ = min {AZSE (£) AZ9E ()

91-92 7792

Now without loss of generality, we may consider that AX*" (f,) <
APEOE (e and g = g1 - go. Then AP (f) > AP9E (1) Fur-
ther, g1 = £ and and T, (r) = T1 (r) + O(1). Therefore T, (r) <

T, (r) + Ty, (r) + O(1) and in this case we obtain that APabL () >

min {)\(pqt)L (f1), Alpat (fl)} As we assume that AL (1) < ABOE (1))

so we have AP@D (£1) > AP9OL (1) and hence AP@DE (f;) = AZ2DE (1))
= min {/\f(ff o t)L (f1), A (f } Therefore, )\gig’;)L (f1) = AD2OE (1) |
i=1 2pr0v1ded)\pqt (fi) < (pqt
Property (A).

Hence the first part of the theorem follows.

Now we prove our results for the quotient Z—;, provided Z—; is entire

and AL (f1) £ AE (f).

(f1), g1+ g2 and gy are satisfy the
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Since T, (r) =T, (r)+O() and T,, (r) <T, (r)+T, (r), we get
in view of (16) that ’ ’ :
(A7) AR () 2 @ = min ARSOF (£) AL (f)}

7792

Now in order to prove the equality conditions, we discuss the following
two cases:

Case L. Suppose - (= h) satisfies the following condition

AR (f1) > NSO (o)

g1

Now if possible, let AZPDE (1) > A29DL (£)  Therefore from g =

2

h - g, we get that APDF (f1) = ALl (f1), which is a contradiction.
Therefore ALTY% (1) < ALDE (1) and in view of (17), we get that

92

AGEOE (f1) = ABaOL (£

92
Case II. Suppose that £ (= h) satisfies the following condition
AZSOL (f) < AZIOF ()

g1

Therefore from g; = h-go, we get that either )\gl’q L (f1) > )\( L) (f1)

or A\Z4OL (1) > \PaDE (£ Byt according to our assumption )\ (pat)l (1) %
APEOL (£ Therefore AZPDE (f) < APTDE (1) and in view of (17),

92

we get that

g1
92

Hence the theorem follows. O

THEOREM 11. Let fl, g1 and gs be any three entire functions such that

pPEDE (1Y and pBTE (£)) exists where p,q € N and t € NU {—1,0}.
Further let fy is of regular relative (p,q,t) growth with respect to at
least any one of g, or gs. Also let gy - go satisty the Property (A). Then

peadt (fi) = min {p®e (f1), ot (f1)}

The equality holds when p(pqt) (f1) < ,ogqt (f1) with at least fy is of
regular relative (p, q,t) growth with respect to g; wherei = j = 1,2 and
i # j and g; satisfy the Property (A).
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THEOREM 12. Let f1, g1 and g, be any three entire functions such that
PP (1) and pB D (f,) exists where p,q € N and t € NU {—1,0}.
Further let fy is of regular relative (p,q,t) growth with respect to at
least any one of g or gs. Also let ;’—; is entire and satisfy the Property
(A). Then

P (£1) 2 min {p0F (f1) ol " (f1)}

92

The equality holds when pX " (f1) # pB®E (f)), at least fi is of
regular relative (p,q,t) growth with respect to go and g, satisfy the
Property (A).

We omit the proof of Theorem 11 and Theorem 12 as those can easily
be carried out in the line of Theorem 10.

Now we state the following four theorems without their proofs as
those can easily be carried out in the line of Theorem 5 and Theorem 6
respectively.

THEOREM 13. Let f1, f2, g1 and g, be any four entire functions. Also
let g1 - go satisfy the Property (A). Then for any p,q € N and t €
NuU{-1,0},

Pg1 Z;)L (f1- f2)

< max [min {pP9" (f1), pLEO (1)} min {p@" (f2), ot (f2)}]
when the following tWO conditions holds:

(i) pP I (f) < pi DL (1)) with at least fy is of regular relative (p, g, t)
growth with respect to g; and g; satisty the Property (A) fori =1, 2, j
= 1,2 and i1 # j and

(i1) pgf GO (1)) < pPE(f,) with at least fy is of regular relative( P, q,t)
growth with respect to g; and g; satisty the Property (A) fori =1, 2, j
= 1,2 and i # j;

The equality holds when pP*"* (f) < pEaht (f;) and P9 () <
pgzqt)L (f;) holds simultaneously for i =1,2; j = 1,2 and i # j.

THEOREM 14. Let f1, f2, g1 and go be any four entire functions. Also
let g1 - g2, g1 and gy be satisfy the Property (A). Then for any p,q € N
andt € NU{-1,0},

AL £
> min [max {)\gf’q’t)L (f1), A p “OL (f,) } . max {/\ Pl (f) APadL (f2)}]

77792
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when the following two conditions holds:

(i) Apanl (fi) > ApanL (f;) with at least f; is of regular relative (p, q,t)
growth with respect to 91 fori =1,2,7=1,2and 1 # j; and

(id) AP (£) > APOOE £y with at least f; is of regular relative (p, g, t)
growth with respect togs fori =1,2, 7 =1,2and i # j.

The equality holds when )\(pqt (f1) < )\g’q’t)L (f1) and )\éf’q’t)L (f2) <
)\g;qt)L (f2) holds simultaneously for i = 1,2; j = 1,2 and i # j.

THEOREM 15. Let fi, fa, g1 and go be any four entire functions. Also
let i—; satisfy the Property (A). Then for any p,q € N andt € NU{—1,0},

p(pqt <ﬁ)
@ J2
< ma [min {5 (£1),p%% (£)}min {90 (12) o2 ()]

when the following two conditions holds:
(1) At least fy is of regular relative (p, q) growth with respect to g, and

P " (1) # pi™ (1); and
(17) At least fo is of regu]ar relative (p, q) growth with respect to go and

P (f2) # PR (f2).
The equality holds when p{** (fi) < ppahL (f;) and pLahL (fi) <
plpatl (f;) holds simultaneously for i =1,2; j = 1,2 and i # j.

THEOREM 16. Let f1, f2, g1 and g, be any four entire functions such
that J{l and 91 are also entire functions. Also let 91 L, g1 and gy are satisfy

the Property (A) Then for any p,q € N and t € N u{-1,0},

(p,q,t)L fl
e (2)

> min [max {A\PSOF (1), APEDL (f) 4 max {ABGOL (f) APaOE (£,)1]

771 77092

when the following two conditions hold:
(1) At least f, is of regular relative (p, q,t) growth with respect to g; and

)\(Pqt ( ) 7& )\pqt ( ) and
(zz) At least fy Is of regu]ar relative (p,q,t) growth with respect to go

and \ZO (f1) # MBSO ().
The sign of equality holds when )\é{.”q’t)L (f1) < )\gf’q’t)L (f1) and )\g’q’t)L (f2)
< )\é’;’q’t)L (f2) holds simultaneously fori =1,2; j = 1,2 and i # j.
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Next we find out the sum and product theorems of relative (p, q,t) L-
th type ( respectively relative (p, ¢,t) L-th lower type) and relative (p, q,t) L-
th weak type of entire function with respect to an entire function taking
into consideration of the above theorems.

THEOREM 17. Let fi1, fa, g1 and go be any four entire functions. Also
let p 0" (1), pR PO (fo), Y (f1) and p " (f2) are all non zero
and finite Where p,qg €N and te NU{-1,0}.

(A) If oy ™" (f:) > p® (f;) fori = j = 1,2 and i # j, then

ol (fi & fo) = olPeDE(f;)]i=1,2 and

g1

st (hidf) = TR () [i=1,2.

g1

(B) If p(p 2) (fl) < pg DL (£ with at least f; is of regular relative
(p,q,t) growth with respect to g; fori = j = 1,2 and i # j, then

el () = PO (f)|i=1,2 and

Tg1£g2 gi
Pl £y =GPl (f)]i=1,2.

gi
(C) Assume the functions f1, f2, g1 and go satisfy the following condi-
tions:
(1) pgf’q’t)L (fi) < pé’; 2) Y () with at least fy is of regular relative (p, q,t)
growth with respect to gj fori =1,2,7=1,2 and i # j;
(ii) p"E (1) < pB @I (f,) with at least f, is of regular relative (p, g, t)
growth with respect to g] fori =1, 2, j = 1, 2 and i # j;

e 5 ) L
(iii) pi ™" (£:) > pi™" (f;) and p ™ (fi) > pE ™ (f;) holds si-
multaneously for i =1,2; j = 1,2 and i # j;

(iv) p2 " (f) =

max [min {290 (1), o250 (f1) b min { o (), o220 (£ }] |
l=m=1,2;

then we have

oI (fuk fo) = oW () [ 1=m =1,2
and
FPIOL (fy & fy) =5 PAOL () [l =m =12 .

Og1£g,
Proof. From the definition of relative (p,q,t) L-th type and relative
(p,q,t) L-th lower type of entire function, we have for all sufficiently
large values of r that

(18) My, (r) <
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(p,q,t)L

Pg (fx)
M, lexp[p—u {(Ug,qm (fo) +2) [log[q_l]r - explt+] L(rﬂ l ‘ }] ,
(19) My, (r) =

(p,q,t) L

Pg (fx)
M, [exp[p_” {(E;f’q’t)L (fr) —€) [log[q_” reexp L (r)} l ’ }]
and for a sequence of values of r tending to infinity, we obtain that
(20) My, (r) =

(p,q,t)L

9 (fx)
Mgz lexp[p—l} {( (p,q:t) (fk:) _ 8) [log[q_l} r- eXp[t+1] I (T)r 1 % }]
and
(21) My, (r) <

(p.a,t)L

P (fr)
Mgz [exp[pll {(Eéﬁlmq,t)L (fk) 4 8) [log[qfl] r- exp[tﬂ] L (T)} 97 & }] |
where € > 0 is any arbitrary positive number £ =1, 2 and [ = 1, 2.

Case I. Suppose that ppqt)L (f1) > pgf /0) “(f2) hold. Also let & (> 0)
be arbitrary. Now from (18), we get for all sufficiently large values of r
that

Mflifz (T) <

(pra,t) L
P (f1)
My, [exp[P—l] { <J§1197q,t)13 (f1) + 5) [10g[q—1} . eXp[t+1} I (r)} 91 1 } (1+w),
(p,q,t)L
Mg, [GXP[pl] { (Ug’q’t)L(fQ)-i-a) [log[q*” rexpltt1 L(r )]"gzi I ()
where w; = S and
My, |explp=1] (U(p’q’t)L(f )+6> [log[q_” rexplt+1] L (r)]pgziqt (f1 )}

in view of p@ eIt (f1) > pipat) “(f,), and for all sufficiently large values

of r, we can make the term wysufficiently small . Hence for any o = 1+¢1,
it follows from above inequality for all sufficiently large values of r that

Mpep, (r) <
I (1)
M,, |explP~! ( gL (£ +5) [log[q*ur-exp[tH}L(r)}
<

o Mpap, (1)

(1+e1)




236 Tanmay Biswas

(p,q;t) L
9 h
My, [exp[p—l] { (U§If7q’t)L (f1) + 5) [log[q—l] r-explttl L (T)]P v )H o

Since € > 0 is arbitrary, therefore by making a — 14, we obtain in

view of Theorem 2 p(p at)L (f1) > p(g]f 2) “(f,), and for all sufficiently
large values of r that

[p—1] pr—1
" log?™ " My "My, vy, (1) oL (£

r—00 (p,q,t)L + 91
7 [bg[q—l]r.exp[m] L(r)}pgl e =

(22) e, 0 pqt (flif2)<0pqt)L(f1)'

Now we may consider that f = f; % f. Since p@4IE (£,) > pP L (£,)
hold. Then o () = o495 (£, & £,) < o®9DL (£}, Further, let
fi = (f£ f2). Therefore in view of Theorem 2 and pP (f) >
PP (£ we obtain that pE P (f) > plbeit ( f2) holds. Therefore
in view of (22), e (f) < o—yW (f) = o2*E (f, + f,) . Hence
oL (1) = aff 0 (1) 5 oL (1, £ ) = o ()

Similarly, if We COIlSldeI‘ p(p at)L (f1) < Eff i)k (f2), then one can easily
verify that ot e Rt f) = aélf 2tk (f2)-

Case II. Let us consider that ppqt)L (f1) > pgfqt (f2) hold. Also let
e (> 0) are arbitrary.
Now from (18) and (21), we get for a sequence of values of r tending
to infinity that

Myy15, (1n) <

[p—1] t)L 1 t+1 P (1)
Mg, |exp? (ngl”q’ (1) + E) [log[qf Vrp - explt* L (T‘n)} (14 ws),

(p,a,t)L

Mg, [exp["”{(Ug’q’tw(fz)ﬁ) [togla=1 1y -explt+1] L(ry)] 71 2 )H

(pra,t) L ’
Mg, [exp[?‘l]{(o(p’q’t)L(f )+e) [loglt = rexplt 11 L(ry)] 701 o )H

and in view of pZ I (f,) > pPCDE (£} we can make the term ws suffi-

ciently small by taking n sufficiently large and therefore using the similar
technique for as executed in the proof of Case I we get from above in-
cquality that P40 (f £ fo) = g@aDL (f)) when pZIE (f1) > pPabL (1)
hold.

where wy =
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Likewise, if we consider pg, (pat)L (f1) < pg’fqt)L
verify that a(gfl’qt (fi L fo) = agll’qt)L (f2)-

Thus combining Case I and Case II, we obtain the first part of the
theorem.

Case III. Let us consider that pg, Pl (fi) < pgg 2L (f1) with at least f;

is of regular relative (p, ¢, t) growth with respect to go. We can make the

(p,q;t) L
My, [exp[p_l] { <0§z{’q’t)L(f1)f€> [log[q*” r-expltT Lr, )]pgl (o)

term ws = suf-
(p,q,t)L
Mg, [exp[p1]{<U(gz;q,t>L(fl)_5> [log[q*” 1 -explt+1] L(r, )]qu (f1) }

(f2) , then one can easily

ficiently small by taking n sufficiently large, since p@"% (f,) < pLeOE (1.
Hence w3 < €7.
Now

(pya,t) L
f
Mg, 14, (exp[pl] {( L (fy) — ) {log[qfu T - explttl] L(Tn)rgl ( 1)}) -
(p,q,t) L
f
Mg, [eXp[pl] {(Uéﬁ)’q’t)L (f1) — E) [log[qfl] T - exp[tJrl] L (Tn):| Pa1 ( 1)}] N

E]p 1a:t) L 1)
Mg, [exp[p_” {( (pat)L (f1) — 5) [log[q_l] I - expl L (T")r v .

Therefore for any o = 1 + 1, we obtain in view of w3 < £1, (19) and
(20) for a sequence of values of r tending to infinity that

(p,q,t) L
P (f1)
M91i92 (exp[p—l] { <U§1177q7t)L (fl) - 5) [log[q_l} Tn - eXp[t+1] L (Tn)} B })

< aMy, (7n)

Now making o« — 1+, we obtain from above for a sequence of values
of r tending to infinity that

(pq:t)L
P (f1)
( (gL (1) — €) [log[q‘” 7, - explttl L(’f’n)] ser ) loglP—1! Mglim My, (ry)

Since € > 0 is arbitrary, we find that

,q,t) L
(23) o PEIE (f1) > gPaOL ()

Now we may consider that g = g1 = go. Also pP@"% (f1) < ploDE (1))
and at least f; is of regular relative (p,q,t) growth with respect to
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g2. Then U!Spqt)L (fi) = gfiqz% (fi) > ag]fq’ (f1). Further let g; =
(g + go). Therefore in view of Theorem 4 and pE " (f1) < peL (1)),

we obtain that p(pqt) (f1) < pg 2tk (f1) as at least f; is of regu-
lar relative (p,q,t) growth with respect to go. Hence in view of (23),

o " (f1) 2 o " (1) = o )" (1) - Therefore o™ (f1) = o™ (f1)

Og1+gs
= aytnt (1) = okt ().
Similarly if we consider p(p 2) “f) > pé’; o) Y (1) with at least f; is
of regular relative (p, ¢, t) growth with respect to g, then o PaL (f1) =

(PabL g1£g2
o (fr) -

Case IV. In this case suppose that pP@"% (f,) < plP®D% (1)) with at
least fj is of regular relative (p, ¢, t) growth with respect to go. we can also

(p,q,t) L
My, |:exp[1’1] { <Ef£’q’t)L(f )—e )[log[q 1 p.explt+1] L(r)]pg1 (fl)}

make the term wy = oL ;)
£

My, exp[p—u{(U(p,q,t)L(ﬁ) )[log[q 1 . explt+1] L(T)]sz

sufficiently small by taking r sufficiently large as p(p AOE (1) < pBeDE (1)
So wy < & for sufficiently large r. Therefore in view of (19), we obtain
for all sufficiently large values of r that

11 | (5rant 011y eplet (] Y
My,g, (expl?™ 8 (a0 (f) — &) [loght=Ur - expl 1 1 ()] <
(pra,t) L
f
M,, lexp[pll {(ggz;,q,t)L (f1) — 5) [log[qfll r-expltl L (r)rgl ( 1)}] +

g p,q, ) f
M, [exp[p U {( PaL () — 5) [log[q_l] r - expl*l] L(r)]p S .

Therefore from above it follows for all sufficiently large values of r that

o (1)
My, +q, (exp[p ! {( E(f1) - 8) [log[q’l] r-expltti L (r)] ! })

(24) < (L+e1) My, (r) -

and therefore using the similar technique for as executed in the proof

of Case III we get from (24) that gfi’gtgL (f1) = alpaedE(f)) where

PP (ry < pPaDE (£ and at least f, is of regular relative (p,q,t)
growth with respect to gs.
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Likewise if we consider ppqt)L (f1) > pg;qt)L (f1) with at least f; is
of regular relative (p, ¢, t) growth with respect to g, then & ’iigg (fr) =
U(pqt) (f1).

Thus combining Case IIT and Case IV, we obtain the second part of
the theorem.

The third part of the theorem is a natural consequence of Theorem

5 and the first part and second part of the theorem. Hence its proof is
omitted. n

THEOREM 18. Let fl, f2,gl and gy be any four entire functions. Also
let \g, (.at) "), A pq’ " (1), A pqt (f1) and Aé’;’q’t)L (f2) are all non zero
and ﬁmte Where p,q eN andt e NU{-1,0}.

(A) I X2 (1) > AP9DE (1) with at least f; is of regular relative
(p,q,t) growth with respect to g; fori = j = 1,2 and i # j, then

pq’ (f +f) = qu’L(fZ)\Z—l 2 and
TR (i fo) = TROE(f) |i=12.
(B) IE NP9 (1) < APOOE (£ fori = j = 1,2 and i # j, then

ngf;géi)L (fi) = pqt)L (fi)]i1=1,2 and

911)1792 (f1> = ng;,q,t)L (fl) | 1= 172 .
(C) Assume the functions f1, f2, g1 and go satisfy the following condi-
tions:
(i) pZ O (f) > pPeDE (1) with at least f; is of regular relative (p, q,t)
growth with respect to 91 fori =35 =1,2 and i # j;
(id) p2 @ (£) > pEPDE (f,) with at least f; is of regular relative (p, g, t)
growth with respect to go fori = j = 1,2 and i # j;
(i) P2 (F1) < A2 (1) and pTOF (f) < %" (f,) holds si-
multaneously for i = j = 1,2 and i # j;
(i) A" () =
nnn[max{A@q”L<fn,A$ﬂ”Laﬁ>},max{Agﬂt () AL ()] |
l=m=1,2;

then we have

rPOL (£ 4 gy = 7®IOL(F) |1 =m =1,2

and
Tl (i fo) = 7005 () [1=m=1,2.
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Proof. For any arbitrary positive number £(> 0), we have for all suf-
ficiently large values of r that

(25) My, (r) <
Aoy " (i)
My, |expl?=1 8 (FPa0k () +¢) [logt=r - expl™ L (7)] ,
(26) My, (r) >

-1 ) (ppanr -1 el [ ] )
My, |exp (Tgf”q’ (fx) — 6) [logq r-exp' L (r)]

and for a sequence of values of r tending to infinity we obtain that
(27) My, (r) =

Ag?’q’t)L(fk)
My, exp[p_l] (?g’q’t)L (fx) — 5) [log[q_l] T exp[tﬂ] L (r)]
and
(28) My, (r) <

AR
My, explP~ ! (Tg7q’t)L (fi) + 5) [log[q_” r-explt L (r)} ‘ ,
where k =1,2 and [ =1, 2.

Case L. Let AP?F () > AP9O% (1)) with at least fy is of regular
relative (p, q,t) growth with respect to g;. Also let € (> 0) be arbitrary.
Now from (25) and (28) , we get for a sequence {r,} of values of r tending
to infinity that

My xp, () < (14 ws)
/\(p,q,t)L(f )
Mg, [exp[pl] { (Téf’q’t)L (fr)+ 6) [log[qfﬂ - explit L (Tn)i| o '

(p,q,t) L
My, [exp“’” { (PO (f2)+e ) [loglt =Y rpeexpltt 1 L) Y902

and
)\gli’q’t)L (f1) }

where ws =

My, ["‘Xp“"” { (rar 7" ()+) o8l rn-expltt1] L)

in view of ALY () > APTIE (1) we can make the term ws suf-
ficiently small by taking n sufﬁ(nently large. Thus with the help of
Lemma 1 (a) and Theorem 1 and using the similar technique of Case I
of Theorem 17, we get from above inequality that

(29) TP (fi £ fo) < 7PODE(f1)
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Further, we may consider that f = f;+ fo. Also suppose that Aé’f’q’t)L (f1)
> )\ pqt) (f2) and at least fs is of regular relative (p, ¢,t) growth with
respect to gr. Then 7% () = 70905 (£, & f) < %% (£) Now
let fi = (f+fo). Therefore in view of Theorem 1, A®*% (1) >
APaBL (1)) and at least f, is of regular relative (p,q,t) growth with
respect to g1, we obtain that AL%VL (f) > AP4DE (1)) nolds. Hence
in view of (29), 7PV (1)) < T(pqt)L (f) = 75995 (f, + f,) . Therefore
ot ™ () = 7l () = gl (o f) = 0N ().

Similarly, if we consider \g pq’ DL (fr) < )\ pq’t)L (f2) with at least f is
of regular relatlve (p,q,t) growth with respect to g1 then one can easily

verify that """ (f1 £ fo) = 7P (f,).

Case II. Let us consider that )\ng’q’t)L (f1) > Ag (pat)L (f2) with at least fo
is of regular relative (p, ¢,t) growth with respect to g1. Also let e (> 0)
be arbitrary. Now from (25), we get for all sufficiently large values of r
that

Mflif2 (7”) < (1 + wﬁ)
1 0L 1 1 AL OE(f)
My, [exp 1S (Fra0k (£) +€) [logh~) 7 expl™t1) L (1) ,

(p,q,t) L
Mg, |:eXp[p1]{(7—27;’q't)L(f2)+5) [togle=1) r-explt+1] L(T)]’\gi (f2)}

AE}{"Z’“L(M}

and

where wg =
Mg, {exp[P—l] { <?§£’q’z)L(f1)+E) [log[q_l] r-explt+1] L(’f‘)]

in view of \g (pat)L (f1) > )\gf’q’t)L (f2), we can make the term wg suffi-
ciently srnall by taking r sufficiently large and therefore for similar rea-
soning of Case I we get from above inequality that ?é’l”q’t)L (fit fo) =
TPaDL (f)) when g PahL gy > APEDE £y and at least f, is of regular
relative (p, q,t) growth with respect to gi.

Likewise, if we consider )\(p 2t) B < AP (.at) Y (f,) with at least fi is
of regular relative (p, ¢,t) growth with respect to g1 then one can easily
verify that 700 (f) £ fo) = 7al (f)

Thus combining Case I and Case II, we obtain the first part of the
theorem.

Case IIL. Let us consider that ALY (f1) < AL?DE (). Therefore we
can make the term
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(p.q,t)L
Mg, |:exp[p1] { (Téll”q7t)L(f1)—5) [bg[qfl] rn-explitil L(rn)]ksn (f1)
wrr =

/\(p,q,t)L(fl)

sufficiently
My, |:exp[1)—l] { (T(p,q,t)L(fl)_E) [log[q—l] Tr-expltt1] L(ry, )] 92 H

small by taking r sufficiently large since A\49* (f1) < A (P.a,t) (). So
wy < £1. Therefore, in view of (26) , we get for all sufﬁmently large values
of r that

APaOE (1)
My,gs | expl?™1 8 (700905 (11) — ¢) [loght =T, - expl 1 L (1, )] <
)\(p,q,t)L(f )
My, [exp[p_l] {( (Pq;t) L (fr) — ) [log[q_l] Ty exp[tﬂ} L (Tn):| o l

GO ()
My, explP—1! ( (Poat)L( g1y — z-:) [log[q_l] P - explt UL (rn)} .

So from above we have for all sufficiently large values of r that

)\(quvt)L(fl)
My (expw { (rgpa0 (f1) — ) [loglt~ Yy - expl 1 L ()|

(30) < (I4e1) My (r) .

_l’_

Now with the help of Lemma 1 (a) and Theorem 3 and using the
similar technique of Case III of Theorem 17, we get from (30) that

,q,t) L
(31) Tk (h) 2 g (£)

Further, we may consider that g = g;£gy. As AZ40E (f1) < Ags (Pa.t)L (f1),
SO ngp ahl (fr) = Tg(fiqétg)L (f1) > Tg(f’q’t)L (f1). Further let g; = (g9 % g2).
Therefore in view of Theorem 3 and )\g’q’t)L (f1) < Ags @)L (f1) we obtain
that AP9% (£} < X299 () holds. Hence in view of (31) 77" (f1) >
" (f1) = mya)” (h1) . Therefore g™ (f1) = 5P (f1) = 7g785)" ()
= 7O (f1).

Likewise, if we consider that ALY (f1) > AZ9YE () | then one can

easily verify that 7 fiqg? (f1) = Tg(fqt)L (f1).

Case IV. In this case further we consider ALY (1) < AB9OE (1)),
Further we can make the term
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(pyg,t)L
My, l:exp[pl] { (?gi’q’t)L(h)—a) I:log[qfl] Fr-expli+] L(rn)]kgl (f1)

ws =
8 /\(p,q,t)L(fl)

sufficiently
My, |:exp[1)—l] { (T(p,q,t)L(fl)_E) [log[q—l] Tr-expltt1] L(ry, )] 92 }

small by taking n sufficiently large, since A" (f1) < Ae» (Pg.)L (f1).
Therefore wg < e for sufficiently large n. Therefore now from (26) and
(27) , we obtain for a sequence {r,} of values of  tending to infinity that

L AR ()
My, 4 | explP™ (;gz;,q,t) (f1) — 5> [k,g[q—l] r - explttl L (rn)} -
A(pa)L f
Mg, [exp[Pl] {(Téiivq,t)L (f1) — E) {log[qfl] T - expltU L (Tn)} a 1)}] N

)\(qu’t)L f
M,, lexp[p_l] {(Tgl”q’t)L (fr) - 5) [log[q_ﬂ ry - expl T L (rn)} o 1)}] :

Therefore from above we get for a sequence {r,} of values of r tending
to infinity that

)\gp,qi)L f
Mgsg, (exp[P—l] { <?§]1’137q,t)L (f1) — 5) [log[‘J—l] Ty - exp[t—i—l] L (Tn)} 1 (f1) })
(32) < (1 + 61) Mf1 (T> )

and therefore using the similar technique for as executed in the proof
of Case IV of Theorem 17, we get from (32) that 77997 (f) = Teatl (f))

g1Eg2
when AU (1) < AZROL (7).

Similarly, if we consider that AP“9% (f,) > ALSDL (£} then one can
easily verify that Tgll’i’gt;L (f1) = qut)L (f1)-

Thus combining Case III and Case IV, we obtain the second part of
the theorem.

The proof of the third part of the Theorem is omitted as it can be
carried out in view of Theorem 6 and the above cases. O

In the next two theorems we reconsider the equalities in Theorem 1
to Theorem 4 under somewhat different conditions.

THEOREM 19. Let f1, f2, g1 and g5 be any four entire functions. Also
let p,g € Nandt e NU{-1,0}.
(A) The following condition is assumed to be satisfied:
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(i) Either o7 ™" (f1) # o ™" (f2) or GPeOL (f1) # GEaOL (f,) holds,
then
pPaDE (fi & fo) = pPaDE (f1) = plpatl ()
(B) The following conditions are assumed to be satisfied:
(i) Either o ™" (f1) # o (f1) or d®eOL (f1) £ 52O (f,) holds;

(1) fi1 is of regular relative (p, q,t) growth with respect to at least any
one of g, or g, then

pIIDE (1) = pPaOL (f) = pBadL (f)

Proof. Let fi, fa, g1 and g9 be any four entire functions satisfying the
conditions of the theorem.

Case L Suppose that pit """ (1) = pn™™ (f2) (0 < g (1) ™" (f2)
< 00). Now in view of Theorem 2 it is easy to see that p(p 21) MRt ) <
Pézf’q’t)L (f1) = ngqt)L (f2) . If possible let

(33) (i f) < () = A ()

Let o905 (f,) £ oL (£} Then in view of the ﬁrst part of The-
orem 17 and (33) we obtam that o(r?"" (fl) o (ft ) =
oL (£,) which is a contradiction. Hence p{®" (f + fo) = plPeiE ()
= plpat)k (f2) . Similarly with the help of the first part of Theorem 17,
one can obtain the same conclusion under the hypothesis ng’q’t)L (f1) #

Egp’q’t)L (f2) . This proves the first part of the theorem.

Case II. Let us consider that p& " (1) = pDE (1) (0 < p@*DF (f1)
PP (1) < 50) and fy is of regular relative (p,q,t) growth with re-
spect to at least any one of g; or g, and (g; + go). Therefore in view of
Theorem 4, it follows that pPZ0% () > pPeib () = p@aDL (£ and

g1tg2
if possible let
(34) Pt (f1) > o2 " (F1) = o2 (f1) -

Let us consider that o (f;) # o®*% (f,). Then. in view of
the proof of the second part of Theorem 17 and (34) we obtain that

oLl () = ngibgngz (fy) = okt (fl) which is a contradiction.
Hence pgfi;gL (f1) = pleabl )y = pPaDE £y Also in view of the

proof of second part of Theorem 17 one can derive the same conclusion
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for the condition a@40% (f) # gD (f) and therefore the second
part of the theorem is established. O

THEOREM 20. Let fi, f2, g1 and g be any four entire functions. Also
let pg e Nandt e NU{-1,0}.
(A) The following conditions are assumed to be satisfied:
(1) (f1 £ f2) is of regular relative (p, q,t) growth with respect to at least
any one of g; or gz,
(i) Either o (fi £ fo) # 0@ ™" (fr £ fo) or olpaLl () + fy) #
T (fi £ fo);
(i) Either £ (1) £ 099" (fo) or 559" (f) £ 7490% (1)
(iv) Either o ™" (f1) # o™ (f2) or GBIV (f) £ 7k (9L (£,); then

" (i fo) = p2o " (f1) = RO (fo) = pBo " (f1) = 2V (f) -
(B) The following conditions are assumed to be satisfied:

(1) f1 and fy are of regular relative (p,q,t) growth with respect to at
least any one of g; or go;

(id) Either o 1," (f1) # og " (f2) or 720" (f1) # Tgty)” (fo);

(iti) Either o™ (f1) # 0" (f1) or o0 (1) # THO* (f1);
(iv) Either a?"" (fo) # oV (f2) or 5 W>L (fo) £ 7 W>L( f2); then

L
ngigz) (fi £ fo) = pLoDE(fy) = pPatl (fy) = ploaDE(f1) = pPatil (f,)
We omit the proof of Theorem 20 as it is a natural consequence of
Theorem 19.

THEOREM 21. Let f1, f2, g1 and go be any four entire functions.
(A) The following conditions are assumed to be satisfied:
(1) At least any one of f; or fy is of regular relative (p, q,t) growth with
respect to g1 where p,q € N andt € NU{—1,0};
(i1) Either i ™" (f1) # 70" (fo) or 72aOL (f) # 7@9DL (f5) holds,
then
NGt (i fo) = AROR (i) = AROE ()
(B) The following conditions are assumed to be satisfied:
(1) f1, g1 and g2 be any three entire functions such that A\g, (Pa.t)L (f1) and
APEOL (1Y exists where p,q € N and t € NU{—1,0};
(i7) Either 70" (£1) # 707" (f1) or 7@aL (f) # 72aDL (f,) holds,
then
APt L (f1) = A(@at)L (f1) = APat)L (f1)
1 - g1 1 - g2 1 .

g1tg2
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Proof. Let f1, fa, g1 and g5 be any four entire functions satisfying the
conditions of the theorem.

Case L. Let A" (f1) = M™% (f2) (0 < A" (f2) AZ™ (f2) <
oo) and at least f; or fo and (fi £ f2) are of regular relative (p,q,t)
growth with respect to g;. Now, in view of Theorem 1, it is easy to see

that AZDE (£ & f,) < APEOL (1) = \PCOE (1) If possible let
(35) AP (fr & fo) < APEOE(f1) = APADE (o)

Let 757997 (f1) # 79995 (f,) . Then in view of the proof of the first
part of Theorem 18 and (35) we obtain that 7" (fl) = rpabl (f + f2 F fo)
= Téfqt)L (f2) which is a contradiction. Hence AP“9% (f; + f,) = AP2DE (1))
= A\pedk (f2) . Similarly in view of the proof of the first part of The-

orem 18 | one can establish the same conclusion under the hypothesis
TRabL (f) 4 7wabl (f,) This proves the first part of the theorem.

Case IL. Let us consider that AZ %" () = AL9OL (1) (0 < AP2DE (1)

)\gqt)L (fi) < o0). Therefore in view of Theorem 3, it follows that

APEOL (e y > Z\palpy - \BEDL (£ and if possible let

91 +g2

(36) APEDE (1) > APt (1) = \padL ()

g1Eg2

Suppose 7" (f1) # 72DT (£} Then in view of the second part

of Theorem 18 and (36), we obtain that Tépqt)L (f1) = gfﬁg?igz (f1) =

Téf’q’t)L (f1) which is a contradiction. Hence )\gi;} (f1) = )\gl (Pa,t)L (f1) =
Ag’;’q’”L (f1) - Analogously with the help of the second part of Theo-
rem 18, the same conclusion can also be derived under the condition
Tgﬁ”q’t)L (f1) # ?ég’q’t)L (f1) and therefore the second part of the theorem
is established. O

THEOREM 22. Let fi, fo, g1 and go be any four entire functions.
(A) The following conditions are assumed to be satisfied:
(1) At least any one of f; or fo is of regular relative (p, q,t) growth with
respect to g, and gz where p,q € N andt € NU{-1,0};

(ii) Either 70 ™" (fi + fo) # 78" (fi+ fo) or TR9OL(fi & fo) #
TRl (fy + fz)
(m) Either 7P () # 722D (1) or FPanL (f,) # FPanl (f,);
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(iv) Either 7297 (f1) # P90 (1) or 7D () £ FPaDL (f)): then

Nt (Fu o f2) = OO (R) = AP9OE (£2) = ME9OE () = AL#0 (£)

(B) The following conditions are assumed to be satisfied:
(1) At least any one of fy or fs are of regular relative (p, q,t) growth with
respect to g1 = go where p,q € N and t € NU{—1,0};

(i1) Either 738" (f1) # 7o, (£2) or Tty)" (£1) # T4t (f2) holds;
(iid) Either rPVE (f,) # r{patE (f1) or 7EaDL (f) 4 F2abL (f)) holds;

() Either "% (f2) # 70" (fo) or 7®4DL (fo) # F2aOL ( f3) holds,
then

Nk (i f2) = AR08 (1) = AR9OE (f2) = AROOF (1) = AZOOF (fa)

We omit the proof of Theorem 22 as it is a natural consequence of
Theorem 21.

THEOREM 23. Let fi, fa, g1 and go be any four entire functions. Also
let p 0" (f1), pR PO (fo), PV (f1) and p " (f2) are all non zero
and finite where p,q € N and t € NU {—1,0}.

(A) Assume the functions fi, fo and g, satisfy the following conditions:
(D) ™" (1) > " (fy) for i = j = 1,2 and i # j;
(11) g1 satisfies the Property (A) and q > 1, then

oWaL (f . fo) = o@eDE(f)|i=1,2 and

g1

pqt (fr- f2) = agiqut)L(fi)U:l,Z.

Similarly,
ngqut)L (?:) B (th (fz) |i:1,2&nd
Uglqt)L (;:) _ —(pqt (f’L) ’ 1,2

holds provided (i) £ & Is entire, (ii) PP gy > pPaDl ey =1, 2: §
=1,2; 4 # j, (#ii) gy satisfy the Property (A) and (iv) q > 1.
(B) Assume the functions gy, go and f; satisfy the following conditions:

(1) pfffqt) (fi) < pg’qt (f1) with at least fi is of regular relative (p, q,t)
growth with respect to g; for i = j = 1,2 and i # j, and g; satisfy the
Property (A);
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(7i) g1 - go satisfy the Property (A) and p > 1, then
gPatl (fi) = gPat)L (f1) |i=1,2 and

91:92 9i

E(Zjqut)l’ (fl) — 6(p7q7t)L (fl) | Z = 1, 2 .

g1-92 9i

Similarly,
on ™ (f1) = ol (fi) |i=1,2 and

9i
92

I (f) = Tt (R [i=1,2

gt
92

holds provided (i) Z—; is entire and satisfy the Property (A), (ii) At
least fi is of regular relative (p,q,t) growth with respect to gs, (iii)
PO (f1) < pS B (f) i = 1,2 j = 1,2 i # j and (iv) g1 satisfy
the Property (A).

(C) Assume the functions fi, fo, g1 and go satisfy the following condi-
tions:

(1) g1 - g2 satisfy the Property (A), p>1 and q > 1;

(ii) p " (1) < pP DT (f1) with at least fy is of regular relative (p, g, t)
growth Witb respect to gj for1 =1,2,j = 1,2 and i # j;

(iii) pLF (fy) < pIPI(fy) with at least fy is of regular relative
(p,q,t) growth with respect tog; fori=1,2,j=1,2 and i # j;

(i0) 2T (£) > o390 (1) and p390 (1) > p9" (f;) holds simul
taneously for 1 = 1,2; j = 1,2 and i # j;

) 22 (1) =
mae [min { p§ 40" (1), o5 ()} min {0 (1), 025 (£2)}] |
l=m =1,2; then

OADE (fr - f) = o0k () | 1= m = 1,2 and

g1-92 gm
T (e ) =F O (f) [l =m=1,2.
Similarly,

o (?) = o#V% (f)) | 1=m = 1,2 and

92

7 (jﬁ) PaOL (£) |1 =m =1,2.

holds provided % and 5;—; are entire functions which satisfy the following
conditions:
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(1) g—; satisfy the Property (A), p > 1 and q¢ > 1;
(17) At least fy is of regular relative (p,q,t) growth with respect to gs

and p$ 0" (f1) # pB @Ot (f1);
(1i1) At least fy is of regular relative (p, q,t) growth with respect to gs

andppqt (f )#ppqt)L(ﬂ;

( ) pg;liqt (fl) < pgfl’qt (f]) andppqt (fz) < pgzqt)L (f]) holds simul-
taneously for v =1,2; j = 1,2 and @ # j;

(v) P50 (i) =
max [min { o (£1), 20" ()} min {0 (), o2 (1) }]
[l=m=1,2.

Proof. Let us consider that pZ @9 (f,), pPeDE (£,), pleaDE £y and

pgz pa.t)L (f2) are all non zero and finite.

Case I. Suppose that p2 % (£) > pP2DE (£,). Also let g, satisfy the
Property (A). Now for any arbitrary ¢ > 0, we get from (18) for all
sufficiently large values of r that

Mf1~f2 (7“) <

=11 § (500 (1) 4 €Y [loglt=1 y - expell L ()]
My, |exp ( o (f1)+§> [logq r-exp™HL(r )}

(p,q,t)L
g (f2)
x Mg, [eXp[P—ll {(cfg(]zl?,q,t)L (f2) + %) [log[q—l] r - expltt L (r )]p 1 H .

Since pPPIE (f1) > pPUIE (1)) we get that

Pgﬁ = t>L(f1)

| (O’élqut) (f1) + %> [log[q_” r-explttt L (7")]
lim P OL =
P (f2)

T pat)L € [q—1] [t+1] Pg1
(Ugl (f2) + 5) [log T - exp L (7’)]

Therefore we get for all sufficiently large values of r that

(p,q;t)L
GOk (f1)
Mo, leXpr_H {(Ué’f’q’”L (5 +5) flog 7 esplet L ()] H

(pqt)L
(2)
> My, [exp“’_” {( panE (f) + ) [logli - expt i L] H
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hold and from the above arguments it follows for all sufficiently large
values of r that

(37) M, ,, (r) <

(Pqt)L f 2
[Mgl [exp[pl] {(aéﬁ”qt (f1) + ) {log[q U exp[tH}L(r)} .

Let us observe that
o (1) + e

(51 = > 1
o™ () + 5
which implies that
o ()
eXp[p_Q] <O_§;1)7q,t)L (fl) + 5) [log[q_l] r. eXp[t-‘rl] L (T>i| 1
(38) PO (f1)

explr—2 (ag(,’l’qt) (f1) + %) [log[qfl] r-explttl L (7’)]
= J(say) > 1.

Since ¢; satisfy the Property (A), in view of Lemma 2 and (38) we
obtain from (37) for all sufficiently large values of r that

My, ) <

P J
My, “exp[pl] {(ogf’qt (f1)+ ) [log[q Uy explHI L (r )] (f)}] ]

ie, M, . (r)<

1 )L 1 t+1 P ()
M,, |explP~!] ( g’q (f1) +£) {log[q* lr - expt U L (r )] :

As pPeOE £y > pleal (£ 56 in view of Theorem 9, we get from
above for all sufficiently large values of r that

Mf1'f2 (T) <

(p q, t)L(fl )
My, exp[p_l] (Jgf’q’t)L (f1) + 6) [log[qfl] T exp[tﬂ] L (r)] )

(39) ie., oL (- fo) < glPabl(f))

In order to establish the equality of (39), let us restrict ourselves on
the functions g; and f; | i = 1,2 such that ¢ > 1. Now let h, hy, hy and k
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be any four entire functions such that h = h—2 and k satisfy the Property

(A). Further without loss of any generality let p(p i) L (h1) < pl(f i)k (h2)
where p, ¢ are any two positive integers with ¢ > 1. Now we know
that Ty, (r) = Th2 (r) < Th, (r) + Ty, (r). Therefore in view of Lemma

3, we get (in the line of the construction of the proof as above) for all
sufficiently large values of r that

log M%Q (r) < 3[Th, (2r) + Ty, (21)]

i.e., [MZf (;)F < Mp, (r) - Mp, (1)

.
e, M (7)<
1.€ % 2

(p,q,t)L

6
h
[Mk [eprll {(Ul(gp,q,t)L (ho) + %) [log[qfl} r. eXp[tH} L (T)rk ( 2)}” .

Therefore in view of Theorem 9 and (38), we get for all sufficiently
large values of r that

.
M (7)<
2 \2

pil " (ha)
M, |explP—1! < (p.a.t) L (h2) +E> [log[qfl} r - explttl] L(T):| )

(40) i, oPP () = oPeOt <Z2> o (hy) .
1

Further without loss of any generality, let f = fi- f2 and pg, (Pa.t)L (f2) <
pgff i)k (fi)= pgf i) (f) . Then in view of (39) we obtain that a(p ehL (f)
= aélfq’t = (fi-fo) < Uglqt)L (fi). Also f; = L - and in this case we ob-
tain from (40) that o{"*"% (f,) < gDt (f) = oI5 (£ f,) . Hence
o (1) = o (1) = L (F, - £) = oH% (1) provided g >
1.

Similarly, if we consider pg, (.a, (f
that o (fi - f2) = o ™" (f2) p

Next we may suppose that f =
functions.

Sub Case I. Let p2®"% (f,) < p®®DE (). Therefore in view of

t)L (p,q,t)L

< Pg1
ovided ¢ > 1.

1) (f2) , then one can verify
r
% with fi, fo and f are all entire
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Theorem 9, p& " (f5) < p&*" (1) = p&*" (). We have f, = f- fo.

So, g(pqt) (fi) = Uéll’qt)L (f) = o'gl)qt)L <§1> provided g > 1.

Sub Case IB Let plpait (fg) > pEahk (fl) Therefore in view of
Theorem 9, pL0E (1) < pP4IE (1)) = p®TDE (1) Now in view of (40)

we get that o{P¢)* <§1) < oI5 (£,) . Further we have f, = % and

in this case o4 (f, ) < gPail (f—;> So gBwIt (%) = g t0" (f2)

provided ¢ > 1.

Case II. Let p@ %5 (£) > p®@DE (1), Also let gy satisfy the Property
(A). Now for any arbitrary € > 0, we obtain from (18) and (21) for a
sequence of values of r tending to infinity that

Mf1'f2 (T) <

p-1] a1y expltH1] L (] D)
My, [exp? < (p.g;t) L)+ )[logq T - exp L(r)]

ép a1 L f
XMy, [exp[p_l] {( (L)L (f,) 4+ ) [log[q Up . expl L (r)}p v .

Now in view of pP@0% (f,) > pPeDL (1) we get that

p(p,at) L(f1)
(a(p,q,t)L (f1) + %) [log[q_l] - explttll L (r)]

. g1
lim =00

1 (pqt)L(f )
(o8 (f2) + ) [loglt - explt+1) L (r)|

Pa1
Therefore we get for all sufficiently large values of r that

— (p,q,t)L
+ = (f1)
Mg, [exp[l’—l} {(aﬁff’qm (f1) ;) [log[q_” reexpt L (r)rgl 1 }]

(p,q,t)L
(f2)
> My, [exp“’_” {( Pl (f) + ) [log[q U exp[””L(T)]pg1 : H

and therefore from the above arguments it follows for a sequence of
values of r tending to infinity that

Mfl‘fQ (T) <

(Pqt)L(f) 2
My, expl 11 & (GRad (fy) + )[log[q U exp[t“]L(T’)}
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Now using the similar technique for a sequence of values of r tending
to inﬁnity as explored in the proof of Case I, one can easily verify that

PO (fy - o) = TGO () and FRe0k (£) = Glek (f) [0 = 1,2
under the condrtlons Speciﬁed in the theorem provided ¢ > 1.

Similarly, if we consider pg, Ptk (f1) < pglf i) (f2), then one can verify

that olpeDE (f) - fo) = ol pqt)L (f2) provided g > 1.
Therefore the first part of theorem follows from Case I and Case II.

Case IIL Let p2 %5 (£,) < pP9D% (£) and gy - go, g1 are satisfy the
Property (A) with at least f; is of regular relative (p,q,t) growth with

respect to go. Now for all sufficiently large values of n and pg, (Pa.t)L (fr) <
pqt) (f1), we get that

(p,q,t)L
g f
explP~1l {(cn(;g’q’t)L (f1) — 5) [log[q_l] T - expltU L (rn)r 2 1)} >

(pa,t)L

g f
explP—1! { (Ug(;llj’%t)L (f1) — 5) [log[q_l] 7 - expltt L ("”n)} Py ( 1)}

holds. Consequently

(p,a,t)L

g f
M, [exp“’—”{( a0 (f) — &) [loght )y - expltV L )| ( )H >

(p q,t)L f
Mg, [exp[p_l] { (Jé’f’q’t)L (f1) — 5) [log[q_l] T - eXP[t—H] L (rn)} " )

also holds.
Therefore in view of (19), (20) and above, we obtain for a sequence
of values of r tending to infinity that

1] L lg—1] [t+1] o ()
My, .q, |€xp ( (@)L (f) — 6) [log =y, cexp™H L (rn)}
< [My, (n)]?

Since g; - go has the Property (A), in view of Lemma 2 we obtain from
above for a sequence of values of r tending to infinity that
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épqt)L f %
My “exp“’” { (o292 (1) — <) [logs - explt 1 )]

< My, (r)

Now making 6 — 1+ we obtain in view of Theorem 11 and above
that

(P q, t)L(f )
(%z;q,t)L (f ) ) [log[q 1] Xp[t+1] I (Tn)] <
log?~ " ML My, (r)
Since € > 0 is arbitrary, it follows from above that
(41) o et (f) 2 o 0N (f)

In order to establish the equality of (41), let us restrict ourselves on
the functions ¢; | i = 1,2 and f; such that p > 1. Now let h, hy, hy and
k be any four entire functions such that h = Z—;, h satisfy the Property
(A) and at least k is of regular relative (p,q,t) growth with respect to

ho. Further without loss of any generality let p(p 2tk (k) < pgp DOE ().

Now we know that T}, (r) = Thy (r) < Th, (r) + Th, (r). Therefore in
h

1
view of Lemma 3 we get (in the line of the construction of the proof as
above) for a sequence of values of r tending to infinity that

log M% (r) < 3[Th, (2r) + Tp, (21)]

ie., [MZ? (g)r < My, (r) - My, (r) .

Therefore in view of Theorem 12 and in the line of the construction
of the proof as above we get that

(42) i, o™t (k) = ol (k) = ol 0 (k).
ha
provided p > 1.

Further without loss of any generality, let g = g; - go and p(gp @)L (f1)
= el gy < pPaDL (£ Then in view of (41), we obtain that
o () = oRE () = o™ (f1). Also g1 = £ and in this
case we obtain from (42) that ag’l’qt)L (f1) > Oép,q,t)L (f1) = ng g; (F1).
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Hence o 9% (f1) = o7 ™" (f1) = o 8" (f1) = ofi™"" (f1) provided
p > 1.

Similarly, if we consider p"% (f, ) > piat) Y (f1) with at least f; is of
regular relative (p, ¢, t) growth with respect to g; and go satisfy Property
(A), then one can verify that aéf’g;t)L (f1) = o) Y (f1) provided p > 1.

Next we may suppose that g = 91 with g1, go, g are all entire functions
satisfying the conditions spec1ﬁed 111 the theorem.

Sub Case III. Let p2%"" (f;) < p@** (f,). Therefore in view of
Theorem 12, pP " (f1) = p " (f1) < p ™" (f1). We have g, =
- g2. So a(pqt) (f1) = PO () = oL (£1) provided p > 1.
92
Sub Case IIg. Let pP%"% (1) > p%L (). Therefore in view of
Theorem 12, pP?9* (fl) = pgqt)L (f1) < peDL (1) Now in view of
(42), we get that o5 () < o®*DE (£} Further we have g, = z

2

g
and in this case o & (f1) < oI (1) So BV (1) = gZIE (1))

92 92

provided p > 1.

Case IV. Suppose pZI (f,) < p@9E (£} and gy - g2, g1 are satisfy
the Property (A) with at least f; is of regular relative (p,q,t) growth
with respect to 92 Therefore for all sufficiently large values of r and

b L 9
pEOOE(f) < p B (1)

L pg;q’t)ll(fl)
explP ™! (5§§’q’t) (f1) — 8) [log[q_l] T - expltt L (rn)} >

[p—l] *( t)L [ _1] [t—l—l] p.siz?q’t)L(fl)
€xp (ng;,q, (f1) — 5) [IOg = Hr, -exp L(r )}

holds. Consequently

ngqt)L(fl)
My, [expl=18 (a0 (f1) = ¢) [loglt =t - expl™ T L (1) >

()
M,, [exp[p_l] {(Jé’l”q’t)L (f1) — 5) [log[q_l] 7 - explti L (rn)} o ' }] .
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Hence in view of (19) and from above arguments we obtain for all
sufficiently large values of r that

POt (1)
My, .g, [exp[pﬂ {(U§I;7Q:t)L (f1) — E) [log[qfl] ry - expl L (Tn)} " }]

< [My, (7’)}2

Now using the similar technique for all sufficiently large Values of r as
explored in the proof of Case III, one can easily verify that ag’f Z’Q (fr)=

U_Sﬁq DL (1) and E(gpl 2L (f1) = agq DL (f1) | i = 1,2 under the conditions

specified in the theorem

Likewise, if we consider pp 2L (f1) > p;; 1) “(f) and gy - g2, go are

satisfy the Property (A) with at least f; is of regular relative (p,q,t)
growth with respect to g, then one can verify that oé‘? Z; )k (f1)= Eg’;q’t)L (f1)
provided p > 1.

Therefore the second part of theorem follows from Case III and Case
IV.

Proof of the third part of the Theorem is omitted as it can be carried
out in view of Theorem 13 and Theorem 15 and the above cases. O]

THEOREM 24. Let fl, fa, 9 1 and g2 be any four entire functions. Also
Tet APOOE (1), APODE (1) ABODE £y and A2SDE (£,) are all non zero
and finite where p,q € N and t e NU{-1,0}.

(A) Assume the functions fi, fo and g, satisfy the following conditions:
(i) APEOE () > APeDL (1) with at least f; is of regular relative (p, q,t)
growth with respect tog, fori =j =1,2 and i # j;

(7i) g1 satisfy the Property (A) and q > 1, then

7Pl (fri-f2) = 7Pl (fi)|i=1,2 and

g1 91
TR (fie f) = TR (f) i=1,2.

Similarly,

ripans (1) = afpans (1) 5= 1,2 ana

AL fl _ =(p,g,t)L <
ng;q) (fz) = Té]iQ) (fi)li=1,2
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holds provided % is entire, at least fs is of regular relative (p, q,t) growth

with respect to g1, g satisfy the Property (A) and ¢ > 1 and ALY (1))
SR () i =1,25 = 1,200 # .

(B) Assume the functions g1, go and f; satisfy the following conditions:
(i) APPOE (1) < AP9OE(f)) fori = j = 1,2 and i # j, and g; satisfy
the Property (A)

(7i) g1 - g2 satisfy the Property (A) and p > 1, then

rPaOt () = PO (f) i = 1,2 and

g1-92 gi

o () = TRt (A =12,
Similarly,

T (f) = @O (f) i =1,2 and

92

TN (f) = TRt () [i=1,2

gt
92

holds provided g; is entire and satisfy the Property (A), g, satisfy the

Property (A) and )\pqt)L (fi) < )\g’q’t)L (fi)li=1,2;j=1,2;4 # j.
(C) Assume the functions fi, fo, g1 and go satisfy the following condi-
tions:

(1) g1 92, g1 and gy are satisty the Property (A), p> 1 and q > 1;

(id) AP () > APOOE (£ with at least f; is of regular relative (p, g, t)
growth with respect to gy fori =1,2, j = 1,2 and i # j;

(ii) AZPF(f) > AP9IE (1) with at least f; is of regular relative
(p,q,t) growth with respect to go fori = 1,2, 7 = 1,2 and i # j;

(iv) AP9O (1) < APEOE (1) and AP (fy) < AP (£,) holds si-
multaneously for i =1,2; j = 1,2 and i # j;

(v) A (i) =

min [max DRIO" (), AR (£2) b max (A8 (1) AR (1)}
[=m=1,2; then

RO (fy - f2) = T2 (f) |1 =m = 1,2 and

g1-92

FOaOL (£ ) = 70Ol (f) || =m=1,2 .

g1-92 gm
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Similarly,
(f) =708 (fi) [ 1 =m = 1,2 and
92 f2
?(gi;:q»t)[/ (ﬁ) — ?‘gﬁqvt)L (fl) ‘ l = m = 1’ 2 .
92 f2

holds provided % and i—; are entire functions which satisfy the following
conditions:

(1) Z—;, g1 and go satisty the Property (A), p> 1 and q > 1;

(17) At least fy is of regu]ar relative (p,q,t) growth with respect to ¢
and A" (f1) # A8 (fo);

(1ii) At least fy is of regular relative (p, q,t) growth with respect to go
and A" (f1) # A" (fo);

(iv) A" (f1) < Aé’;q“ (f1) and MES (fo) < MEPOE (f2) holds si-
multaneously for i =1,2; j = 1,2 and 1 # j;

(v) M (fy) =

min [max {ORIOE () MR (f) fomax AZ SO (1) AR () ]|
l=m=1,2.

Proof. Let us consider that A9 (), ABEDE gy ABaDE (£ and
APEDE (1) are all non zero and finite.

Case I. Suppose \Z40E (f1) > APl (fo) with at least f is of regular
relative (p,q,t) growth with respect to g; and g, satisfy the Property
(A). Now for any arbitrary € > 0, we obtain from (25) and (27) for a
sequence values of r tending to infinity that

Mf1~f2 (T) <

)\(quatﬂ/(‘f )
My, [exp@”{(rg%”“ (1) +35) [loglt - expl L ()] ™

A(pa )L ¥
X Mg, [exp[pl] {(Téﬁ)’qt (f2) + ) |:10g[q 1, eXp[tJrﬂ L(T)} 91 ( 2)}] .

Now in view of Agfj’”)L (f1) > Ag Pl (f2), we get that

(p.at)L 1 MO ()
) <7‘gfq (f) + %) [log[q_ brexplttl L (7”)]
im

r—00 )\gﬁ’q’tﬂ‘(fg)

(TrahL (f)) + %) [log[q_l] r - explt+1] L(r)}

= o0 .
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Therefore we get for all sufficiently large values of r that

)\gp,qﬂf)L f1
M, [exp“’—”{(fg(f’“ (7) +2) [loglt Y 7 explt e L) )H

)\(quvtﬂl(f )
> My, lexp[pl] {(Téﬁ’qt (f2) + ) {log[q Uy exp[tH}L(r)} o ’

holds and therefore from the above arguments it follows for a sequence
of values of r tending to infinity that

(43) M, ;, (r) <

A2t )11
[Mgl [exp[p_l] {(Tg’q’t)l’ (f1)+ %) [log[q_l] reexplti L (7“)} ' 1 .

Now using the similar technique as explored in the proof of Case I of
Theorem 23 we obtain from (43) that

(44) TP (i fo) S TPOE(f1)

In order to estabhsh the equality of (44), let us restrict ourselves on
the functions g; and f; | i = 1,2 such that ¢ > 1. Now let h, hy, he and
k be any four entire functions such that h = Z—f, k satisfy the Property

(A) and hy is of regular relative (p, q,t) growth with respect to k. Now
we know that 7T, (r) = T , (r) < T, (r) + T, (r). Therefore in view

of Lemma 3 and in the hne of the construction of the proof as above it
follows that

h
r O (h) =m0t (—) <" (hy),
when AP (By) < AP9OE (B,) with ¢ > 1 and
h
(15) 0 () = 1 (2] < 70 (),
1

when AP (By) > APOOE (By) with ¢ > 1.

Further without loss of any generality, let f = fi - f» and AL 9% (f,)
< ApebLpy = \PeDL () Then in view of (44), we obtaln that
Tl R (f) = TP (fi- o) < 7T (f1) . Also fy = £ and in this

case we obtain from the above arguments that 7.7 () < 7 P40 (f)
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=7t (i fo) - Hence 7% (f) = 732" (f1) = 72" (fi - f2) =
T(pqt (f1) provided g > 1.
Similarly, if we consider AL VL (f1) < ALDL () with at least f is

of regular relative (p, ¢, ) growth with respect to g, then one can easily
verify that % (f1 - f2) = 75P99% (f,) provided ¢ > 1.
Next we may suppose that f = % with fi, fo and f are all entire

functions satisfying the conditions specified in the theorem.

Sub Case I5. Let )\é’f’q’ (fg) <Ay Ptk (f1). Therefore in view of The-
orem 8, \RO" (f) < AR (1) = ALPOR(f). We have fi = [+ fo
So P (f)) = Tg(f)’q’t)L (f) = Tg(f)qt)L <§1> provided ¢ > 1.

Sub Case Ig. Let Ag’j’q’t)L (f2) > (p e:£) “(f1). Therefore in view of The-
orem 8, AP (1)) < )\(Ij’q’t) (f2) = /\gf at)L (f). Now in view of (45),

we get that Tg(?qt)L (jﬁl) < Tg(f’q’t)L (f2) . Further we have fo = ﬁ and

in this case 720" (f2) < % (£ S0 rira0" () _ e (g

provided ¢ > 1.

Case II. Let )\p% (fr) > g’f i) L (f2) with at least fy is of regular
relative (p, q,t) growth with respect to g; and ¢; satisfy the Property
(A). Now for any arbitrary € > 0, we get from (25) for all sufficiently
large values of r that

Mfl'f2 (T) =

ARTIE ()
My, {expl=1 3 (F2a0k (f1) + ) |loght =7 - explt ) L (1)

AP a,t) L ¥
XM91 leXptp 1] {( (fg) ) []Og[q 1]7“ exp[t—i-l]L(r)} 91 (2)}] '

Now in view of APTF (£) > A\P9DL (1)) we get that

LTI
<?(p,q,t)L (f1) + %) [log[q_l] r-explttil L (7«)}

g1

. G
(fg}i,q,t)L (fo) + %) [log[q_l] r - explttll [ (r)}
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Therefore it follows for all sufficiently large values of r that

AR EOE (1)
My, [explp—”{(fé?m () +5) [log - expt L]

AT (f)
> My, [exp“"” {(Tﬁfi’q’”L (f2) +5) [loglt~r - exp ™ L)

holds and therefore from the above arguments we get for all sufficiently
large values of r that

(46) M, ,, (r) <

1 t)L € 1 t+1 () i
M,, |explP~1 (?gl”q’) (f1)+ 5) [log[q_ r - expltt ]L(r)} :

Now using the similar technique as explored in the proof of Case I of
Theorem 24 we obtain from (46) that 7FB2DL (f - f5) = 7LD (f1) and

FoaL (1) = _;‘fqt) (f1) | # = 1,2 under the conditions Spe(nﬁed in the

t}iéorem.

Likewise, if we consider AP“O% (1) < APTDE (1) with at least f; is
of regular relative (p, q,t) growth with respect to g;, then one can easily
verify that 7PeOE (fy - fo) = 7@4DL (f)) provided ¢ > 1.

Therefore the first part of theorem follows Case I and Case II.

Case IIL Let APPDE () < \29DL (1) g, g, and g are satisfy the
Property (A). Now for all sufficiently large values of r and A% (f,) <
pqt (f1), we get that

)\(qu,t)L f
explP~ 1l {(Tg(f’q’t)L (f1) — 5) [log[q_l] r - expl ] L(T)} w 1)} >

ARTIE ()
explP~ 1l (Tg(f’q’t)l’ (fr) — 5) [log[q_l} r-expltU L (7‘)}

holds. Therefore
AT (f)

AL ()
M,, |explP~1] ( (Pat)L(f)y — 5) [log[q_l} r-expltt L (r)} ‘ .
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also holds.

Therefore in view of (26) we obtain for all sufficiently large values of
r that
(47)

p-1] g1 1) (] O
My, .q, |exp ( (Pq;t) (fl) > [log =Hyr . exp L (r)}
< [My, (r)]?

Now using the similar technique as explored in the proof of Case III
of Theorem 23 we obtain from (47) that
(49) rPaOt () < 290 (1)

91:92

In order to establish the equality of (48), let us restrict ourselves on
the functions g; | i = 1,2 and f; such that p > 1. Now let h, hy, he and
k be any four entire functions such that h = Z—;, h and h; are satisfy the
Property (A). Now we know that T, (r) =T, (r) < T, (r)+ Tj, (r).

Ry
Therefore in view of Lemma 3 and in the line of the construction of the
proof as above it follows that
7_}(Lp,q,l‘/)L (k) = T(p )L (k) > T}Ezlhq,t)L (k),

h2

when AP (k) < AP (k) with p > 1 and

(49) O (k) =m0 (k) 2 m 0 (k)

when AP (k) > AP (k) with p > 1.
Further without loss of any generality, let g = g; - go and A% (f))
= )\pqt (fi) < )\pqt (f1). Then in view of (48), we obtain that

7P e (f1) = 7P2DE (£ > 7PeDE 2y Also g = 2 and in this
case we obtain from above arguments that T A O P I A
ot (f1)- Hence r 0% (£1) = 72 (f1) = mlg?" (h) = 750" (1)
provided p > 1.
IEAZDL (1) > AB2DE (1) then one can easily verify that 77507 ()
= Tg(f’q’t)L (f1) prov1ded p> 1.
Next we may suppose that g = zl with g1, g2, g are all entire functions
satisfying the conditions specified in the theorem.
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Sub Case IIIA. Let )\gf’q’t)L (fi) < )\g;’q’t)L (f1). Therefore in view

of Theorem 10, AP?V% (f) = APOE (1) < ADOL (1) We have

g1 =9 ¢g2. SO T(pqt)L (f1) = 7P (1) = 790 (1)) provided p > 1.
92

Sub Case Illg. Let \g Pl (f1) > )\!(f;q’t)L (f1). Therefore in view of

Theorem 10, A\P?DE (1) = A\BaDL (f) < APeDL (£ Now in view of

(49) , we get that qut)L (f1) <7 (pqt (f1) . Further we have g, = g—gl

and in this case Tép adlL (f1) < ng’q’“L (f1).So T4} (pat) L (f1) = Tg’q’t)L (f1)

92 2

provided p > 1.

Case IV. Suppose A\P@ (£,) < APEDE £y g1 g, and g, are satisfy
the Property (A). Therefore for all sufficiently large values of r we obtain
that

/\(p,q,t)L f
explP—1! {( (p,g,t) L (f1) — E) [log[qfl} Ty - explt Tl L(rn)] g2 1)} -

AP OE (f1)
eXp[P*l] (7§I1j7q,t)L (fl) _ 8) [log[qfl] Yy - eXp[t+1} 13 (Tn)}

holds. Naturally,

AEEOE (1)
My, [exp[p_” { (Téﬁ’q’t)L (f1) — 6) [log[q_l] T - explti L (rn)} ’ ' >

[p—1] (pyq,t)L lg—1] [t+1] )\Sfi’q’t)L(fl)
Mg, |exp (?gll)’q’ (f1) — 5) [log =y, - exp L (Tn)i| )

also holds.

Therefore in view of (26) and (27) we obtain for a sequence of values
of r tending to infinity that
(50)

MO (1)
My,.g, [exp[p_l} { ( (Pa.t)L (fr) = 6) [IOg[q—l] Tp - eXp[t—i-l] L (rn)] 91 1

< [My, (n)]” .
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Now using the similar technique as explored in the proof of Case III
of Theorem 24, we obtain from (50) that 7&:ZD" () = el (f) and
FHOT (f) —?(pqt (fo) [i=1,2.

92
Similarly if we consider that A% () > AZ2DL (£)  then one can
easily verify that 72%0E (f,) = TabL (f1) provided p > 1.
Therefore the second part of the theorem follows from Case III and
Case IV.
Proof of the third part of the Theorem is omitted as it can be carried

out in view of Theorem 14 , Theorem 16 and the above cases. O

THEOREM 25. Let f1, fa, g1 and go be any four entire functions. Also
let p,g € Nandt € NU{-1,0}.
(A) The following condition is assumed to be satisfied:

(i) Either oY% (f,) # o@D (£,) or olpal(f) £ gPahl(f,) holds
and q¢ > 1;
(11) g1 satisfies the Property (A), then

PRt (fi- fa) = paOt (1) = pih Ot (fa) -
(B) The following conditions are assumed to be satisfied:
(i) Either o7 ™" (f1) # o ™" (f1) or a0 (f,) £ FEIOL (f1) holds
and p > 1;
(79) f1 is of regular relative (p,q,t) growth with respect to at least any
one of gy or gy. Also gy - g satisfy the Property (A). Then we have

PE,‘?Z;) (f)_ﬂgziqt (fl)_szth(fl) .

Proof. Let f1, f2, g1 and g5 be any four entire functions satisfying the
conditions of the theorem.

Case L. Suppose that pif ™" (f1) = pii ™" (f2) (0 < p& ™" (£1), o " (£2)
< 00) and g¢; satisfy the Property (A). Now in view of Theorem 9, it is

easy to see that pP P (fy - fo) < pPeOL (1) = pweBL (1) 1f possible
let

(51) pPaDL (f1 - fo) < pPaDE(f1) = plpal (f5)

Let Jé(ff’qt (f1) # Jpqt (f2). Now in view of the first part of

Theorem 23 and (51) we obtain that apqt)L (f1) = o'glj’q’t)L (M) —

f2
oL (£,) which is a contradiction. Hence pP "% (f; - fo) = p&@DE ()
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= pg’j 20 ( f2) . Similarly with the help of the first part of Theorem 23,
one can obtain the same conclusion under the hypothesis Eé’l”q’t)L (f1) #

alpaDL (f)) . This prove the first part of the theorem.

Case II. Let us consider that pZ " (f,) = plP@DE (1) (0 < pP4DE (£,),

pgz Pt} (f1) < o0), fiisof regular relative (p, g, t) growth with respect to

at least any one of g; or go. Also g - g2 satisfy the Property (A). There-
fore in view of Theorem 11, it follows that pgf’.g)L (f1) > p(p il (f1) =
pBEDE (£ and if possible let

(52) pPaL (£} > ppatll (f) = ppat(f)

Further suppose that olr%"* (f1) # o) “(f)). Therefore in view
of the proof of the second part of Theorem 23 and (52), we obtain that
oPE (1) = JE,I;’Z’;)L (f1) = o2 (f1) which is a contradiction. Hence

gli g’zt)L (f1) = qu)L (f1) = sz a0k (f1) . Likewise in view of the proof
of second part of Theorem 23, one can obtain the same conclusion under
the hypothesis ¢ (f)) # GleaDE () This proves the second part
of the theorem. O

THEOREM 26. Let f1, f2, g1 and go be any four entire functions. Also
let p,g € Nandt € NU{-1,0}.
(A) The following conditions are assumed to be satisfied:
(7) (f1 - f2) is of regular relative (p,q,t) growth with respect to at least
any one gy or gs;
(73) (g1 92), g1 and gy all satisfy the Property (A);

(7ii) Either ngfqt)L (fr-f2) # 0(p ohl (fi- f2) or 5§€’q7t)L (f1- f2)
ko (f1 f2);

(iv) Either o (f1) # o2 (1) or grahL (f) £ gleatll (f,);

(v) Either olpatk (f1) o A (f2) or el (f)) £ gleatll(fy);

(vi) min {p,q} > 1; then

pPaDL (fy - fo) = pBaE () = pPatl (fp) = plpadl (f1) = plpaDE(f))

(B) The following conditions are assumed to be satisfied:

(1) (g1 - g2) satisfy the Property (A);

(17) f1 and fy are of regular relative (p,q,t) growth with respect to at
least any one g1 or 92;

(iii) Either o %0" (f1) # a8 (f) or g @™ (f1) # T80 (f2);
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(iv) Either aézf’q’t)L (f1) gg’z”q’t)L (f1) or ngqt (f1) # g(pqt (f1);

(v) Either aéf’q’t)L (f2) gg’q’t)L (f2) or & pqt (f2) # 70 pqt (f2);

(vi) min{p, q} > 1; then

PO (fr- o) = pOE (1) = pL D (fa) = pi®F (f1) = pL?0" (fa) -

We omit the proof of Theorem 26 as it is a natural consequence of
Theorem 25.

THEOREM 27. Let f1, f2, g1 and go be any four entire functions.
(A) The following conditions are assumed to be satisfied:
(1) At least any one of fi or fy are of regular relative (p, q,t) growth with
respect to g3 where p,q € N andt € NU{—1,0};
(i) Either rg? D" (1) # 7" (f2) or 7®4OL (f1) % 7L ( £) holds
and g > 1.
(i7i) gy satisfies the Property (A), then

AL (i f2) = PO (f1) = AROE (f)

(B) The following conditions are assumed to be satisfied:

(1) f1, g1 and go be any three entire functions such that Ag, (Pa.t)L (f1) and
APabL () exist where p,q € N, t € NU{—1,0} and g; - g» satisfies the
Property (A);

(i) Either 7% (f1) # 78005 (1)) or TabL (f)) £ 7abL (f)) holds
and p > 1, then

M (F1) = A0 (fr) = AR08 (f) -

Proof. Let f1, f2, g1 and g5 be any four entire functions satisfying the
conditions of the theorem.

Case T. Let A" (f1) = A" (f2) (0 < AR*" () AR (f2) <
00), g1 satisfy the Property (A) and at least f; or f, is of regular relative
(p, q,t) growth with respect to g;. Now in view of Theorem 7 it is easy

to see that A\Z¢HE (fi- f2) < APl (f1) = APl (fo) . If possible let
(53) A @Ot (fu - f2) < ARIOE (fr) = AP0 (f)

Also let Tgpqt (f1) # Tgpqt (f2) . Then in view of the proof of first

part of Theorem 24 and (53) , we obtain that 7.2 (f,) = 7{P0* <M>

fa
= 7{PeDL (1) which is a contradiction. Hence AZ4DE (£, . f,) = AZ4DL (£
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= /\gf’q’t)L (f2) . Analogously, in view of the proof of first part of The-
orem 24, one can derived the same conclusion under the hypothesis
fgﬁ”q’t)L (f1) # T(p,q,t) L(f2). Hence the first part of the theorem is
established.

Case IL. Let us consider that AZ D" () = AL (1) (0 < AP2DE (1))
ALl (f1) < o) and g; - go satisfy the Property (A) Therefore in view

of Theorem 10, it follows that APZOE () > APeDE (1) = \BaDL (1)
and if possible let

(54) N (F1) > AR08 () = A0 (f)
Further let 797 (f,) # 729D% (f,) . Then in view of second part

of Theorem 24 and (54), we obtaln that 7799 (f;) = 7PE0E () =

92
r}é”qt (f1) which is a contradiction. Hence AZZDE (1) = A\PeOL (1)
= )\912’ DL (f1) . Similarly by second part of Theorem 24, we get the same
conclusion when ?gf"mL (f1) # ?gg’q’t)L (f1) and therefore the second part
of the theorem follows. O

THEOREM 28. Let fi, f2, g1 and go be any four entire functions.
(A) The following conditions are assumed to be satisfied:
(1) g1 - g2, g1 and g, satisfy the Property (A);
11) At least any one of f; or fo are of regular relative (p,q,t) growt
i) At 1 f f 1 lati h
with respect to g; and go where p,q € N andt € NU{—1,0};
(1i1) Either r{P*9F (f1 )%qut)L(f - f2) pqt)L
91 g 2) O Ty (i f2)
%ngqt (fl'f?);

(v) Either Ty ™" (f1) # 7ol ™ (f2) or TRa0k (f1) # 7890 (f);
(v) Either ryf ™" (£1) # 730 ™" (f2) or TE9OF (f1) # T4 (f2); then

ng Z; (fi-fo) = )\ézf’q’t)L (f1) = )\fff’q’t ) (f2) = /\g];’q’t " (f1) = )\gi’q’t)L (f2) .

(B) The following conditions are assumed to be satisfied:

(1) g1 - go satisfy the Property (A);

(7i) At least any one of fi or fo are of regular relative (p,q,t) growth
with respect to gy - go where p,q € N and t € NU{—1,0};

(idi) Bither 050" (1) # 788" (fo) or 7REDY (£1) # T bD" (f2) holds;
(iv) Either 7P " (1) # 70" (£1) or 70aL (f,) # 7BaOL (f1) holds;

() Bither 7% (1) % 22 () or Zga0 () £ 7L (1) holds,
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then
A\(Pat)L (fi- f2) = )\gp,q,t)L (f1) = A\(Pat)L (f2) = A(@at) L (f1) = )\S(Jp,qi)L (f2) .

g1-92 g1 g2

We omit the proof of Theorem 28 as it is a natural consequence of
Theorem 27.

REMARK 1. If we take % instead of f; - fo and g—; instead of g1 - ¢o

where % and g—; are entire functions and the other conditions of Theorem
25, Theorem 26, Theorem 27 and Theorem 28 remain the same, then
conclusion of Theorem 25, Theorem 26, Theorem 27 and Theorem 28
remains valid.

4. Concluding Remarks

In this paper, we study certain properties of relative (p, q,t) L-th or-
der, relative (p,q,t) L-th type, and relative (p,q,t) L-th weak type of
entire functions with respect to another entire function where p,q € N
and t € NU{—1,0}. Moreover, if we rewrite Definition 2 as

pPaDE (£ _sup log” MMy (r)

= lim . ’
A§p7Q7t)L (f) r—oo 1Nf log[q] [T‘ exp[t] L (T)]

and also alter Definition 3 and Definition 4 accordingly where p,q € N
and t € NU {0}, then substituting log? 7 + expl! L (r) and logla=t .
expl™ L (r) by log!” [rexp® L (r)] and logl"™" [rexp L (r)] respec-
tively, all the above results can be derived which gives another direction
of growth measurement of entire functions.
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