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SOME RESULTS RELATING TO SUM AND PRODUCT

THEOREMS OF RELATIVE (p, q, t)L-TH ORDER AND

RELATIVE (p, q, t)L-TH TYPE OF ENTIRE FUNCTIONS

Tanmay Biswas

Abstract. Orders and types of entire functions have been actively
investigated by many authors. In this paper, we investigate some
basic properties in connection with sum and product of relative
(p, q, t)L-th order, relative (p, q, t)L-th type, and relative (p, q, t)L-
th weak type of entire functions with respect to another entire func-
tion where p, q ∈ N and t ∈ N ∪ {−1, 0}.

1. Introduction, Definitions and Notations

Let C be the set of all finite complex numbers and f be an en-
tire function defined on C. The maximum modulus function Mf of

f =
∞∑
n=0

anz
n on |z| = r is defined as Mf = max

|z|=r
|f (z)|. If f is non-

constant entire, then its maximum modulus function Mf (r) is strictly
increasing and continuous and therefore there exists its inverse function
M−1

f : (|f (0)| ,∞) → (0,∞) with lim
s→∞

M−1
f (s) = ∞. Further a non-

constant entire function f is said to have the Property (A) if for any
σ > 1 and for all sufficiently large r, [Mf (r)]2 ≤Mf (rσ) holds (see [2]) .
However our notations are standard within the theory of Nevanlinna’s
value distribution of entire functions and therefore we do not explain
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those in detail as available in [11, 12]. Moreover for x ∈ [0,∞) and

k ∈ N, we define exp[k] x = exp
(
exp[k−1] x

)
and log[k] x = log

(
log[k−1] x

)
where N be the set of all positive integers. We also denote log[0] x = x,
log[−1] x = expx, exp[0] x = x and exp[−1] x = log x.

Considering the above, let us recall that Juneja, Kapoor and Baj-
pai [6] defined the (p, q)-th order and (p, q)-th lower order of an entire
function f respectively as follows:

ρf (p, q)
λf (p, q)

= lim
r→∞

sup
inf

log[p] Mf (r)

log[q] r
,

where p, q are positive integers with p ≥ q.

The definition of (p, q)-th order (respectively (p, q)-th lower order) as
initiated by Juneja, Kapoor and Bajpai [6] extends the notion of general-

ized order ρ
[l]
f (respectively generalized lower order λ

[l]
f ) of an entire func-

tion f introduced by Sato in [9] for each integer l ≥ 2 as these correspond

to the particular case ρ
[l]
f = ρf (l, 1) ( respectively λ

[l]
f = λf (l, 1) ). If

p = 2 and q = 1 then we write ρf (2, 1) = ρf (respectively λf (2, 1) = λf )
which is known as order (respectively lower order) of an entire function
f .

An entire function for which (p, q)-th order and (p, q)-th lower order
are the same is said to be of regular (p, q)-growth. Functions which are
not of regular (p, q)-growth are said to be of irregular (p, q)-growth.

Many authors have investigated the growth properties of composi-
tion of entire functions and derived so many great results. The field
of this investigate may be more influential through the intensive ap-
plications of the theories of slowly changing functions which in fact
means that L (ar) ∼ L (r) as r → ∞ for every positive constant a i.e.,

lim
r→∞

L(ar)
L(r)

= 1 where L ≡ L (r) is a positive continuous function increas-

ing slowly. Considering L (r) = log r and a = 1030, one can easily show

that lim
r→∞

L(ar)
L(r)

= 1. Somasundaram and Thamizharasi [10] introduced

the notions of L-order and L-lower order for entire functions.

Extending the notion of Somasundaram and Thamizharasi [10], one
may introduce the definition of (p, q, t)L-th order and (p, q, t)L-th lower
order of an entire function f, where p, q are positive integers with p ≥
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q ≥ 1 and t ∈ N ∪ {−1, 0} in the following way:

ρLf (p, q, t)
λLf (p, q, t)

= lim
r→∞

sup
inf

log[p] Mf (r)

log[q] r + exp[t] L (r)
.

If we consider p = 2, q = 1 and t = −1, then the above definitions
reduces to the definition of L-order and L-lower order of an entire func-
tion f as introduced by Somasundaram and Thamizharasi [10]. Also for
an entire function f, if we consider p = 2, q = 1 and t = 0, then we get
the definition of L∗-order and L∗-lower order of f respectively. However,
if we take L (r) ≡ 1, then the above definitions reduces to the (p, q)-th
order and (p, q)-th lower order of f as introduced by Juneja et al. [6].

An entire function for which (p, q, t)L-th order and (p, q, t)L-th lower
order are the same is said to be of regular (p, q, t) growth. Functions
which are not of regular (p, q, t) growth are said to be of irregular (p, q, t)
growth.

Mainly the growth investigation of entire functions has usually been
done through its maximum moduli in comparison with those of expo-
nential function. But if one is paying attention to evaluate the growth
rates of any entire function with respect to a new entire function , the
notions of relative growth indicators [1, 2] will come. Extending this
notion, Ruiz et al. [8] introduce the definition of relative (p, q)-th order
and relative (p, q)-th lower order of an entire function f with respect to
another entire function g respectively in the light of index-pair ( detail
about index-pair one may see [6–8] ) which are as follows:

Definition 1. [8] Let f and g be any two entire functions with index-
pairs (m, q) and (m, p) respectively where p, q,m are positive integers
such that m ≥ max(p, q). Then the relative (p, q)-th order and relative
(p, q)-th lower order of f with respect to g are defined as:

ρ
(p,q)
g (f)

λ
(p,q)
g (f)

= lim
r→∞

sup
inf

log[p] M−1
g Mf (r)

log[q] r
.

For details about relative (p, q)-th order and relative (p, q)-th lower
order of f with respect to g, one may see [8].

In order to make some progress in the study of relative order, now we
introduce the idea of relative (p, q, t)L-th order and relative (p, q, t)L-
th lower order of an entire function f with respect to another entire
function g respectively in the following way:
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Definition 2. Let f and g be any two entire functions. Then rel-

ative (p, q, t)L-th order denoted as ρ
(p,q,t)L
g (f) and relative (p, q, t)L-th

lower order denoted as λ
(p,q,t)L
g (f) of an entire function f with respect

to another entire function g are define by

ρ
(p,q,t)L
g (f)

λ
(p,q,t)L
g (f)

= lim
r→∞

sup
inf

log[p] M−1
g Mf (r)

log[q] r + exp[t] L (r)
,

where p, q ∈ N and t ∈ N ∪ {−1, 0} .

An entire function f for which relative (p, q, t)L-th order and relative
(p, q, t)L-th lower order with respect to another entire function g are the
same is called a function of regular relative (p, q, t) growth with respect
to g. Otherwise, f is said to be irregular relative (p, q, t) growth with
respect to g.

Now to compare the relative growth of two entire functions having
same non zero finite relative (p, q, t)L-th order with respect to another
entire function, one may introduce the concepts of relative (p, q, t)L-th
type and relative (p, q, t)L-th lower type in the following manner:

Definition 3. Let f and g be any two entire functions with 0 <

ρ
(p,q,t)L
g (f) < ∞ where p, q ∈ N and t ∈ N ∪ {−1, 0}, then the relative

(p, q, t)L-th type and relative (p, q, t)L-th lower type denoted respec-

tively by σ
(p,q,t)L
g (f) and σ(p,q,t)L

g (f) of f with respect to g are respec-
tively defined as follows:

σ
(p,q,t)L
g (f)
σ(p,q,t)L
g (f)

= lim
r→∞

sup
inf

log[p−1]M−1
g Mf (r)[

log[q−1] r · exp[t+1] L (r)
]ρ(p,q,t)Lg (f)

.

Analogously to determine the relative growth of two entire functions
having same non zero finite relative (p, q, t)L-th lower order with respect
to another entire function, one may introduce the definition of relative
(p, q, t)L-th weak type in the following way:

Definition 4. Let f and g be any two entire functions with 0 <

λ
(p,q,t)L
g (f) < ∞ where p, q ∈ N and t ∈ N ∪ {−1, 0}, then the relative

(p, q, t)L-th weak type denoted by τ
(p,q,t)L
g (f) of f with respect to g is
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defined as follows:

τ (p,q,t)L
g (f) = lim

r→∞

log[p−1]M−1
g Mf (r)[

log[q−1] r · exp[t+1] L (r)
]λ(p,q,t)Lg (f)

.

Also one may define the growth indicator τ (p,q,t)L
g (f) of f with respect

to g in the following manner

τ (p,q,t)L
g (f) = lim

r→∞

log[p−1]M−1
g Mf (r)[

log[q−1] r · exp[t+1] L (r)
]λ(p,q,t)Lg (f)

,

where p, q ∈ N and t ∈ N ∪ {−1, 0}.

Here, in this paper, we aim at investigating some basic properties
of relative (p, q, t)L-th order, relative (p, q, t)L-th type and relative
(p, q, t)L-th weak type of a entire function with respect to another entire
function where p, q ∈ N and t ∈ N ∪ {−1, 0} under somewhat different
conditions which in fact extend some results of [3] and [4]. Through-
out this paper, we assume that all the growth indicators are all nonzero
finite.

2. Lemmas

In this section we present some lemmas which will be needed in the
sequel.

Lemma 1. [2] Suppose that f be an entire function, α > 1, 0 < β < α,
s > 1 and 0 < µ < λ. Then

Mf (αr) > βMf (r) .

Lemma 2. [2] Let f be an entire function which satisfies the Property
(A) then for any positive integer n and for all sufficiently large r,

[Mf (r)]n ≤Mf

(
rδ
)

holds where δ > 1.

Lemma 3. ( [5],p. 18) Let f be an entire function. Then for all
sufficiently large values of r,

Tf (r) ≤ logMf (r) ≤ 3Tf (2r) .
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3. Main Results

In this section we present some results which will be needed in the
sequel.

Theorem 1. Let f1, f2 and g1 be any three entire functions such that
at least f1 or f2 is of regular relative (p, q, t) growth with respect to g1

where p, q ∈ N and t ∈ N ∪ {−1, 0}. Then

λ(p,q,t)L
g1

(f1 ± f2) ≤ max
{
λ(p,q,t)L
g1

(f1) , λ(p,q,t)L
g1

(f2)
}
.

The equality holds when λ
(p,q,t)L
g1 (fi) > λ

(p,q,t)L
g1 (fj) with at least fj is of

regular relative (p, q, t) growth with respect to g1 where i = j = 1, 2 and
i 6= j.

Proof. If λ
(p,q,t)L
g1 (f1 ± f2) = 0 then the result is obvious. So we sup-

pose that λ
(p,q,t)L
g1 (f1 ± f2) > 0. We can clearly assume that λ

(p,q,t)L
g1 (fk)

is finite for k = 1, 2.

Further let max
{
λ

(p,q,t)L
g1 (f1) , λ

(p,q,t)L
g1 (f2)

}
= ∆ and f2 is of regular

relative (p, q, t) growth with respect to g1.

Now for any arbitrary ε > 0 from the definition of λ
(p,q,t)L
g1 (f1), we

have for a sequence values of r tending to infinity that

Mf1 (r) ≤Mg1

[
exp[p]

[(
λ(p,q,t)L
g1

(f1) + ε
) [

log[q] r + exp[t] L (r)
]]]

(1) i.e., Mf1 (r) ≤Mg1

[
exp[p]

[
(∆ + ε)

[
log[q] r + exp[t] L (r)

]]]
.

Also for any arbitrary ε > 0 from the definition of

ρ
(p,q,t)L
g1 (f2)

(
= λ

(p,q,t)L
g1 (f2)

)
, we obtain for all sufficiently large values of

r that

(2) Mf2 (r) ≤Mg1

[
exp[p]

[(
λ(p,q,t)L
g1

(f2) + ε
) [

log[q] r + exp[t] L (r)
]]]

(3) i.e., Mf2 (r) ≤Mg1

[
exp[p]

[
(∆ + ε)

[
log[q] r + exp[t] L (r)

]]]
.

So in view of (1) and (3) , we obtain for a sequence values of r tending
to infinity that

(4) Mf1±f2 (r) <

Mf1 (r) +Mf2 (r) < 2Mg1

[
exp[p]

[
(∆ + ε)

[
log[q] r + exp[t] L (r)

]]]
.
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Therefore in view of Lemma 1 (a), we obtain from (4) for a sequence
values of r tending to infinity that

1

2
Mf1±f2 (r) < Mg1

[
exp[p]

[
(∆ + ε)

[
log[q] r + exp[t] L (r)

]]]
i.e., Mf1±f2

(r
3

)
< Mg1

[
exp[p]

[
(∆ + ε)

[
log[q] r + exp[t] L (r)

]]]
i.e.,

log[p] M−1
g1
Mf1±f2

(
r
3

)
log[q]

(
r
3

)
+ exp[t] L

(
r
3

)
+O(1)

< (∆ + ε) .

Since ε > 0 is arbitrary, we get from above

λ(p,q,t)L
g1

(f1 ± f2) ≤ ∆ = max
{
λ(p,q,t)L
g1

(f1) , λ(p,q,t)L
g1

(f2)
}
.

Similarly, if we consider that f1 is of regular relative (p, q, t) growth
with respect to g1 or both f1 and f2 are of regular relative (p, q, t) growth
with respect to g1, then one can easily verify that

(5) λ(p,q,t)L
g1

(f1 ± f2) ≤ ∆ = max
{
λ(p,q,t)L
g1

(f1) , λ(p,q,t)L
g1

(f2)
}
.

Further without loss of generality, let λ
(p,q,t)L
g1 (f1) < λ

(p,q,t)L
g1 (f2) ,

f1 is of regular relative (p, q, t) growth with respect to g1 and f =

f1± f2. Then Then in view of (5) we get that λ
(p,q,t)L
g1 (f) ≤ λ

(p,q,t)L
g1 (f2) .

As, f2 = ± (f − f1) and in this case we obtain that λ
(p,q,t)L
g1 (f2) ≤

max
{
λ

(p,q,t)L
g1 (f) , λ

(p,q,t)L
g1 (f1)

}
.As we assume that λ

(p,q,t)L
g1 (f1)< λ

(p,q,t)L
g1 (f2) ,

therefore we have λ
(p,q,t)L
g1 (f2) ≤ λ

(p,q,t)L
g1 (f) and hence λ

(p,q,t)L
g1 (f) =

λ
(p,q,t)L
g1 (f2) = max

{
λ

(p,q,t)L
g1 (f1) , λ

(p,q,t)L
g1 (f2)

}
. Therefore, λ

(p,q,t)L
g1 (f1 ± f2)

= λ
(p,q,t)L
g1 (fi) | i = 1, 2 provided λ

(p,q,t)L
g1 (f1) 6= λ

(p,q,t)L
g1 (f2) . Thus the

theorem follows.

Theorem 2. Let f1, f2 and g1 be any three entire functions such

that such that ρ
(p,q,t)L
g1 (f1) and ρ

(p,q,t)L
g2 (f1) exists where p, q ∈ N and

t ∈ N ∪ {−1, 0}. Then

ρ(p,q,t)L
g1

(f1 ± f2) ≤ max
{
ρ(p,q,t)L
g1

(f1) , ρ(p,q,t)L
g1

(f2)
}
.

The equality holds when ρ
(p,q,t)L
g1 (f1) 6=, ρ(p,q,t)L

g1 (f2).

We omit the proof of Theorem 2 as it can easily be carried out in the
line of Theorem 1.
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Theorem 3. Let f1, g1 and g2 be any three entire functions such that

λ
(p,q,t)L
g1 (f1) and λ

(p,q,t)L
g2 (f1) exists where p, q ∈ N and t ∈ N ∪ {−1, 0}.

Then
λ

(p,q,t)L
g1±g2 (f1) ≥ min

{
λ(p,q,t)L
g1

(f1) , λ(p,q,t)L
g2

(f1)
}
.

The equality holds when λ
(p,q,t)L
g1 (f1) 6= λ

(p,q,t)L
g2 (f1).

Proof. If λ
(p,q,t)L
g1±g2 (f1) = ∞ then the result is obvious. So we suppose

that λ
(p,q,t)L
g1±g2 (f1) <∞.

We can clearly assume that λ
(p,q,t)L
gk (f1) is finite for k = 1, 2.

Further let Ψ = min
{
λ

(p,q,t)L
g1 (f1) , λ

(p,q,t)L
g2 (f1)

}
.

Now for any arbitrary ε > 0 from the definition of λ
(p,q,t)L
gk (f1), we

have for all sufficiently large values of r that

(6) Mgk

[
exp[p]

[(
λ(p,q,t)L
gk

(f1)− ε
) [

log[q] r + exp[t] L (r)
]]]
≤

Mf1 (r) where k = 1, 2

i.e, Mgk

[
exp[p]

[
(Ψ− ε)

[
log[q] r + exp[t] L (r)

]]]
≤Mf1 (r) where k = 1, 2

Now in view of the first part of Lemma 1(a), we obtain from above
for all sufficiently large values of r that

Mg1±g2

[
exp[p]

[
(Ψ− ε)

[
log[q] r + exp[t] L (r)

]]]
< Mg1

[
exp[p]

[
(Ψ− ε)

[
log[q] r + exp[t] L (r)

]]]
+

Mg2

[
exp[p]

[
(Ψ− ε)

[
log[q] r + exp[t] L (r)

]]]
i.e., Mg1±g2

[
exp[p]

[
(Ψ− ε)

[
log[q] r + exp[t] L (r)

]]]
< 2Mf1 (r)

i.e., Mg1±g2

[
exp[p]

[
(Ψ− ε)

[
log[q] r + exp[t] L (r)

]]]
< Mf1 (3r)

i.e.,
log[p] M−1

g1±g2Mf1 (3r)

log[q] (3r) + exp[t] L (3r) +O(1)
> Ψ− ε .

Since ε > 0 is arbitrary, we get from above that

(7) λ
(p,q,t)L
g1±g2 (f1) ≥ Ψ = min

{
λ(p,q)
g1

(f1) , λ(p,q)
g2

(f1)
}
.

Now without loss of generality, we may consider that λ
(p,q,t)L
g1 (f1) <

λ
(p,q,t)L
g2 (f1) and g = g1± g2. Then in view of (7) we get that λ

(p,q,t)L
g (f1)
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≥ λ
(p,q,t)L
g1 (f1) . Further, g1 = (g ± g2) and in this case we obtain that

λ
(p,q,t)L
g1 (f1)≥min

{
λ

(p,q,t)L
g (f1) , λ

(p,q,t)L
g2 (f1)

}
.As we assume that λ

(p,q,t)L
g1 (f1)

< λ
(p,q,t)L
g2 (f1) , therefore we have λ

(p,q,t)L
g1 (f1) ≥ λ

(p,q,t)L
g (f1) and hence

λ
(p,q,t)L
g (f1) = λ

(p,q,t)L
g1 (f1) = min

{
λ

(p,q,t)L
g1 (f1) , λ

(p,q,t)L
g2 (f1)

}
. Therefore,

λ
(p,q,t)L
g1±g2 (f1) = λ

(p,q,t)L
gi (f1) | i = 1, 2 provided λ

(p,q,t)L
g1 (f1) 6= λ

(p,q,t)L
g2 (f1) .

Thus the theorem is established.

Theorem 4. Let f1, g1 and g2 be any three entire functions such that
f1 is of regular relative (p, q, t) growth with respect to at least any one
of g1 or g2 where p, q ∈ N and t ∈ N ∪ {−1, 0}. Then

ρ
(p,q,t)L
g1±g2 (f1) ≥ min

{
ρ(p,q,t)L
g1

(f1) , ρ(p,q,t)L
g2

(f1)
}
.

The equality holds when ρ
(p,q,t)L
gi (f1) < ρ

(p,q,t)L
gj (f1) with at least f1 is of

regular relative (p, q, t) growth with respect to gj where i = j = 1, 2 and
i 6= j.

We omit the proof of Theorem 4 as it can easily be carried out in the
line of Theorem 3.

Theorem 5. Let f1, f2, g1 and g2 be any four entire functions. Then
for any p, q ∈ N and t ∈ N ∪ {−1, 0} ,

ρ
(p,q,t)L
g1±g2 (f1 ± f2)

≤ max
[
min

{
ρ(p,q,t)L
g1

(f1) , ρ(p,q,t)L
g2

(f1)
}
,min

{
ρ(p,q,t)L
g1

(f2) , ρ(p,q,t)L
g2

(f2)
}]

when the following two conditions holds:

(i) ρ
(p,q,t)L
gi (f1) < ρ

(p,q,t)L
gj (f1) with at least f1 is of regular relative (p, q, t)

growth with respect to gj for i = 1, 2, j = 1, 2 and i 6= j; and

(ii) ρ
(p,q,t)L
gi (f2) < ρ

(p,q,t)L
gj (f2) with at least f2 is of regular relative (p, q, t)

growth with respect to gj for i = 1, 2, j = 1, 2 and i 6= j.

The equality holds when ρ
(p,q,t)L
g1 (fi) < ρ

(p,q,t)L
g1 (fj) and ρ

(p,q,t)L
g2 (fi) <

ρ
(p,q,t)L
g2 (fj) holds simultaneously for i = 1, 2; j = 1, 2 and i 6= j.

Proof. Let the conditions (i) and (ii) of the theorem hold. Therefore
in view of Theorem 2 and Theorem 4 we get that

max
[
min

{
ρ(p,q,t)L
g1

(f1) , ρ(p,q,t)L
g2

(f1)
}
,min

{
ρ(p,q,t)L
g1

(f2) , ρ(p,q,t)L
g2

(f2)
}]
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= max
[
ρ

(p,q,t)L
g1±g2 (f1) , ρ

(p,q,t)L
g1±g2 (f2)

]
≥ ρ

(p,q,t)L
g1±g2 (f1 ± f2) .(8)

Since ρ
(p,q,t)L
g1 (fi) < ρ

(p,q,t)L
g1 (fj) and ρ

(p,q,t)L
g2 (fi) < ρ

(p,q,t)L
g2 (fj) hold

simultaneously for i = 1, 2; j = 1, 2 and i 6= j, we obtain that

either min
{
ρ(p,q,t)L
g1

(f1) , ρ(p,q,t)L
g2

(f1)
}
> min

{
ρ(p,q,t)L
g1

(f2) , ρ(p,q,t)L
g2

(f2)
}

or

min
{
ρ(p,q,t)L
g1

(f2) , ρ(p,q,t)L
g2

(f2)
}
> min

{
ρ(p,q,t)L
g1

(f1) , ρ(p,q,t)L
g2

(f1)
}

holds.

Now in view of the conditions (i) and (ii) of the theorem, it fol-

lows from above thateither ρ
(p,q,t)L
g1±g2 (f1) > ρ

(p,q,t)L
g1±g2 (f2) or ρ

(p,q,t)L
g1±g2 (f2) >

ρ
(p,q,t)L
g1±g2 (f1) which is the condition for holding equality in (8).

Hence the theorem follows.

Theorem 6. Let f1, f2, g1 and g2 be any four entire functions. Then
for any p, q ∈ N and t ∈ N ∪ {−1, 0} ,

λ
(p,q,t)L
g1±g2 (f1 ± f2)

≥ min
[
max

{
λ(p,q,t)L
g1

(f1) , λ(p,q,t)L
g1

(f2)
}
,max

{
λ(p,q,t)L
g2

(f1) , λ(p,q,t)L
g2

(f2)
}]

when the following two conditions holds:

(i) ρ
(p,q,t)L
g1 (fi) > ρ

(p,q,t)L
g1 (fj) with at least fj is of regular relative (p, q, t)

growth with respect to g1 for i = 1, 2, j = 1, 2 and i 6= j; and

(ii) ρ
(p,q,t)L
g2 (fi) > ρ

(p,q,t)L
g2 (fj) with at least fj is of regular relative (p, q, t)

growth with respect to g2 for i = 1, 2, j = 1, 2 and i 6= j.

The equality holds when ρ
(p,q,t)L
gi (f1) < ρ

(p,q,t)L
gj (f1) and ρ

(p,q,t)L
gi (f2) <

ρ
(p,q,t)L
gj (f2) hold simultaneously for i = 1, 2; j = 1, 2 and i 6= j.

Proof. Suppose that the conditions (i) and (ii) of the theorem holds.
Therefore in view of Theorem 1 and Theorem 3, we obtain that

min
[
max

{
λ(p,q,t)L
g1

(f1) , λ(p,q,t)L
g1

(f2)
}
,max

{
λ(p,q,t)L
g2

(f1) , λ(p,q,t)L
g2

(f2)
}]

= min
[
λ(p,q,t)L
g1

(f1 ± f2) , λ(p,q,t)L
g2

(f1 ± f2)
]

≥ λ
(p,q,t)L
g1±g2 (f1 ± f2) .(9)

Since ρ
(p,q,t)L
gi (f1) < ρ

(p,q,t)L
gj (f1) and ρ

(p,q,t)L
gi (f2) < ρ

(p,q,t)L
gj (f2) holds

simultaneously for i = 1, 2; j = 1, 2 and i 6= j, we get that

either max
{
λ(p,q,t)L
g1

(f1) , λ(p,q,t)L
g1

(f2)
}
< max

{
λ(p,q,t)L
g2

(f1) , λ(p,q,t)L
g2

(f2)
}

or
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max
{
λ(p,q,t)L
g2

(f1) , λ(p,q,t)L
g2

(f2)
}
< max

{
λ(p,q,t)L
g1

(f1) , λ(p,q,t)L
g1

(f2)
}

holds.

Since condition (i) and (ii) of the theorem holds, it follows from above

that either λ
(p,q,t)L
g1 (f1 ± f2) < λ

(p,q,t)L
g2 (f1 ± f2) or λ

(p,q,t)L
g2 (f1 ± f2) <

λ
(p,q,t)L
g1 (f1 ± f2) which is the condition for holding equality in (9).

Hence the theorem follows.

Theorem 7. Let f1, f2 and g1 be any three entire functions such that
at least f1 or f2 is of regular relative (p, q, t) growth with respect to g1

where p, q ∈ N and t ∈ N∪{−1, 0}. Also let g1 satisfy the Property (A).
Then

λ(p,q,t)L
g1

(f1 · f2) ≤ max
{
λ(p,q,t)L
g1

(f1) , λ(p,q,t)L
g1

(f2)
}
.

The equality holds when λ
(p,q,t)L
g1 (fi) > λ

(p,q,t)L
g1 (fj) with at least fj is of

regular relative (p, q, t) growth with respect to g1 where i = j = 1, 2 and
i 6= j.

Proof. Let λ
(p,q,t)L
g1 (f1 · f2) > 0. Otherwise if λ

(p,q,t)L
g1 (f1 · f2) = 0, then

the result is obvious. Let us consider that f2 is of regular relative (p, q, t)

growth with respect to g1.Also suppose that max
{
λ

(p,q,t)L
g1 (f1) , λ

(p,q,t)L
g1 (f2)

}
= ∆ . We can clearly assume that λ

(p,q,t)L
g1 (fk) is finite for k = 1, 2.

Now for any arbitrary ε
2
> 0, it follows from the definition of ρ

(p,q,t)L
g1 (f1),

for a sequence values of r tending to infinity that

Mf1 (r) ≤Mg1

[
exp[p]

[(
λ(p,q,t)L
g1

(f1) +
ε

2

) [
log[q] r + exp[t] L (r)

]]]
(10) i.e., Mf1 (r) ≤Mg1

[
exp[p]

[(
∆ +

ε

2

) [
log[q] r + exp[t] L (r)

]]]
.

Also for any arbitrary ε
2
> 0, we obtain from the definition of ρ

(p,q,t)L
g1 (f2)(

= λ
(p,q,t)L
g1 (f2)

)
, for all sufficiently large values of r that

Mf2 (r) ≤Mg1

[
exp[p]

[(
λ(p,q,t)L
g1

(f2) +
ε

2

) [
log[q] r + exp[t] L (r)

]]]
(11) i.e., Mf2 (r) ≤Mg1

[
exp[p]

[(
∆ +

ε

2

) [
log[q] r + exp[t] L (r)

]]]
.

Observe that
∆ + ε

∆ + ε
2

> 1 .
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Therefore we consider the expression
exp[p−1][(∆+ε)[log[q] r+exp[t] L(r)]]
exp[p−1][(∆+ ε

2)[log[q] r+exp[t] L(r)]]
for

all sufficiently large values of r. Thus for any δ > 1, it follows from the
above expression for all sufficiently large values of r, say r ≥ r1 ≥ r0

that

(12)
exp[p−1]

[
(∆ + ε)

[
log[q] r0 + exp[t] L (r0)

]]
exp[p−1]

[(
∆ + ε

2

) [
log[q] r0 + exp[t] L (r0)

]] = δ .

Since Tf1·f2 (r) ≤ Tf1 (r) + Tf2 (r) for all large r, therefore in view of
Lemma 3 we get that

1

3
logMf1·f2

(r
2

)
≤ logMf1 (r) + logMf2 (r) .

Now from (10) , (11) and in view of above, we have for a sequence
values of r tending to infinity that

logMf1·f2

(r
2

)
< 6 logMg1

[
exp[p]

[(
∆ +

ε

2

) [
log[q] r + exp[t] L (r)

]]]
Mf1·f2

(r
2

)
<
[
Mg1

[
exp[p]

[(
∆ +

ε

2

) [
log[q] r + exp[t] L (r)

]]]]6

.

Also in view of Lemma 2, we obtain from above for a sequence values
of r tending to infinity that

Mf1·f2

(r
2

)
< Mg1

[
exp[p]

[(
∆ +

ε

2

) [
log[q] r + exp[t] L (r)

]]δ]
,

since g1 has the Property (A) and δ > 1. Therefore in view of (12), it
follows from above for a sequence values of r tending to infinity that

Mf1·f2

(r
2

)
< Mg1

[
exp[p]

[
(∆ + ε)

[
log[q] r + exp[t] L (r)

]]]
.

So from above we get for a sequence values of r tending to infinity
that

log[p] M−1
g1
Mf1·f2

(
r
2

)
log[q]

(
r
2

)
+ exp[t] L

(
r
2

)
+O(1)

≤ (∆ + ε) .

Since ε > 0 is arbitrary, we get from above that

λ(p,q,t)L
g1

(f1 · f2) ≤ ∆ = max
{
λ(p,q,t)L
g1

(f1) , λ(p,q,t)L
g1

(f2)
}
.
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Similarly, if we consider that f1 is of regular relative (p, q) growth
with respect to g1 or both f1 and f2 are of regular relative (p, q) growth
with respect to g1, then also one can easily verify that

λ(p,q,t)L
g1

(f1 · f2) ≤ ∆ = max
{
λ(p,q,t)L
g1

(f1) , λ(p,q,t)L
g1

(f2)
}
.

Now without loss of generality, let λ
(p,q,t)L
g1 (f1) < λ

(p,q,t)L
g1 (f2) and f =

f1 · f2. Then λ
(p,q,t)L
g1 (f) ≤ λ

(p,q,t)L
g1 (f2) . Further, f2 = f

f1
and Tf1 (r) =

T 1
f1

(r)+O(1). Therefore Tf2 (r) ≤ Tf (r)+Tf1 (r)+O(1) and in this case

we obtain that λ
(p,q,t)L
g1 (f2) ≤ max

{
λ

(p,q,t)L
g1 (f) , λ

(p,q,t)L
g1 (f1)

}
. As we as-

sume that λ
(p,q,t)L
g1 (f1) < λ

(p,q,t)L
g1 (f2) , therefore we have λ

(p,q,t)L
g1 (f2) ≤

λ
(p,q,t)L
g1 (f) and hence λ

(p,q,t)L
g1 (f) = λ

(p,q,t)L
g1 (f2) = max

{
λ

(p,q,t)L
g1 (f1) , λ

(p,q,t)L
g1 (f2)

}
.

Therefore, λ
(p,q,t)L
g1 (f1 · f2) = λ

(p,q,t)L
g1 (fi) | i = 1, 2 provided λ

(p,q,t)L
g1 (f1) 6=

λ
(p,q,t)L
g1 (f2) . Hence the theorem follows.

Next we prove the result for the quotient f1
f2
, provided f1

f2
is entire.

Theorem 8. Let f1, f2 and g1 be any three entire functions such that
at least f1 or f2 is of regular relative (p, q, t) growth with respect to g1

where p, q ∈ N and t ∈ N∪{−1, 0}. Also let g1 satisfy the Property (A).
Then

λ(p,q,t)L
g1

(
f1

f2

)
≤ max

{
λ(p,q,t)L
g1

(f1) , λ(p,q,t)L
g1

(f2)
}
.

The equality holds when at least f2 is of regular relative (p, q, t) growth

with respect to g1 and λ
(p,q,t)L
g1 (f1) 6= λ

(p,q,t)L
g1 (f2).

Proof. Since T
f2

(r) = T 1
f2

(r) +O(1) and T
f1
f2

(r) ≤ T
f1

(r) + T 1
f2

(r) ,

we get in view of Theorem 7 that

(13) λ(p,q,t)L
g1

(
f1

f2

)
≤ max

{
λ(p,q,t)L
g1

(f1) , λ(p,q,t)L
g1

(f2)
}
.

Now in order to prove the equality conditions, we discuss the following
two cases:

Case I. Suppose f1
f2

(= h) satisfies the following condition

λ(p,q,t)L
g1

(f1) < λ(p,q,t)L
g1

(f2) ,

and f2 is of regular relative (p, q, t) growth with respect to g1.
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Now if possible, let λ
(p,q,t)L
g1

(
f1
f2

)
< λ

(p,q,t)L
g1 (f2). Therefore from f1 =

h · f2 we get that λ
(p,q,t)L
g1 (f1) = λ

(p,q,t)L
g1 (f2) which is a contradiction.

Therefore λ
(p,q,t)L
g1

(
f1
f2

)
≥ λ

(p,q,t)L
g1 (f2) and in view of (13), we get that

λ(p,q,t)L
g1

(
f1

f2

)
= λ(p,q,t)L

g1
(f2) .

Case II. Suppose f1
f2

(= h) satisfies the following condition

λ(p,q,t)L
g1

(f1) > λ(p,q,t)L
g1

(f2) ,

and f2 is of regular relative (p, q, t) growth with respect to g1.

Now from f1 = h · f2 we get that either λ
(p,q,t)L
g1 (f1) ≤ λ

(p,q,t)L
g1

(
f1
f2

)
or

λ
(p,q,t)L
g1 (f1) ≤ λ

(p,q,t)L
g1 (f2). But according to our assumption λ

(p,q,t)L
g1 (f1) �

λ
(p,q,t)L
g1 (f2). Therefore λ

(p,q,t)L
g1

(
f1
f2

)
≥ λ

(p,q,t)L
g1 (f1) and in view of (13),

we get that

λ(p,q,t)L
g1

(
f1

f2

)
= λ(p,q,t)L

g1
(f1) .

Thus the theorem follows.

Now we state the following theorem which can easily be carried out in
the line of Theorem 7 and Theorem 8 and therefore its proof is omitted.

Theorem 9. Let f1, f2 and g1 be any three entire functions such

that such that ρ
(p,q,t)L
g1 (f1) and ρ

(p,q,t)L
g2 (f1) exists where p, q ∈ N and

t ∈ N ∪ {−1, 0}. Also let g1 satisfy the Property (A). Then

ρ(p,q,t)L
g1

(f1 · f2) ≤ max
{
ρ(p,q,t)L
g1

(f1) , ρ(p,q,t)L
g1

(f2)
}
.

The equality holds when ρ
(p,q,t)L
g1 (f1) 6= ρ

(p,q,t)L
g1 (f2).

Similar results hold for the quotient f1
f2

, provided f1
f2

is entire.

Theorem 10. Let f1, g1 and g2 be any three entire functions such that

λ
(p,q,t)L
g1 (f1) and λ

(p,q,t)L
g2 (f1) exists where p, q ∈ N and t ∈ N ∪ {−1, 0}.

Also let g1 · g2 satisfy the Property (A). Then

λ(p,q,t)L
g1·g2 (f1) ≥ min

{
λ(p,q,t)L
g1

(f1) , λ(p,q,t)L
g2

(f1)
}
.

The equality holds when λ
(p,q,t)L
gi (f1) < λ

(p,q,t)L
gj (f1) where i = j = 1, 2

and i 6= j and gi satisfy the Property (A).
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Similar results hold for the quotient g1
g2

, provided g1
g2

is entire and satisfy

the Property (A). The equality holds when λ
(p,q,t)L
g1 (f1) 6= λ

(p,q,t)L
g2 (f1)

and g1 satisfy the Property (A).

Proof. Let λ
(p,q,t)L
g1·g2 (f1) < ∞. Otherwise if λ

(p,q,t)L
g1·g2 (f1) = ∞ then the

result is obvious. Also suppose that min
{
λ

(p,q,t)L
g1 (f1) , λ

(p,q,t)L
g2 (f1)

}
=

Ψ . We can clearly assume that λ
(p,q,t)L
gk (f1) is finite for k = 1, 2.

Now for any arbitrary ε > 0, with ε < Ψ, we obtain for all sufficiently
large values of r that

Mgk

[
exp[p]

[(
λ(p,q,t)L
gk

(f1)− ε

2

) [
log[q] r + exp[t] L (r)

]]]
≤

Mf1 (r) where k = 1, 2

(14) i.e., Mgk

[
exp[p]

[(
Ψ− ε

2

) [
log[q] r + exp[t] L (r)

]]]
≤

Mf1 (r) where k = 1, 2 .

Observe that
Ψ− ε

2

Ψ− ε
> 1 .

Now we consider the expression
exp[p−1][(Ψ− ε

2)[log[q] r+exp[t] L(r)]]
exp[p−1][(Ψ−ε)[log[q] r+exp[t] L(r)]]

for all

sufficiently large values of r. Thus for any δ > 1, it follows from the
above expression for all sufficiently large values of r, say r ≥ r1 ≥ r0

that

(15)
exp[p−1]

[(
Ψ− ε

2

) [
log[q] r0 + exp[t] L (r0)

]]
exp[p−1]

[
(Ψ− ε)

[
log[q] r0 + exp[t] L (r0)

]] = δ .

Since Tg1·g2 (r) ≤ Tg1 (r) + Tg2 (r) for all large r, therefore in view of
Lemma 3 we get that

1

3
logMg1·g2

(r
2

)
≤ logMg1 (r) + logMg2 (r) .

Now from (14) and in view of above, we have for all sufficiently large
values of r that

logMg1·g2

(
1

2
exp[p]

[(
Ψ− ε

2

) [
log[q] r + exp[t] L (r)

]])
≤ 6 logMf1 (r)



230 Tanmay Biswas

i.e.,

[
Mg1·g2

(
1

2
exp[p]

[(
Ψ− ε

2

) [
log[q] r + exp[t] L (r)

]])] 1
6

≤Mf1 (r) .

Also in view of Lemma 2, we obtain from above for all sufficiently
large values of r that

Mg1·g2

([
1

2
exp[p]

[(
Ψ− ε

2

) [
log[q] r + exp[t] L (r)

]]] 1
δ

)
≤Mf1 (r) ,

since g1 · g2 has the Property (A) and δ > 1.
Therefore in view of (15), it follows from above for all sufficiently large

values of r that

Mg1·g2

((
1

2

) 1
δ

exp[p]
[
(Ψ− ε)

[
log[q] r + exp[t] L (r)

]])
< Mf1 (r) .

So from above we get for all sufficiently large values of r that

log[p] M−1
g1·g2Mf1 (r) +O(1)[

log[q] r + exp[t] L (r)
] > (Ψ− ε) .

Since ε > 0 is arbitrary, we get from above that

(16) λ(p,q,t)L
g1·g2 (f1) ≥ Ψ = min

{
λ(p,q,t)L
g1

(f1) , λ(p,q,t)L
g2

(f1)
}
.

Now without loss of generality, we may consider that λ
(p,q,t)L
g1 (f1) <

λ
(p,q,t)L
g2 (f1) and g = g1 · g2. Then λ

(p,q,t)L
g (f1) ≥ λ

(p,q,t)L
g1 (f1) . Fur-

ther, g1 = g
g2

and and Tg2 (r) = T 1
g2

(r) + O(1). Therefore Tg1 (r) ≤

Tg (r) + Tg2 (r) + O(1) and in this case we obtain that λ
(p,q,t)L
g1 (f1) ≥

min
{
λ

(p,q,t)L
g (f1) , λ

(p,q,t)L
g2 (f1)

}
.As we assume that λ

(p,q,t)L
g1 (f1) < λ

(p,q,t)L
g2 (f1) ,

so we have λ
(p,q,t)L
g1 (f1) ≥ λ

(p,q,t)L
g (f1) and hence λ

(p,q,t)L
g (f1) = λ

(p,q,t)L
g1 (f1)

= min
{
λ

(p,q,t)L
g1 (f1) , λ

(p,q,t)L
g2 (f1)

}
. Therefore, λ

(p,q,t)L
g1·g2 (f1) = λ

(p,q,t)L
gi (f1) |

i = 1, 2 provided λ
(p,q,t)L
g1 (f1) < λ

(p,q,t)L
g2 (f1), g1 · g2 and g1 are satisfy the

Property (A).
Hence the first part of the theorem follows.
Now we prove our results for the quotient g1

g2
, provided g1

g2
is entire

and λ
(p,q,t)L
g1 (f1) 6= λ

(p,q,t)L
g2 (f1).
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Since Tg2 (r) = T 1
g2

(r) +O(1) and T g1
g2

(r) ≤ Tg1 (r) + T 1
g2

(r) , we get

in view of (16) that

(17) λ
(p,q,t)L
g1
g2

(f1) ≥ Ψ = min
{
λ(p,q,t)L
g1

(f1) , λ(p,q,t)L
g2

(f1)
}
.

Now in order to prove the equality conditions, we discuss the following
two cases:

Case I. Suppose g1
g2

(= h) satisfies the following condition

λ(p,q,t)L
g1

(f1) > λ(p,q,t)L
g2

(f1) .

Now if possible, let λ
(p,q,t)L
g1
g2

(f1) > λ
(p,q,t)L
g2 (f1). Therefore from g1 =

h · g2 we get that λ
(p,q,t)L
g1 (f1) = λ

(p,q,t)L
g2 (f1), which is a contradiction.

Therefore λ
(p,q,t)L
g1
g2

(f1) ≤ λ
(p,q,t)L
g2 (f1) and in view of (17), we get that

λ
(p,q,t)L
g1
g2

(f1) = λ(p,q,t)L
g2

(f1) .

Case II. Suppose that g1
g2

(= h) satisfies the following condition

λ(p,q,t)L
g1

(f1) < λ(p,q,t)L
g2

(f1) .

Therefore from g1 = h·g2, we get that either λ
(p,q,t)L
g1 (f1) ≥ λ

((p,q,t)L)
g1
g2

(f1)

or λ
(p,q,t)L
g1 (f1) ≥ λ

(p,q,t)L
g2 (f1). But according to our assumption λ

(p,q,t)L
g1 (f1) �

λ
(p,q,t)L
g2 (f1). Therefore λ

(p,q,t)L
g1
g2

(f1) ≤ λ
(p,q,t)L
g1 (f1) and in view of (17),

we get that

λ
(p,q,t)L
g1
g2

(f1) = λ(p,q,t)L
g1

(f1) .

Hence the theorem follows.

Theorem 11. Let f1, g1 and g2 be any three entire functions such that

ρ
(p,q,t)L
g1 (f1) and ρ

(p,q,t)L
g2 (f1) exists where p, q ∈ N and t ∈ N ∪ {−1, 0}.

Further let f1 is of regular relative (p, q, t) growth with respect to at
least any one of g1 or g2. Also let g1 · g2 satisfy the Property (A). Then

ρ(p,q,t)L
g1·g2 (f1) ≥ min

{
ρ(p,q,t)L
g1

(f1) , ρ(p,q,t)L
g2

(f1)
}
.

The equality holds when ρ
(p,q,t)L
gi (f1) < ρ

(p,q,t)L
gj (f1) with at least f1 is of

regular relative (p, q, t) growth with respect to gj where i = j = 1, 2 and
i 6= j and gi satisfy the Property (A).
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Theorem 12. Let f1, g1 and g2 be any three entire functions such that

ρ
(p,q,t)L
g1 (f1) and ρ

(p,q,t)L
g2 (f1) exists where p, q ∈ N and t ∈ N ∪ {−1, 0}.

Further let f1 is of regular relative (p, q, t) growth with respect to at
least any one of g1 or g2. Also let g1

g2
is entire and satisfy the Property

(A). Then

ρ
(p,q,t)L
g1
g2

(f1) ≥ min
{
ρ(p,q,t)L
g1

(f1) , ρ(p,q,t)L
g2

(f1)
}
.

The equality holds when ρ
(p,q,t)L
g1 (f1) 6= ρ

(p,q,t)L
g2 (f1) , at least f1 is of

regular relative (p, q, t) growth with respect to g2 and g1 satisfy the
Property (A).

We omit the proof of Theorem 11 and Theorem 12 as those can easily
be carried out in the line of Theorem 10.

Now we state the following four theorems without their proofs as
those can easily be carried out in the line of Theorem 5 and Theorem 6
respectively.

Theorem 13. Let f1, f2, g1 and g2 be any four entire functions. Also
let g1 · g2 satisfy the Property (A). Then for any p, q ∈ N and t ∈
N ∪ {−1, 0} ,
ρ(p,q,t)L
g1·g2 (f1 · f2)

≤ max
[
min

{
ρ(p,q,t)L
g1

(f1) , ρ(p,q,t)L
g2

(f1)
}
,min

{
ρ(p,q,t)L
g1

(f2) , ρ(p,q,t)L
g2

(f2)
}]
,

when the following two conditions holds:

(i) ρ
(p,q,t)L
gi (f1) < ρ

(p,q,t)L
gj (f1) with at least f1 is of regular relative (p, q, t)

growth with respect to gj and gi satisfy the Property (A) for i = 1, 2, j
= 1, 2 and i 6= j and

(ii) ρ
(p,q,t)L
gi (f2) < ρ

(p,q,t)L
gj (f2) with at least f2 is of regular relative (p, q, t)

growth with respect to gj and gi satisfy the Property (A) for i = 1, 2, j
= 1, 2 and i 6= j;

The equality holds when ρ
(p,q,t)L
g1 (fi) < ρ

(p,q,t)L
g1 (fj) and ρ

(p,q)
g2 (fi) <

ρ
(p,q,t)L
g2 (fj) holds simultaneously for i = 1, 2; j = 1, 2 and i 6= j.

Theorem 14. Let f1, f2, g1 and g2 be any four entire functions. Also
let g1 · g2, g1 and g2 be satisfy the Property (A). Then for any p, q ∈ N
and t ∈ N ∪ {−1, 0} ,
λ(p,q,t)L
g1·g2 (f1 · f2)

≥ min
[
max

{
λ(p,q,t)L
g1

(f1) , λ(p,q,t)L
g1

(f2)
}
,max

{
λ(p,q,t)L
g2

(f1) , λ(p,q,t)L
g2

(f2)
}]
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when the following two conditions holds:

(i) λ
(p,q,t)L
g1 (fi) > λ

(p,q,t)L
g1 (fj) with at least fj is of regular relative (p, q, t)

growth with respect to g1 for i = 1, 2, j = 1, 2 and i 6= j; and

(ii) λ
(p,q,t)L
g2 (fi) > λ

(p,q,t)L
g2 (fj) with at least fj is of regular relative (p, q, t)

growth with respect to g2 for i = 1, 2, j = 1, 2 and i 6= j.

The equality holds when λ
(p,q,t)L
gi (f1) < λ

(p,q,t)L
gj (f1) and λ

(p,q,t)L
gi (f2) <

λ
(p,q,t)L
gj (f2) holds simultaneously for i = 1, 2; j = 1, 2 and i 6= j.

Theorem 15. Let f1, f2, g1 and g2 be any four entire functions. Also
let g1

g2
satisfy the Property (A). Then for any p, q ∈ N and t ∈ N∪{−1, 0} ,

ρ
(p,q,t)L
g1
g2

(
f1

f2

)
≤ max

[
min

{
ρ(p,q,t)L
g1

(f1) , ρ(p,q)
g2

(f1)
}
,min

{
ρ(p,q,t)L
g1

(f2) , ρ(p,q)
g2

(f2)
}]

when the following two conditions holds:
(i) At least f1 is of regular relative (p, q) growth with respect to g2 and

ρ
(p,q,t)L
g1 (f1) 6= ρ

(p,q,t)L
g2 (f1); and

(ii) At least f2 is of regular relative (p, q) growth with respect to g2 and

ρ
(p,q,t)L
g1 (f2) 6= ρ

(p,q,t)L
g2 (f2).

The equality holds when ρ
(p,q,t)L
g1 (fi) < ρ

(p,q,t)L
g1 (fj) and ρ

(p,q,t)L
g2 (fi) <

ρ
(p,q,t)L
g2 (fj) holds simultaneously for i = 1, 2; j = 1, 2 and i 6= j.

Theorem 16. Let f1, f2, g1 and g2 be any four entire functions such
that f1

f2
and g1

g2
are also entire functions. Also let g1

g2
, g1 and g2 are satisfy

the Property (A). Then for any p, q ∈ N and t ∈ N ∪ {−1, 0} ,

λ
(p,q,t)L
g1
g2

(
f1

f2

)
≥ min

[
max

{
λ(p,q,t)L
g1

(f1) , λ(p,q,t)L
g1

(f2)
}
,max

{
λ(p,q,t)L
g2

(f1) , λ(p,q,t)L
g2

(f2)
}]

when the following two conditions hold:
(i) At least f2 is of regular relative (p, q, t) growth with respect to g1 and

λ
(p,q,t)L
g1 (f1) 6= λ

(p,q,t)L
g1 (f2); and

(ii) At least f2 is of regular relative (p, q, t) growth with respect to g2

and λ
(p,q,t)L
g2 (f1) 6= λ

(p,q,t)L
g2 (f2).

The sign of equality holds when λ
(p,q,t)L
gi (f1) < λ

(p,q,t)L
gj (f1) and λ

(p,q,t)L
gi (f2)

< λ
(p,q,t)L
gj (f2) holds simultaneously for i = 1, 2; j = 1, 2 and i 6= j.
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Next we find out the sum and product theorems of relative (p, q, t)L-
th type ( respectively relative (p, q, t)L-th lower type) and relative (p, q, t)L-
th weak type of entire function with respect to an entire function taking
into consideration of the above theorems.

Theorem 17. Let f1, f2, g1 and g2 be any four entire functions. Also

let ρ
(p,q,t)L
g1 (f1), ρ

(p,q,t)L
g1 (f2), ρ

(p,q,t)L
g2 (f1) and ρ

(p,q,t)L
g2 (f2) are all non zero

and finite where p, q ∈ N and t ∈ N ∪ {−1, 0}.
(A) If ρ

(p,q,t)L
g1 (fi) > ρ

(p,q,t)L
g1 (fj) for i = j = 1, 2 and i 6= j, then

σ(p,q,t)L
g1

(f1 ± f2) = σ(p,q,t)L
g1

(fi) | i = 1, 2 and

σ(p,q,t)L
g1

(f1 ± f2) = σ(p,q,t)L
g1

(fi) | i = 1, 2 .

(B) If ρ
(p,q,t)L
gi (f1) < ρ

(p,q,t)L
gj (f1) with at least f1 is of regular relative

(p, q, t) growth with respect to gj for i = j = 1, 2 and i 6= j, then

σ
(p,q,t)L
g1±g2 (f1) = σ(p,q,t)L

gi
(f1) | i = 1, 2 and

σ
(p,q,t)L
g1±g2 (f1) = σ(p,q,t)L

gi
(f1) | i = 1, 2 .

(C) Assume the functions f1, f2, g1 and g2 satisfy the following condi-
tions:
(i) ρ

(p,q,t)L
gi (f1) < ρ

(p,q,t)L
gj (f1) with at least f1 is of regular relative (p, q, t)

growth with respect to gj for i = 1, 2, j = 1, 2 and i 6= j;

(ii) ρ
(p,q,t)L
gi (f2) < ρ

(p,q,t)L
gj (f2) with at least f2 is of regular relative (p, q, t)

growth with respect to gj for i = 1, 2, j = 1, 2 and i 6= j;

(iii) ρ
(p,q,t)L
g1 (fi) > ρ

(p,q,t)L
g1 (fj) and ρ

(p,q,t)L
g2 (fi) > ρ

(p,q,t)L
g2 (fj) holds si-

multaneously for i = 1, 2; j = 1, 2 and i 6= j;

(iv) ρ
(p,q,t)L
gm (fl) =

max
[
min

{
ρ

(p,q,t)L
g1 (f1) , ρ

(p,q,t)L
g2 (f1)

}
,min

{
ρ

(p,q,t)L
g1 (f2) , ρ

(p,q,t)L
g2 (f2)

}]
|

l = m = 1, 2;
then we have

σ
(p,q,t)L
g1±g2 (f1 ± f2) = σ(p,q,t)L

gm (fl) | l = m = 1, 2

and
σ

(p,q,t)L
g1±g2 (f1 ± f2) = σ(p,q,t)L

gm (fl) | l = m = 1, 2 .

Proof. From the definition of relative (p, q, t)L-th type and relative
(p, q, t)L-th lower type of entire function, we have for all sufficiently
large values of r that

(18) Mfk (r) ≤
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Mgl

[
exp[p−1]

{(
σ(p,q,t)L
gl

(fk) + ε
) [

log[q−1] r · exp[t+1] L (r)
]ρ(p,q,t)Lgl

(fk)
}]

,

(19) Mfk (r) ≥

Mgl

[
exp[p−1]

{(
σ(p,q,t)L
gl

(fk)− ε
) [

log[q−1] r · exp[t+1] L (r)
]ρ(p,q,t)Lgl

(fk)
}]

and for a sequence of values of r tending to infinity, we obtain that

(20) Mfk (r) ≥

Mgl

[
exp[p−1]

{(
σ(p,q,t)L
gl

(fk)− ε
) [

log[q−1] r · exp[t+1] L (r)
]ρ(p,q,t)Lgl

(fk)
}]

and

(21) Mfk (r) ≤

Mgl

[
exp[p−1]

{(
σ(p,q,t)L
gl

(fk) + ε
) [

log[q−1] r · exp[t+1] L (r)
]ρ(p,q,t)Lgl

(fk)
}]

,

where ε > 0 is any arbitrary positive number k = 1, 2 and l = 1, 2.

Case I. Suppose that ρ
(p,q,t)L
g1 (f1) > ρ

(p,q,t)L
g1 (f2) hold. Also let ε (> 0)

be arbitrary. Now from (18) , we get for all sufficiently large values of r
that

Mf1±f2 (r) ≤

Mg1

[
exp[p−1]

{(
σ(p,q,t)L
g1 (f1) + ε

) [
log[q−1] r · exp[t+1] L (r)

]ρ(p,q,t)Lg1
(f1)
}]

(1 + ω1) ,

where ω1 =
Mg1

[
exp[p−1]

{(
σ
(p,q,t)L
g1

(f2)+ε
)
[log[q−1] r·exp[t+1] L(r)]

ρ
(p,q,t)L
g1

(f2)

}]

Mg1

[
exp[p−1]

{(
σ
(p,q,t)L
g1

(f1)+ε
)
[log[q−1] r·exp[t+1] L(r)]

ρ
(p,q,t)L
g1

(f1)

}] , and

in view of ρ
(p,q,t)L
g1 (f1) > ρ

(p,q,t)L
g1 (f2), and for all sufficiently large values

of r, we can make the term ω1sufficiently small . Hence for any α = 1+ε1,
it follows from above inequality for all sufficiently large values of r that

Mf1±f2 (r) ≤

Mg1

[
exp[p−1]

{(
σ(p,q,t)L
g1 (f1) + ε

) [
log[q−1] r · exp[t+1] L (r)

]ρ(p,q,t)Lg1
(f1)
}]

(1 + ε1)

i.e., Mf1±f2 (r) ≤
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Mg1

[
exp[p−1]

{(
σ(p,q,t)L
g1 (f1) + ε

) [
log[q−1] r · exp[t+1] L (r)

]ρ(p,q,t)Lg1
(f1)
}]
·α .

Since ε > 0 is arbitrary, therefore by making α → 1+, we obtain in

view of Theorem 2 , ρ
(p,q,t)L
g1 (f1) > ρ

(p,q,t)L
g1 (f2), and for all sufficiently

large values of r that

lim
r→∞

log[p−1]M−1
g1
Mf1±f2 (r)[

log[q−1] r · exp[t+1] L (r)
]ρ(p,q,t)Lg1

(f1±f2)
≤ σ(p,q,t)L

g1
(f1)

(22) i.e., σ(p,q,t)L
g1

(f1 ± f2) ≤ σ(p,q,t)L
g1

(f1) .

Now we may consider that f = f1±f2. Since ρ
(p,q,t)L
g1 (f1) > ρ

(p,q,t)L
g1 (f2)

hold. Then σ
(p,q,t)L
g1 (f) = σ

(p,q,t)L
g1 (f1 ± f2) ≤ σ

(p,q,t)L
g1 (f1) . Further, let

f1 = (f ± f2). Therefore in view of Theorem 2 and ρ
(p,q,t)L
g1 (f1) >

ρ
(p,q,t)L
g1 (f2), we obtain that ρ

(p,q,t)L
g1 (f) > ρ

(p,q,t)L
g1 (f2) holds. Therefore

in view of (22) , σ
(p,q,t)L
g1 (f1) ≤ σ

(p,q,t)L
g1 (f) = σ

(p,q,t)L
g1 (f1 ± f2) . Hence

σ
(p,q,t)L
g1 (f) = σ

(p,q,t)L
g1 (f1) ⇒ σ

(p,q,t)L
g1 (f1 ± f2) = σ

(p,q,t)L
g1 (f1).

Similarly, if we consider ρ
(p,q,t)L
g1 (f1) < ρ

(p,q,t)L
g1 (f2) , then one can easily

verify that σ
(p,q,t)L
g1 (f1 ± f2) = σ

(p,q,t)L
g1 (f2).

Case II. Let us consider that ρ
(p,q,t)L
g1 (f1) > ρ

(p,q,t)L
g1 (f2) hold. Also let

ε (> 0) are arbitrary.
Now from (18) and (21) , we get for a sequence of values of r tending

to infinity that

Mf1±f2 (rn) ≤

Mg1

[
exp[p−1]

{(
σ(p,q,t)L
g1 (f1) + ε

) [
log[q−1] rn · exp[t+1] L (rn)

]ρ(p,q,t)Lg1
(f1)
}]

(1 + ω2) ,

where ω2 =
Mg1

[
exp[p−1]

{(
σ
(p,q,t)L
g1

(f2)+ε
)
[log[q−1] rn·exp[t+1] L(rn)]

ρ
(p,q,t)L
g1

(f2)

}]

Mg1

[
exp[p−1]

{(
σ
(p,q,t)L
g1

(f1)+ε
)
[log[q−1] rn·exp[t+1] L(rn)]

ρ
(p,q,t)L
g1

(f1)

}] ,
and in view of ρ

(p,q,t)L
g1 (f1) > ρ

(p,q,t)L
g1 (f2), we can make the term ω2 suffi-

ciently small by taking n sufficiently large and therefore using the similar
technique for as executed in the proof of Case I we get from above in-

equality that σ(p,q,t)L
g1

(f1 ± f2) = σ(p,q,t)L
g1

(f1) when ρ
(p,q,t)L
g1 (f1) > ρ

(p,q,t)L
g1 (f2)

hold.
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Likewise, if we consider ρ
(p,q,t)L
g1 (f1) < ρ

(p,q,t)L
g1 (f2) , then one can easily

verify that σ(p,q,t)L
g1

(f1 ± f2) = σ(p,q,t)L
g1

(f2).
Thus combining Case I and Case II, we obtain the first part of the

theorem.

Case III. Let us consider that ρ
(p,q,t)L
g1 (f1) < ρ

(p,q,t)L
g2 (f1) with at least f1

is of regular relative (p, q, t) growth with respect to g2. We can make the

term ω3 =
Mg2

[
exp[p−1]

{(
σ
(p,q,t)L
g1

(f1)−ε
)
[log[q−1] rn·exp[t+1] L(rn)]

ρ
(p,q,t)L
g1

(f1)

}]

Mg2

[
exp[p−1]

{(
σ
(p,q,t)L
g2

(f1)−ε
)
[log[q−1] rn·exp[t+1] L(rn)]

ρ
(p,q,t)L
g2

(f1)

}] suf-

ficiently small by taking n sufficiently large, since ρ
(p,q,t)L
g1 (f1) < ρ

(p,q,t)L
g2 (f1) .

Hence ω3 < ε1.
Now

Mg1±g2

(
exp[p−1]

{(
σ(p,q,t)L
g1 (f1)− ε

) [
log[q−1] rn · exp[t+1] L (rn)

]ρ(p,q,t)Lg1
(f1)
})
≤

Mg1

[
exp[p−1]

{(
σ(p,q,t)L
g1 (f1)− ε

) [
log[q−1] rn · exp[t+1] L (rn)

]ρ(p,q,t)Lg1
(f1)
}]

+

Mg2

[
exp[p−1]

{(
σ(p,q,t)L
g1 (f1)− ε

) [
log[q−1] rn · exp[t+1] L (rn)

]ρ(p,q,t)Lg1
(f1)
}]

.

Therefore for any α = 1 + ε1, we obtain in view of ω3 < ε1, (19) and
(20) for a sequence of values of r tending to infinity that

Mg1±g2

(
exp[p−1]

{(
σ(p,q,t)L
g1 (f1)− ε

) [
log[q−1] rn · exp[t+1] L (rn)

]ρ(p,q,t)Lg1
(f1)
})

≤ αMf1 (rn)

Now making α→ 1+, we obtain from above for a sequence of values
of r tending to infinity that(
σ(p,q,t)L
g1

(f1)− ε
) [

log[q−1] rn · exp[t+1] L (rn)
]ρ(p,q,t)Lg1±g2

(f1)

< log[p−1]M−1
g1±g2Mf1 (rn)

Since ε > 0 is arbitrary, we find that

(23) σ
(p,q,t)L
g1±g2 (f1) ≥ σ(p,q,t)L

g1
(f1) .

Now we may consider that g = g1±g2. Also ρ
(p,q,t)L
g1 (f1) < ρ

(p,q,t)L
g2 (f1)

and at least f1 is of regular relative (p, q, t) growth with respect to
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g2. Then σ
(p,q,t)L
g (f1) = σ

(p,q,t)L
g1±g2 (f1) ≥ σ

(p,q,t)L
g1 (f1) . Further let g1 =

(g ± g2). Therefore in view of Theorem 4 and ρ
(p,q,t)L
g1 (f1) < ρ

(p,q,t)L
g2 (f1),

we obtain that ρ
(p,q,t)L
g (f1) < ρ

(p,q,t)L
g2 (f1) as at least f1 is of regu-

lar relative (p, q, t) growth with respect to g2. Hence in view of (23),

σ
(p,q,t)L
g1 (f1) ≥ σ

(p,q,t)L
g (f1) = σ

(p,q,t)L
g1±g2 (f1) . Therefore σ

(p,q,t)L
g (f1) = σ

(p,q,t)L
g1 (f1)

⇒ σ
(p,q,t)L
g1±g2 (f1) = σ

(p,q,t)L
g1 (f1).

Similarly if we consider ρ
(p,q,t)L
g1 (f1) > ρ

(p,q,t)L
g2 (f1) with at least f1 is

of regular relative (p, q, t) growth with respect to g1, then σ
(p,q,t)L
g1±g2 (f1) =

σ
(p,q,t)L
g2 (f1) .

Case IV. In this case suppose that ρ
(p,q,t)L
g1 (f1) < ρ

(p,q,t)L
g2 (f1) with at

least f1 is of regular relative (p, q, t) growth with respect to g2. we can also

make the term ω4 =
Mg2

[
exp[p−1]

{(
σ
(p,q,t)L
g1

(f1)−ε
)
[log[q−1] r·exp[t+1] L(r)]

ρ
(p,q,t)L
g1

(f1)

}]

Mg2

[
exp[p−1]

{(
σ
(p,q,t)L
g2

(f1)−ε
)
[log[q−1] r·exp[t+1] L(r)]

ρ
(p,q,t)L
g2

(f1)

}]
sufficiently small by taking r sufficiently large as ρ

(p,q,t)L
g1 (f1) < ρ

(p,q,t)L
g2 (f1) .

So ω4 < ε1 for sufficiently large r. Therefore in view of (19) , we obtain
for all sufficiently large values of r that

Mg1±g2

(
exp[p−1]

{(
σ(p,q,t)L
g1 (f1)− ε

) [
log[q−1] r · exp[t+1] L (r)

]ρ(p,q,t)Lg1
(f1)
})
≤

Mg1

[
exp[p−1]

{(
σ(p,q,t)L
g1 (f1)− ε

) [
log[q−1] r · exp[t+1] L (r)

]ρ(p,q,t)Lg1
(f1)
}]

+

Mg2

[
exp[p−1]

{(
σ(p,q,t)L
g1 (f1)− ε

) [
log[q−1] r · exp[t+1] L (r)

]ρ(p,q,t)Lg1
(f1)
}]

.

Therefore from above it follows for all sufficiently large values of r that

Mg1±g2

(
exp[p−1]

{(
σ(p,q,t)L
g1 (f1)− ε

) [
log[q−1] r · exp[t+1] L (r)

]ρ(p,q,t)Lg1
(f1)
})

(24) ≤ (1 + ε1)Mf1 (r) .,

and therefore using the similar technique for as executed in the proof

of Case III we get from (24) that σ
(p,q,t)L
g1±g2 (f1) = σ(p,q,t)L

g1
(f1) where

ρ
(p,q,t)L
g1 (f1) < ρ

(p,q,t)L
g2 (f1) and at least f1 is of regular relative (p, q, t)

growth with respect to g2.
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Likewise if we consider ρ
(p,q,t)L
g1 (f1) > ρ

(p,q,t)L
g2 (f1) with at least f1 is

of regular relative (p, q, t) growth with respect to g1, then σ
(p,q,t)L
g1±g2 (f1) =

σ(p,q,t)L
g2

(f1) .
Thus combining Case III and Case IV, we obtain the second part of

the theorem.
The third part of the theorem is a natural consequence of Theorem

5 and the first part and second part of the theorem. Hence its proof is
omitted.

Theorem 18. Let f1, f2, g1 and g2 be any four entire functions. Also

let λ
(p,q,t)L
g1 (f1), λ

(p,q,t)L
g1 (f2), λ

(p,q,t)L
g2 (f1) and λ

(p,q,t)L
g2 (f2) are all non zero

and finite where p, q ∈ N and t ∈ N ∪ {−1, 0}.
(A) If λ

(p,q,t)L
g1 (fi) > λ

(p,q,t)L
g1 (fj) with at least fj is of regular relative

(p, q, t) growth with respect to g1 for i = j = 1, 2 and i 6= j, then

τ (p,q,t)L
g1

(f1 ± f2) = τ (p,q,t)L
g1

(fi) | i = 1, 2 and

τ (p,q,t)L
g1

(f1 ± f2) = τ (p,q,t)L
g1

(fi) | i = 1, 2 .

(B) If λ
(p,q,t)L
gi (f1) < λ

(p,q,t)L
gj (f1) for i = j = 1, 2 and i 6= j, then

τ
(p,q,t)L
g1±g2 (f1) = τ (p,q,t)L

gi
(f1) | i = 1, 2 and

τ
(p,q,t)L
g1±g2 (f1) = τ (p,q,t)L

gi
(f1) | i = 1, 2 .

(C) Assume the functions f1, f2, g1 and g2 satisfy the following condi-
tions:
(i) ρ

(p,q,t)L
g1 (fi) > ρ

(p,q,t)L
g1 (fj) with at least fj is of regular relative (p, q, t)

growth with respect to g1 for i = j = 1, 2 and i 6= j;

(ii) ρ
(p,q,t)L
g2 (fi) > ρ

(p,q,t)L
g2 (fj) with at least fj is of regular relative (p, q, t)

growth with respect to g2 for i = j = 1, 2 and i 6= j;

(iii) ρ
(p,q,t)L
gi (f1) < ρ

(p,q,t)L
gj (f1) and ρ

(p,q,t)L
gi (f2) < ρ

(p,q,t)L
gj (f2) holds si-

multaneously for i = j = 1, 2 and i 6= j;

(iv)λ
(p,q,t)L
gm (fl) =

min
[
max

{
λ

(p,q,t)L
g1 (f1) , λ

(p,q,t)L
g1 (f2)

}
,max

{
λ

(p,q,t)L
g2 (f1) , λ

(p,q,t)L
g2 (f2)

}]
|

l = m = 1, 2;
then we have

τ
(p,q,t)L
g1±g2 (f1 ± f2) = τ (p,q,t)L

gm (fl) | l = m = 1, 2

and
τ

(p,q,t)L
g1±g2 (f1 ± f2) = τ (p,q,t)L

gm (fl) | l = m = 1, 2 .
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Proof. For any arbitrary positive number ε(> 0), we have for all suf-
ficiently large values of r that

(25) Mfk (r) ≤

Mgl

[
exp[p−1]

{(
τ (p,q,t)L
gl

(fk) + ε
) [

log[q−1] r · exp[t+1] L (r)
]λ(p,q,t)Lgl

(fk)
}]

,

(26) Mfk (r) ≥

Mgl

[
exp[p−1]

{(
τ (p,q,t)L
gl

(fk)− ε
) [

log[q−1] r · exp[t+1] L (r)
]λ(p,q,t)Lgl

(fk)
}]

and for a sequence of values of r tending to infinity we obtain that

(27) Mfk (r) ≥

Mgl

[
exp[p−1]

{(
τ (p,q,t)L
gl

(fk)− ε
) [

log[q−1] r · exp[t+1] L (r)
]λ(p,q,t)Lgl

(fk)
}]

and

(28) Mfk (r) ≤

Mgl

[
exp[p−1]

{(
τ (p,q,t)L
gl

(fk) + ε
) [

log[q−1] r · exp[t+1] L (r)
]λ(p,q,t)Lgl

(fk)
}]

,

where k = 1, 2 and l = 1, 2.

Case I. Let λ
(p,q,t)L
g1 (f1) > λ

(p,q,t)L
g1 (f2) with at least f2 is of regular

relative (p, q, t) growth with respect to g1. Also let ε (> 0) be arbitrary.
Now from (25) and (28) , we get for a sequence {rn} of values of r tending
to infinity that

Mf1±f2 (rn) ≤ (1 + ω5)

Mg1

[
exp[p−1]

{(
τ (p,q,t)L
g1 (f1) + ε

) [
log[q−1] rn · exp[t+1] L (rn)

]λ(p,q,t)Lg1
(f1)
}]

where ω5 =
Mg1

[
exp[p−1]

{(
τ
(p,q,t)L
g1

(f2)+ε
)
[log[q−1] rn·exp[t+1] L(rn)]

λ
(p,q,t)L
g1

(f2)

}]

Mg1

[
exp[p−1]

{(
τ
(p,q,t)L
g1

(f1)+ε
)
[log[q−1] rn·exp[t+1] L(rn)]

λ
(p,q,t)L
g1

(f1)

}] and

in view of λ
(p,q,t)L
g1 (f1) > λ

(p,q,t)L
g1 (f2), we can make the term ω5 suf-

ficiently small by taking n sufficiently large. Thus with the help of
Lemma 1 (a) and Theorem 1 and using the similar technique of Case I
of Theorem 17, we get from above inequality that

(29) τ (p,q,t)L
g1

(f1 ± f2) ≤ τ (p,q,t)L
g1

(f1) .
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Further, we may consider that f = f1±f2.Also suppose that λ
(p,q,t)L
g1 (f1)

> λ
(p,q,t)L
g1 (f2) and at least f2 is of regular relative (p, q, t) growth with

respect to g1. Then τ
(p,q,t)L
g1 (f) = τ

(p,q,t)L
g1 (f1 ± f2) ≤ τ

(p,q,t)L
g1 (f1) . Now

let f1 = (f ± f2). Therefore in view of Theorem 1, λ
(p,q,t)L
g1 (f1) >

λ
(p,q,t)L
g1 (f2) and at least f2 is of regular relative (p, q, t) growth with

respect to g1, we obtain that λ
(p,q,t)L
g1 (f) > λ

(p,q,t)L
g1 (f2) holds. Hence

in view of (29), τ
(p,q,t)L
g1 (f1) ≤ τ

(p,q,t)L
g1 (f) = τ

(p,q,t)L
g1 (f1 ± f2) . Therefore

τ
(p,q,t)L
g1 (f) = τ

(p,q,t)L
g1 (f1)⇒ τ

(p,q,t)L
g1 (f1 ± f2) = τ

(p,q,t)L
g1 (f1).

Similarly, if we consider λ
(p,q,t)L
g1 (f1) < λ

(p,q,t)L
g1 (f2) with at least f1 is

of regular relative (p, q, t) growth with respect to g1 then one can easily

verify that τ
(p,q,t)L
g1 (f1 ± f2) = τ

(p,q,t)L
g1 (f2).

Case II. Let us consider that λ
(p,q,t)L
g1 (f1) > λ

(p,q,t)L
g1 (f2) with at least f2

is of regular relative (p, q, t) growth with respect to g1. Also let ε (> 0)
be arbitrary. Now from (25) , we get for all sufficiently large values of r
that

Mf1±f2 (r) ≤ (1 + ω6)

Mg1

[
exp[p−1]

{(
τ (p,q,t)L
g1

(f1) + ε
) [

log[q−1] r · exp[t+1] L (r)
]λ(p,q,t)Lg1

(f1)
}]

,

where ω6 =
Mg1

[
exp[p−1]

{(
τ
(p,q,t)L
g1

(f2)+ε
)
[log[q−1] r·exp[t+1] L(r)]

λ
(p,q,t)L
gi

(f2)

}]

Mg1

[
exp[p−1]

{(
τ
(p,q,t)L
g1

(f1)+ε
)
[log[q−1] r·exp[t+1] L(r)]

λ
(p,q,t)L
g1

(f1)

}] and

in view of λ
(p,q,t)L
g1 (f1) > λ

(p,q,t)L
g1 (f2), we can make the term ω6 suffi-

ciently small by taking r sufficiently large and therefore for similar rea-
soning of Case I we get from above inequality that τ (p,q,t)L

g1
(f1 ± f2) =

τ (p,q,t)L
g1

(f1) when λ
(p,q,t)L
g1 (f1) > λ

(p,q,t)L
g1 (f2) and at least f2 is of regular

relative (p, q, t) growth with respect to g1.

Likewise, if we consider λ
(p,q,t)L
g1 (f1) < λ

(p,q,t)L
g1 (f2) with at least f1 is

of regular relative (p, q, t) growth with respect to g1 then one can easily
verify that τ (p,q,t)L

g1
(f1 ± f2) = τ (p,q,t)L

g1
(f2)

Thus combining Case I and Case II, we obtain the first part of the
theorem.

Case III. Let us consider that λ
(p,q,t)L
g1 (f1) < λ

(p,q,t)L
g2 (f1). Therefore we

can make the term
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ω7 =
Mg2

[
exp[p−1]

{(
τ
(p,q,t)L
g1

(f1)−ε
)
[log[q−1] rn·exp[t+1] L(rn)]

λ
(p,q,t)L
g1

(f1)

}]

Mg2

[
exp[p−1]

{(
τ
(p,q,t)L
g2

(f1)−ε
)
[log[q−1] rn·exp[t+1] L(rn)]

λ
(p,q,t)L
g2

(f1)

}] sufficiently

small by taking r sufficiently large since λ
(p,q,t)L
g1 (f1) < λ

(p,q,t)L
g2 (f1) . So

ω7 < ε1. Therefore, in view of (26) , we get for all sufficiently large values
of r that

Mg1±g2

(
exp[p−1]

{(
τ (p,q,t)L
g1 (f1)− ε

) [
log[q−1] rn · exp[t+1] L (rn)

]λ(p,q,t)Lg1
(f1)
})
≤

Mg1

[
exp[p−1]

{(
τ (p,q,t)L
g1 (f1)− ε

) [
log[q−1] rn · exp[t+1] L (rn)

]λ(p,q,t)Lg1
(f1)
}]

+

Mg2

[
exp[p−1]

{(
τ (p,q,t)L
g1 (f1)− ε

) [
log[q−1] rn · exp[t+1] L (rn)

]λ(p,q,t)Lg1
(f1)
}]

.

So from above we have for all sufficiently large values of r that

Mg1±g2

(
exp[p−1]

{(
τ (p,q,t)L
g1 (f1)− ε

) [
log[q−1] rn · exp[t+1] L (rn)

]λ(p,q,t)Lg1
(f1)
})

(30) ≤ (1 + ε1)Mf1 (r) .

Now with the help of Lemma 1 (a) and Theorem 3 and using the
similar technique of Case III of Theorem 17, we get from (30) that

(31) τ
(p,q,t)L
g1±g2 (f1) ≥ τ ((p,q,t)L)

g1
(f1) .

Further, we may consider that g = g1±g2.As λ
(p,q,t)L
g1 (f1) < λ

(p,q,t)L
g2 (f1),

so τ
(p,q,t)L
g (f1) = τ

(p,q,t)L
g1±g2 (f1) ≥ τ

(p,q,t)L
g1 (f1). Further let g1 = (g ± g2).

Therefore in view of Theorem 3 and λ
(p,q,t)L
g1 (f1) < λ

(p,q,t)L
g2 (f1) we obtain

that λ
(p,q,t)L
g (f1) < λ

(p,q,t)L
g2 (f1) holds. Hence in view of (31) τ

(p,q,t)L
g1 (f1) ≥

τ
(p,q,t)L
g (f1) = τ

(p,q,t)L
g1±g2 (f1) . Therefore τ

(p,q,t)L
g (f1) = τ

(p,q,t)L
g1 (f1)⇒ τ

(p,q,t)L
g1±g2 (f1)

= τ
(p,q,t)L
g1 (f1).

Likewise, if we consider that λ
(p,q,t)L
g1 (f1) > λ

(p,q,t)L
g2 (f1) , then one can

easily verify that τ
(p,q,t)L
g1±g2 (f1) = τ

(p,q,t)L
g2 (f1) .

Case IV. In this case further we consider λ
(p,q,t)L
g1 (f1) < λ

(p,q,t)L
g2 (f1).

Further we can make the term
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ω8 =
Mg2

[
exp[p−1]

{(
τ
(p,q,t)L
g1

(f1)−ε
)
[log[q−1] rn·exp[t+1] L(rn)]

λ
(p,q,t)L
g1

(f1)

}]

Mg2

[
exp[p−1]

{(
τ
(p,q,t)L
g2

(f1)−ε
)
[log[q−1] rn·exp[t+1] L(rn)]

λ
(p,q,t)L
g2

(f1)

}] sufficiently

small by taking n sufficiently large, since λ
(p,q,t)L
g1 (f1) < λ

(p,q,t)L
g2 (f1) .

Therefore ω8 < ε1 for sufficiently large n. Therefore now from (26) and
(27) , we obtain for a sequence {rn} of values of r tending to infinity that

Mg1±g2

(
exp[p−1]

{(
τ (p,q,t)L
g1 (f1)− ε

) [
log[q−1] rn · exp[t+1] L (rn)

]λ(p,q,t)Lg1
(f1)
})
≤

Mg1

[
exp[p−1]

{(
τ (p,q,t)L
g1 (f1)− ε

) [
log[q−1] rn · exp[t+1] L (rn)

]λ(p,q,t)Lg1
(f1)
}]

+

Mg2

[
exp[p−1]

{(
τ (p,q,t)L
g1 (f1)− ε

) [
log[q−1] rn · exp[t+1] L (rn)

]λ(p,q,t)Lg1
(f1)
}]

.

Therefore from above we get for a sequence {rn} of values of r tending
to infinity that

Mg1±g2

(
exp[p−1]

{(
τ (p,q,t)L
g1 (f1)− ε

) [
log[q−1] rn · exp[t+1] L (rn)

]λ(p,q,t)Lg1
(f1)
})

(32) ≤ (1 + ε1)Mf1 (r) ,

and therefore using the similar technique for as executed in the proof

of Case IV of Theorem 17, we get from (32) that τ
(p,q,t)L
g1±g2 (f1) = τ (p,q,t)L

g1
(f1)

when λ
(p,q,t)L
g1 (f1) < λ

(p,q,t)L
g2 (f1).

Similarly, if we consider that λ
(p,q,t)L
g1 (f1) > λ

(p,q,t)L
g2 (f1) , then one can

easily verify that τ
(p,q,t)L
g1±g2 (f1) = τ (p,q,t)L

g2
(f1) .

Thus combining Case III and Case IV, we obtain the second part of
the theorem.

The proof of the third part of the Theorem is omitted as it can be
carried out in view of Theorem 6 and the above cases.

In the next two theorems we reconsider the equalities in Theorem 1
to Theorem 4 under somewhat different conditions.

Theorem 19. Let f1, f2, g1 and g2 be any four entire functions. Also
let p, q ∈ N and t ∈ N ∪ {−1, 0}.
(A) The following condition is assumed to be satisfied:
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(i) Either σ
(p,q,t)L
g1 (f1) 6= σ

(p,q,t)L
g1 (f2) or σ(p,q,t)L

g1
(f1) 6= σ(p,q,t)L

g1
(f2) holds,

then

ρ(p,q,t)L
g1

(f1 ± f2) = ρ(p,q,t)L
g1

(f1) = ρ(p,q,t)L
g1

(f2) .

(B) The following conditions are assumed to be satisfied:

(i) Either σ
(p,q,t)L
g1 (f1) 6= σ

(p,q,t)L
g2 (f1) or σ(p,q,t)L

g1
(f1) 6= σ(p,q,t)L

g2
(f1) holds;

(ii) f1 is of regular relative (p, q, t) growth with respect to at least any
one of g1 or g2, then

ρ
(p,q,t)L
g1±g2 (f1) = ρ(p,q,t)L

g1
(f1) = ρ(p,q,t)L

g2
(f1) .

Proof. Let f1, f2, g1 and g2 be any four entire functions satisfying the
conditions of the theorem.

Case I. Suppose that ρ
(p,q,t)L
g1 (f1) = ρ

(p,q,t)L
g1 (f2) (0 < ρ

(p,q,t)L
g1 (f1) , ρ

(p,q,t)L
g1 (f2)

<∞). Now in view of Theorem 2 it is easy to see that ρ
(p,q,t)L
g1 (f1 ± f2) ≤

ρ
(p,q,t)L
g1 (f1) = ρ

(p,q,t)L
g1 (f2) . If possible let

(33) ρ(p,q,t)L
g1

(f1 ± f2) < ρ(p,q,t)L
g1

(f1) = ρ(p,q,t)L
g1

(f2) .

Let σ
(p,q,t)L
g1 (f1) 6= σ

(p,q,t)L
g1 (f2) . Then in view of the first part of The-

orem 17 and (33) we obtain that σ
(p,q,t)L
g1 (f1) = σ

(p,q,t)L
g1 (f1 ± f2 ∓ f2) =

σ
(p,q,t)L
g1 (f2) which is a contradiction. Hence ρ

(p,q,t)L
g1 (f1 ± f2) = ρ

(p,q,t)L
g1 (f1)

= ρ
(p,q,t)L
g1 (f2) . Similarly with the help of the first part of Theorem 17,

one can obtain the same conclusion under the hypothesis σ(p,q,t)L
g1

(f1) 6=
σ(p,q,t)L
g1

(f2) . This proves the first part of the theorem.

Case II. Let us consider that ρ
(p,q,t)L
g1 (f1) = ρ

(p,q,t)L
g2 (f1) (0 < ρ

(p,q,t)L
g1 (f1) ,

ρ
(p,q,t)L
g2 (f1) < ∞) and f1 is of regular relative (p, q, t) growth with re-

spect to at least any one of g1 or g2 and (g1 ± g2). Therefore in view of

Theorem 4, it follows that ρ
(p,q,t)L
g1±g2 (f1) ≥ ρ

(p,q,t)L
g1 (f1) = ρ

(p,q,t)L
g2 (f1) and

if possible let

(34) ρ
(p,q,t)L
g1±g2 (f1) > ρ(p,q,t)L

g1
(f1) = ρ(p,q,t)L

g2
(f1) .

Let us consider that σ
(p,q,t)L
g1 (f1) 6= σ

(p,q,t)L
g2 (f1) . Then. in view of

the proof of the second part of Theorem 17 and (34) we obtain that

σ
(p,q,t)L
g1 (f1) = σ

(p,q,t)L
g1±g2∓g2 (f1) = σ

(p,q,t)L
g2 (f1) which is a contradiction.

Hence ρ
(p,q,t)L
g1±g2 (f1) = ρ

(p,q,t)L
g1 (f1) = ρ

(p,q,t)L
g2 (f1) . Also in view of the

proof of second part of Theorem 17 one can derive the same conclusion
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for the condition σ(p,q,t)L
g1

(f1) 6= σ(p,q,t)L
g2

(f1) and therefore the second
part of the theorem is established.

Theorem 20. Let f1, f2, g1 and g2 be any four entire functions. Also
let p, q ∈ N and t ∈ N ∪ {−1, 0}.
(A) The following conditions are assumed to be satisfied:
(i) (f1 ± f2) is of regular relative (p, q, t) growth with respect to at least
any one of g1 or g2;

(ii) Either σ
(p,q,t)L
g1 (f1 ± f2) 6= σ

(p,q,t)L
g2 (f1 ± f2) or σ(p,q,t)L

g1
(f1 ± f2) 6=

σ(p,q,t)L
g2

(f1 ± f2);

(iii) Either σ
(p,q,t)L
g1 (f1) 6= σ

(p,q,t)L
g1 (f2) or σ(p,q,t)L

g1
(f1) 6= σ(p,q,t)L

g1
(f2);

(iv) Either σ
(p,q,t)L
g2 (f1) 6= σ

(p,q,t)L
g2 (f2) or σ(p,q,t)L

g2
(f1) 6= σ(p,q,t)L

g2
(f2); then

ρ
(p,q,t)L
g1±g2 (f1 ± f2) = ρ(p,q,t)L

g1
(f1) = ρ(p,q,t)L

g1
(f2) = ρ(p,q,t)L

g2
(f1) = ρ(p,q,t)L

g2
(f2) .

(B) The following conditions are assumed to be satisfied:
(i) f1 and f2 are of regular relative (p, q, t) growth with respect to at
least any one of g1 or g2;

(ii) Either σ
(p,q,t)L
g1±g2 (f1) 6= σ

(p,q,t)L
g1±g2 (f2) or σ

(p,q,t)L
g1±g2 (f1) 6= σ

(p,q,t)L
g1±g2 (f2);

(iii) Either σ
(p,q,t)L
g1 (f1) 6= σ

(p,q,t)L
g2 (f1) or σ(p,q,t)L

g1
(f1) 6= σ(p,q,t)L

g2
(f1);

(iv) Either σ
(p,q,t)L
g1 (f2) 6= σ

(p,q,t)L
g2 (f2) or σ(p,q,t)L

g1
(f2) 6= σ(p,q,t)L

g2
(f2); then

ρ
(p,q,t)L
g1±g2 (f1 ± f2) = ρ(p,q,t)L

g1
(f1) = ρ(p,q,t)L

g1
(f2) = ρ(p,q,t)L

g2
(f1) = ρ(p,q,t)L

g2
(f2) .

We omit the proof of Theorem 20 as it is a natural consequence of
Theorem 19.

Theorem 21. Let f1, f2, g1 and g2 be any four entire functions.
(A) The following conditions are assumed to be satisfied:
(i) At least any one of f1 or f2 is of regular relative (p, q, t) growth with
respect to g1 where p, q ∈ N and t ∈ N ∪ {−1, 0};
(ii) Either τ

(p,q,t)L
g1 (f1) 6= τ

(p,q,t)L
g1 (f2) or τ (p,q,t)L

g1
(f1) 6= τ (p,q,t)L

g1
(f2) holds,

then
λ(p,q,t)L
g1

(f1 ± f2) = λ(p,q,t)L
g1

(f1) = λ(p,q,t)L
g1

(f2) .

(B) The following conditions are assumed to be satisfied:

(i) f1, g1 and g2 be any three entire functions such that λ
(p,q,t)L
g1 (f1) and

λ
(p,q,t)L
g2 (f1) exists where p, q ∈ N and t ∈ N ∪ {−1, 0};

(ii) Either τ
(p,q,t)L
g1 (f1) 6= τ

(p,q,t)L
g2 (f1) or τ (p,q,t)L

g1
(f1) 6= τ (p,q,t)L

g2
(f1) holds,

then
λ

(p,q,t)L
g1±g2 (f1) = λ(p,q,t)L

g1
(f1) = λ(p,q,t)L

g2
(f1) .
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Proof. Let f1, f2, g1 and g2 be any four entire functions satisfying the
conditions of the theorem.

Case I. Let λ
(p,q,t)L
g1 (f1) = λ

(p,q,t)L
g1 (f2) (0 < λ

(p,q,t)L
g1 (f1) , λ

(p,q,t)L
g1 (f2) <

∞) and at least f1 or f2 and (f1 ± f2) are of regular relative (p, q, t)
growth with respect to g1. Now, in view of Theorem 1, it is easy to see

that λ
(p,q,t)L
g1 (f1 ± f2) ≤ λ

(p,q,t)L
g1 (f1) = λ

(p,q,t)L
g1 (f2) . If possible let

(35) λ(p,q,t)L
g1

(f1 ± f2) < λ(p,q,t)L
g1

(f1) = λ(p,q,t)L
g1

(f2) .

Let τ
(p,q,t)L
g1 (f1) 6= τ

(p,q,t)L
g1 (f2) . Then in view of the proof of the first

part of Theorem 18 and (35) we obtain that τ
(p,q,t)L
g1 (f1) = τ

(p,q,t)L
g1 (f1 ± f2 ∓ f2)

= τ
(p,q,t)L
g1 (f2) which is a contradiction. Hence λ

(p,q,t)L
g1 (f1 ± f2) = λ

(p,q,t)L
g1 (f1)

= λ
(p,q,t)L
g1 (f2) . Similarly in view of the proof of the first part of The-

orem 18 , one can establish the same conclusion under the hypothesis
τ (p,q,t)L
g1

(f1) 6= τ (p,q,t)L
g1

(f2) . This proves the first part of the theorem.

Case II. Let us consider that λ
(p,q,t)L
g1 (f1) = λ

(p,q,t)L
g2 (f1) (0< λ

(p,q,t)L
g1 (f1) ,

λ
(p,q,t)L
g2 (f1) < ∞). Therefore in view of Theorem 3, it follows that

λ
(p,q,t)L
g1±g2 (f1) ≥ λ

(p,q,t)L
g1 (f1) = λ

(p,q,t)L
g2 (f1) and if possible let

(36) λ
(p,q,t)L
g1±g2 (f1) > λ(p,q,t)L

g1
(f1) = λ(p,q,t)L

g2
(f1) .

Suppose τ
(p,q,t)L
g1 (f1) 6= τ

(p,q,t)L
g2 (f1) . Then in view of the second part

of Theorem 18 and (36), we obtain that τ
(p,q,t)L
g1 (f1) = τ

(p,q,t)L
g1±g2∓g2 (f1) =

τ
(p,q,t)L
g2 (f1) which is a contradiction. Hence λ

(p,q,t)L
g1±g2 (f1) = λ

(p,q,t)L
g1 (f1) =

λ
(p,q,t)L
g2 (f1) . Analogously with the help of the second part of Theo-

rem 18, the same conclusion can also be derived under the condition
τ (p,q,t)L
g1

(f1) 6= τ (p,q,t)L
g2

(f1) and therefore the second part of the theorem
is established.

Theorem 22. Let f1, f2, g1 and g2 be any four entire functions.
(A) The following conditions are assumed to be satisfied:
(i) At least any one of f1 or f2 is of regular relative (p, q, t) growth with
respect to g1 and g2 where p, q ∈ N and t ∈ N ∪ {−1, 0};
(ii) Either τ

(p,q,t)L
g1 (f1 ± f2) 6= τ

(p,q,t)L
g2 (f1 ± f2) or τ (p,q,t)L

g1
(f1 ± f2) 6=

τ (p,q,t)L
g2

(f1 ± f2);

(iii) Either τ
(p,q,t)L
g1 (f1) 6= τ

(p,q,t)L
g1 (f2) or τ (p,q,t)L

g1
(f1) 6= τ (p,q,t)L

g1
(f2);
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(iv) Either τ
(p,q,t)L
g2 (f1) 6= τ

(p,q,t)L
g2 (f2) or τ (p,q,t)L

g2
(f1) 6= τ (p,q,t)L

g2
(f2); then

λ
(p,q,t)L
g1±g2 (f1 ± f2) = λ(p,q,t)L

g1
(f1) = λ(p,q,t)L

g1
(f2) = λ(p,q,t)L

g2
(f1) = λ(p,q,t)L

g2
(f2) .

(B) The following conditions are assumed to be satisfied:
(i) At least any one of f1 or f2 are of regular relative (p, q, t) growth with
respect to g1 ± g2 where p, q ∈ N and t ∈ N ∪ {−1, 0};
(ii) Either τ

(p,q,t)L
g1±g2 (f1) 6= τ

(p,q,t)L
g1±g2 (f2) or τ

(p,q,t)L
g1±g2 (f1) 6= τ

(p,q,t)L
g1±g2 (f2) holds;

(iii) Either τ
(p,q,t)L
g1 (f1) 6= τ

(p,q,t)L
g2 (f1) or τ (p,q,t)L

g1
(f1) 6= τ (p,q,t)L

g2
(f1) holds;

(iv) Either τ
(p,q,t)L
g1 (f2) 6= τ

(p,q,t)L
g2 (f2) or τ (p,q,t)L

g1
(f2) 6= τ (p,q,t)L

g2
(f2) holds,

then

λ
(p,q,t)L
g1±g2 (f1 ± f2) = λ(p,q,t)L

g1
(f1) = λ(p,q,t)L

g1
(f2) = λ(p,q,t)L

g2
(f1) = λ(p,q,t)L

g2
(f2) .

We omit the proof of Theorem 22 as it is a natural consequence of
Theorem 21.

Theorem 23. Let f1, f2, g1 and g2 be any four entire functions. Also

let ρ
(p,q,t)L
g1 (f1), ρ

(p,q,t)L
g1 (f2), ρ

(p,q,t)L
g2 (f1) and ρ

(p,q,t)L
g2 (f2) are all non zero

and finite where p, q ∈ N and t ∈ N ∪ {−1, 0}.
(A) Assume the functions f1, f2 and g1 satisfy the following conditions:

(i) ρ
(p,q,t)L
g1 (fi) > ρ

(p,q,t)L
g1 (fj) for i = j = 1, 2 and i 6= j;

(ii) g1 satisfies the Property (A) and q > 1, then

σ(p,q,t)L
g1

(f1 · f2) = σ(p,q,t)L
g1

(fi) | i = 1, 2 and

σ(p,q,t)L
g1

(f1 · f2) = σ(p,q,t)L
g1

(fi) | i = 1, 2 .

Similarly,

σ(p,q,t)L
g1

(
f1

f2

)
= σ(p,q,t)L

g1
(fi) | i = 1, 2 and

σ(p,q,t)L
g1

(
f1

f2

)
= σ(p,q,t)L

g1
(fi) | i = 1, 2

holds provided (i) f1
f2

is entire, (ii) ρ
(p,q,t)L
g1 (fi) > ρ

(p,q,t)L
g1 (fj) | i = 1, 2; j

= 1, 2; i 6= j, (iii) g1 satisfy the Property (A) and (iv) q > 1.
(B) Assume the functions g1, g2 and f1 satisfy the following conditions:

(i) ρ
(p,q,t)L
gi (f1) < ρ

(p,q,t)L
gj (f1) with at least f1 is of regular relative (p, q, t)

growth with respect to gj for i = j = 1, 2 and i 6= j, and gi satisfy the
Property (A);
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(ii) g1 · g2 satisfy the Property (A) and p > 1, then

σ(p,q,t)L
g1·g2 (f1) = σ(p,q,t)L

gi
(f1) | i = 1, 2 and

σ(p,q,t)L
g1·g2 (f1) = σ(p,q,t)L

gi
(f1) | i = 1, 2 .

Similarly,

σ
(p,q,t)L
g1
g2

(f1) = σ(p,q,t)L
gi

(f1) | i = 1, 2 and

σ
(p,q,t)L
g1
g2

(f1) = σ
(p,q,t)L
gi (f1) | i = 1, 2

holds provided (i) g1
g2

is entire and satisfy the Property (A), (ii) At

least f1 is of regular relative (p, q, t) growth with respect to g2, (iii)

ρ
(p,q,t)L
gi (f1) < ρ

(p,q,t)L
gj (f1) | i = 1, 2; j = 1, 2; i 6= j and (iv) g1 satisfy

the Property (A).
(C) Assume the functions f1, f2, g1 and g2 satisfy the following condi-
tions:
(i) g1 · g2 satisfy the Property (A), p > 1 and q > 1;

(ii) ρ
(p,q,t)L
gi (f1) < ρ

(p,q,t)L
gj (f1) with at least f1 is of regular relative (p, q, t)

growth with respect to gj for i = 1, 2, j = 1, 2 and i 6= j;

(iii) ρ
(p,q,t)L
gi (f2) < ρ

(p,q,t)L
gj (f2) with at least f2 is of regular relative

(p, q, t) growth with respect to gj for i = 1, 2, j = 1, 2 and i 6= j;

(iv) ρ
(p,q,t)L
g1 (fi) > ρ

(p,q,t)L
g1 (fj) and ρ

(p,q,t)L
g2 (fi) > ρ

(p,q,t)L
g2 (fj) holds simul-

taneously for i = 1, 2; j = 1, 2 and i 6= j;

(v) ρ
(p,q,t)L
gm (fl) =

max
[
min

{
ρ

(p,q,t)L
g1 (f1) , ρ

(p,q,t)L
g2 (f1)

}
,min

{
ρ

(p,q,t)L
g1 (f2) , ρ

(p,q,t)L
g2 (f2)

}]
|

l = m = 1, 2; then

σ(p,q,t)L
g1·g2 (f1 · f2) = σ(p,q,t)L

gm (fl) | l = m = 1, 2 and

σ(p,q,t)L
g1·g2 (f1 · f2) = σ(p,q,t)L

gm (fl) | l = m = 1, 2 .

Similarly,

σ
(p,q,t)L
g1
g2

(
f1

f2

)
= σ(p,q,t)L

gm (fl) | l = m = 1, 2 and

σ
(p,q,t)L
g1
g2

(
f1

f2

)
= σ(p,q,t)L

gm (fl) | l = m = 1, 2.

holds provided f1
f2

and g1
g2

are entire functions which satisfy the following

conditions:
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(i) g1
g2

satisfy the Property (A), p > 1 and q > 1;

(ii) At least f1 is of regular relative (p, q, t) growth with respect to g2

and ρ
(p,q,t)L
g1 (f1) 6= ρ

(p,q,t)L
g2 (f1);

(iii) At least f2 is of regular relative (p, q, t) growth with respect to g2

and ρ
(p,q,t)L
g1 (f2) 6= ρ

(p,q,t)L
g2 (f2);

(iv) ρ
(p,q,t)L
g1 (fi) < ρ

(p,q,t)L
g1 (fj) and ρ

(p,q,t)L
g2 (fi) < ρ

(p,q,t)L
g2 (fj) holds simul-

taneously for i = 1, 2; j = 1, 2 and i 6= j;

(v) ρ
(p,q,t)L
gm (fl) =

max
[
min

{
ρ

(p,q,t)L
g1 (f1) , ρ

(p,q,t)L
g2 (f1)

}
,min

{
ρ

(p,q,t)L
g1 (f2) , ρ

(p,q,t)L
g2 (f2)

}]
|

l = m = 1, 2.

Proof. Let us consider that ρ
(p,q,t)L
g1 (f1), ρ

(p,q,t)L
g1 (f2), ρ

(p,q,t)L
g2 (f1) and

ρ
(p,q,t)L
g2 (f2) are all non zero and finite.

Case I. Suppose that ρ
(p,q,t)L
g1 (f1) > ρ

(p,q,t)L
g1 (f2). Also let g1 satisfy the

Property (A). Now for any arbitrary ε > 0, we get from (18) for all
sufficiently large values of r that

M
f1·f2

(r) ≤

Mg1

[
exp[p−1]

{(
σ(p,q,t)L
g1 (f1) +

ε

2

) [
log[q−1] r · exp[t+1] L (r)

]ρ(p,q,t)Lg1
(f1)
}]

×Mg1

[
exp[p−1]

{(
σ(p,q,t)L
g1 (f2) +

ε

2

) [
log[q−1] r · exp[t+1] L (r)

]ρ(p,q,t)Lg1
(f2)
}]

.

Since ρ
(p,q,t)L
g1 (f1) > ρ

(p,q,t)L
g1 (f2), we get that

lim
r→∞

(
σ

(p,q,t)L
g1 (f1) + ε

2

) [
log[q−1] r · exp[t+1] L (r)

]ρ(p,q,t)Lg1
(f1)

(
σ

(p,q,t)L
g1 (f2) + ε

2

) [
log[q−1] r · exp[t+1] L (r)

]ρ(p,q,t)Lg1
(f2)

=∞ .

Therefore we get for all sufficiently large values of r that

Mg1

[
exp[p−1]

{(
σ(p,q,t)L
g1 (f1) +

ε

2

) [
log[q−1] r · exp[t+1] L (r)

]ρ(p,q,t)Lg1
(f1)
}]

> Mg1

[
exp[p−1]

{(
σ(p,q,t)L
g1 (f2) +

ε

2

) [
log[q−1] r · exp[t+1] L (r)

]ρ(p,q,t)Lg1
(f2)
}]
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hold and from the above arguments it follows for all sufficiently large
values of r that

(37) M
f1·f2

(r) <[
Mg1

[
exp[p−1]

{(
σ(p,q,t)L
g1 (f1) +

ε

2

) [
log[q−1] r · exp[t+1] L (r)

]ρ(p,q,t)Lg1
(f1)
}]]2

.

Let us observe that

δ1 :=
σ

(p,q,t)L
g1 (f1) + ε

σ
(p,q,t)L
g1 (f1) + ε

2

> 1

which implies that

exp[p−2]
(
σ

(p,q,t)L
g1 (f1) + ε

) [
log[q−1] r · exp[t+1] L (r)

]ρ(p,q,t)Lg1
(f1)

exp[p−2]
(
σ

(p,q,t)L
g1 (f1) + ε

2

) [
log[q−1] r · exp[t+1] L (r)

]ρ(p,q,t)Lg1
(f1)

(38)

= δ (say) > 1 .

Since g1 satisfy the Property (A), in view of Lemma 2 and (38) we
obtain from (37) for all sufficiently large values of r that

M
f1·f2

(r) <

Mg1

[exp[p−1]

{(
σ(p,q,t)L
g1 (f1) +

ε

2

) [
log[q−1] r · exp[t+1] L (r)

]ρ(p,q,t)Lg1
(f1)
}]δ

i.e., M
f1·f2

(r) <

Mg1

[
exp[p−1]

{(
σ(p,q,t)L
g1 (f1) + ε

) [
log[q−1] r · exp[t+1] L (r)

]ρ(p,q,t)Lg1
(f1)
}]

.

As ρ
(p,q,t)L
g1 (f1) > ρ

(p,q,t)L
g1 (f2), so in view of Theorem 9, we get from

above for all sufficiently large values of r that

M
f1·f2

(r) <

Mg1

[
exp[p−1]

{(
σ(p,q,t)L
g1

(f1) + ε
) [

log[q−1] r · exp[t+1] L (r)
]ρ(p,q,t)Lg1

(f1·f2)
}]

.

(39) i.e., σ(p,q,t)L
g1

(f1 · f2) ≤ σ(p,q,t)L
g1

(f1) .

In order to establish the equality of (39) , let us restrict ourselves on
the functions g1 and fi | i = 1, 2 such that q > 1. Now let h, h1, h2 and k
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be any four entire functions such that h = h2
h1

and k satisfy the Property

(A). Further without loss of any generality let ρ
(p,q,t)L
k (h1) < ρ

(p,q,t)L
k (h2)

where p, q are any two positive integers with q > 1. Now we know
that Th (r) = Th2

h1

(r) ≤ Th2 (r) + Th1 (r). Therefore in view of Lemma

3, we get (in the line of the construction of the proof as above) for all
sufficiently large values of r that

logMh2
h1

(r) ≤ 3 [Th1 (2r) + Th2 (2r)]

i.e.,

[
Mh2

h1

(r
2

)] 1
3

≤Mh1 (r) ·Mh2 (r)

i.e., Mh2
h1

(r
2

)
<[

Mk

[
exp[p−1]

{(
σ

(p,q,t)L
k (h2) +

ε

2

) [
log[q−1] r · exp[t+1] L (r)

]ρ(p,q,t)Lk (h2)
}]]6

.

Therefore in view of Theorem 9 and (38), we get for all sufficiently
large values of r that

Mh2
h1

(r
2

)
<

Mk

[
exp[p−1]

{(
σ

(p,q,t)L
k (h2) + ε

) [
log[q−1] r · exp[t+1] L (r)

]ρ(p,q,t)Lk (h2)
}]

.

(40) i.e., σ
(p,q,t)L
k (h) = σ

(p,q,t)L
k

(
h2

h1

)
≤ σ(p,q,t)L

k (h2) .

Further without loss of any generality, let f = f1 ·f2 and ρ
(p,q,t)L
g1 (f2) <

ρ
(p,q,t)L
g1 (f1) = ρ

(p,q,t)L
g1 (f) . Then in view of (39) , we obtain that σ

(p,q,t)L
g1 (f)

= σ
(p,q,t)L
g1 (f1 · f2) ≤ σ

(p,q,t)L
g1 (f1) . Also f1 = f

f2
and in this case we ob-

tain from (40) that σ
(p,q,t)L
g1 (f1) ≤ σ

(p,q,t)L
g1 (f) = σ

(p,q,t)L
g1 (f1 · f2) . Hence

σ
(p,q,t)L
g1 (f) = σ

(p,q,t)L
g1 (f1)⇒ σ

(p,q,t)L
g1 (f1 · f2) = σ

(p,q,t)L
g1 (f1) provided q >

1.
Similarly, if we consider ρ

(p,q,t)L
g1 (f1) < ρ

(p,q,t)L
g1 (f2) , then one can verify

that σ
(p,q,t)L
g1 (f1 · f2) = σ

(p,q,t)L
g1 (f2) provided q > 1.

Next we may suppose that f = f1
f2

with f1, f2 and f are all entire

functions.

Sub Case IA. Let ρ
(p,q,t)L
g1 (f2) < ρ

(p,q,t)L
g1 (f1). Therefore in view of
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Theorem 9, ρ
(p,q,t)L
g1 (f2) < ρ

(p,q,t)L
g1 (f1) = ρ

(p,q,t)L
g1 (f). We have f1 = f ·f2.

So, σ
(p,q,t)L
g1 (f1) = σ

(p,q,t)L
g1 (f) = σ

(p,q,t)L
g1

(
f1
f2

)
provided q > 1.

Sub Case IB. Let ρ
(p,q,t)L
g1 (f2) > ρ

(p,q,t)L
g1 (f1). Therefore in view of

Theorem 9, ρ
(p,q,t)L
g1 (f1) < ρ

(p,q,t)L
g1 (f2) = ρ

(p,q,t)L
g1 (f). Now in view of (40) ,

we get that σ
(p,q,t)L
g1

(
f1
f2

)
≤ σ

(p,q,t)L
g1 (f2) . Further we have f2 = f1

f
and

in this case σ
(p,q,t)L
g1 (f2) ≤ σ

(p,q,t)L
g1

(
f1
f2

)
. So σ

(p,q,t)L
g1

(
f1
f2

)
= σ

(p,q,t)L
g1 (f2)

provided q > 1.

Case II. Let ρ
(p,q,t)L
g1 (f1) > ρ

(p,q,t)L
g1 (f2). Also let g1 satisfy the Property

(A). Now for any arbitrary ε > 0, we obtain from (18) and (21) for a
sequence of values of r tending to infinity that

M
f1·f2

(r) ≤

Mg1

[
exp[p−1]

{(
σ(p,q,t)L
g1 (f1) +

ε

2

) [
log[q−1] r · exp[t+1] L (r)

]ρ(p,q,t)Lg1
(f1)
}]

×Mg1

[
exp[p−1]

{(
σ(p,q,t)L
g1 (f2) +

ε

2

) [
log[q−1] r · exp[t+1] L (r)

]ρ(p,q,t)Lg1
(f2)
}]

.

Now in view of ρ
(p,q,t)L
g1 (f1) > ρ

(p,q,t)L
g1 (f2), we get that

lim
r→∞

(
σ(p,q,t)L
g1

(f1) + ε
2

) [
log[q−1] r · exp[t+1] L (r)

]ρ(p,q,t)L(f1)

(
σ

(p,q,t)L
g1 (f2) + ε

2

) [
log[q−1] r · exp[t+1] L (r)

]ρ(p,q,t)Lg1
(f2)

=∞ .

Therefore we get for all sufficiently large values of r that

Mg1

[
exp[p−1]

{(
σ(p,q,t)L
g1 (f1) +

ε

2

) [
log[q−1] r · exp[t+1] L (r)

]ρ(p,q,t)Lg1
(f1)
}]

> Mg1

[
exp[p−1]

{(
σ(p,q,t)L
g1 (f2) +

ε

2

) [
log[q−1] r · exp[t+1] L (r)

]ρ(p,q,t)Lg1
(f2)
}]

and therefore from the above arguments it follows for a sequence of
values of r tending to infinity that

M
f1·f2

(r) <[
Mg1

[
exp[p−1]

{(
σ(p,q,t)L
g1 (f1) +

ε

2

) [
log[q−1] r · exp[t+1] L (r)

]ρ(p,q,t)Lg1
(f1)
}]]2

.
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Now using the similar technique for a sequence of values of r tending
to infinity as explored in the proof of Case I, one can easily verify that

σ(p,q,t)L
g1

(f1 · f2) = σ(p,q,t)L
g1

(f1) and σ(p,q,t)L
g1

(
f1
f2

)
= σ(p,q,t)L

g1
(fi) | i = 1, 2

under the conditions specified in the theorem provided q > 1.

Similarly, if we consider ρ
(p,q,t)L
g1 (f1) < ρ

(p,q,t)L
g1 (f2) , then one can verify

that σ(p,q,t)L
g1

(f1 · f2) = σ(p,q,t)L
g1

(f2) provided q > 1.
Therefore the first part of theorem follows from Case I and Case II.

Case III. Let ρ
(p,q,t)L
g1 (f1) < ρ

(p,q,t)L
g2 (f1) and g1 · g2, g1 are satisfy the

Property (A) with at least f1 is of regular relative (p, q, t) growth with

respect to g2. Now for all sufficiently large values of n and ρ
(p,q,t)L
g1 (f1) <

ρ
(p,q,t)L
g2 (f1) , we get that

exp[p−1]

{(
σ(p,q,t)L
g2 (f1)− ε

) [
log[q−1] rn · exp[t+1] L (rn)

]ρ(p,q,t)Lg2
(f1)
}
>

exp[p−1]

{(
σ(p,q,t)L
g1 (f1)− ε

) [
log[q−1] rn · exp[t+1] L (rn)

]ρ(p,q,t)Lg1
(f1)
}

holds. Consequently

Mg2

[
exp[p−1]

{(
σ(p,q,t)L
g2 (f1)− ε

) [
log[q−1] rn · exp[t+1] L (rn)

]ρ(p,q,t)Lg2
(f1)
}]

>

Mg2

[
exp[p−1]

{(
σ(p,q,t)L
g1 (f1)− ε

) [
log[q−1] rn · exp[t+1] L (rn)

]ρ(p,q,t)Lg1
(f1)
}]

.

also holds.
Therefore in view of (19), (20) and above, we obtain for a sequence

of values of r tending to infinity that

Mg1·g2

[
exp[p−1]

{(
σ(p,q,t)L
g1 (f1)− ε

) [
log[q−1] rn · exp[t+1] L (rn)

]ρ(p,q,t)Lg1
(f1)
}]

≤ [Mf1 (r)]2

Since g1 ·g2 has the Property (A), in view of Lemma 2 we obtain from
above for a sequence of values of r tending to infinity that
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Mg1·g2

[exp[p−1]

{(
σ(p,q,t)L
g1 (f1)− ε

) [
log[q−1] rn · exp[t+1] L (rn)

]ρ(p,q,t)Lg1
(f1)
}] 1

δ


≤Mf1 (r)

Now making δ → 1+ we obtain in view of Theorem 11 and above
that (

σ(p,q,t)L
g1

(f1)− ε
) [

log[q−1] rn · exp[t+1] L (rn)
]ρ(p,q,t)Lg1

(f1)

<

log[p−1]M−1
g1·g2Mf1 (r) .

Since ε > 0 is arbitrary, it follows from above that

(41) σ(p,q,t)L
g1·g2 (f1) ≥ σ(p,q,t)L

g1
(f1) .

In order to establish the equality of (41), let us restrict ourselves on
the functions gi | i = 1, 2 and f1 such that p > 1. Now let h, h1, h2 and
k be any four entire functions such that h = h1

h2
, h satisfy the Property

(A) and at least k is of regular relative (p, q, t) growth with respect to

h2. Further without loss of any generality let ρ
(p,q,t)L
h1

(k) < ρ
(p,q,t)L
h2

(k).
Now we know that Th (r) = Th2

h1

(r) ≤ Th2 (r) + Th1 (r). Therefore in

view of Lemma 3 we get (in the line of the construction of the proof as
above) for a sequence of values of r tending to infinity that

logMh2
h1

(r) ≤ 3 [Th1 (2r) + Th2 (2r)]

i.e.,

[
Mh2

h1

(r
2

)] 1
3

≤Mh1 (r) ·Mh2 (r) .

Therefore in view of Theorem 12 and in the line of the construction
of the proof as above we get that

(42) i.e., σ
(p,q,t)L
h (k) = σ

(p,q,t)L
h1
h2

(k) ≥ σ
(p,q,t)L
h1

(k) ,

provided p > 1.

Further without loss of any generality, let g = g1 · g2 and ρ
(p,q,t)L
g (f1)

= ρ
(p,q,t)L
g1 (f1) < ρ

(p,q,t)L
g2 (f1) . Then in view of (41) , we obtain that

σ
(p,q,t)L
g (f1) = σ

(p,q,t)L
g1·g2 (f1) ≥ σ

(p,q,t)L
g1 (f1). Also g1 = g

g2
and in this

case we obtain from (42) that σ
(p,q,t)L
g1 (f1) ≥ σ

(p,q,t)L
g (f1) = σ

(p,q,t)L
g1·g2 (f1).
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Hence σ
(p,q,t)L
g (f1) = σ

(p,q,t)L
g1 (f1) ⇒ σ

(p,q,t)L
g1·g2 (f1) = σ

(p,q,t)L
g1 (f1) provided

p > 1.

Similarly, if we consider ρ
(p,q,t)L
g1 (f1) > ρ

(p,q,t)L
g2 (f1) with at least f1 is of

regular relative (p, q, t) growth with respect to g1 and g2 satisfy Property

(A), then one can verify that σ
(p,q,t)L
g1·g2 (f1) = σ

(p,q,t)L
g2 (f1) provided p > 1.

Next we may suppose that g = g1
g2

with g1, g2, g are all entire functions

satisfying the conditions specified in the theorem.

Sub Case IIIA. Let ρ
(p,q,t)L
g1 (f1) < ρ

(p,q,t)L
g2 (f1). Therefore in view of

Theorem 12, ρ
(p,q,t)L
g (f1) = ρ

(p,q,t)L
g1 (f1) < ρ

(p,q,t)L
g2 (f1). We have g1 =

g · g2. So σ
(p,q,t)L
g1 (f1) = σ

(p,q,t)L
g (f1) = σ

(p,q,t)L
g1
g2

(f1) provided p > 1.

Sub Case IIIB. Let ρ
(p,q,t)L
g1 (f1) > ρ

(p,q,t)L
g2 (f1). Therefore in view of

Theorem 12, ρ
(p,q,t)L
g (f1) = ρ

(p,q,t)L
g2 (f1) < ρ

(p,q,t)L
g1 (f1). Now in view of

(42) , we get that σ
(p,q,t)L
g1
g2

(f1) ≤ σ
(p,q,t)L
g2 (f1) . Further we have g2 = g1

g

and in this case σ
(p,q,t)L
g2 (f1) ≤ σ(p,q,t)L

g1
g2

(f1) . So σ
(p,q,t)L
g1
g2

(f1) = σ
(p,q,t)L
g2 (f1)

provided p > 1.

Case IV. Suppose ρ
(p,q,t)L
g1 (f1) < ρ

(p,q,t)L
g2 (f1) and g1 ·g2, g1 are satisfy

the Property (A) with at least f1 is of regular relative (p, q, t) growth
with respect to g2. Therefore for all sufficiently large values of r and

ρ
(p,q,t)L
g1 (f1) < ρ

(p,q,t)L
g2 (f1)

exp[p−1]

{(
σ(p,q,t)L
g2 (f1)− ε

) [
log[q−1] rn · exp[t+1] L (rn)

]ρ(p,q,t)Lg2
(f1)
}
>

exp[p−1]

{(
σ(p,q,t)L
g1 (f1)− ε

) [
log[q−1] rn · exp[t+1] L (rn)

]ρ(p,q,t)Lg1
(f1)
}

holds. Consequently

Mg2

[
exp[p−1]

{(
σ(p,q,t)L
g2 (f1)− ε

) [
log[q−1] rn · exp[t+1] L (rn)

]ρ(p,q,t)Lg2
(f1)
}]

>

Mg2

[
exp[p−1]

{(
σ(p,q,t)L
g1 (f1)− ε

) [
log[q−1] rn · exp[t+1] L (rn)

]ρ(p,q,t)Lg1
(f1)
}]

.



256 Tanmay Biswas

Hence in view of (19) and from above arguments we obtain for all
sufficiently large values of r that

Mg1·g2

[
exp[p−1]

{(
σ(p,q,t)L
g1 (f1)− ε

) [
log[q−1] rn · exp[t+1] L (rn)

]ρ(p,q,t)Lg1
(f1)
}]

≤ [Mf1 (r)]2 .

Now using the similar technique for all sufficiently large values of r as

explored in the proof of Case III, one can easily verify that σ
(p,q,t)L
g1·g2 (f1) =

σ(p,q,t)L
g1

(f1) and σ
(p,q,t)L
g1
g2

(f1) = σ(p,q,t)L
gi

(f1) | i = 1, 2 under the conditions

specified in the theorem.

Likewise, if we consider ρ
(p,q,t)L
g1 (f1) > ρ

(p,q,t)L
g2 (f1) and g1 · g2, g2 are

satisfy the Property (A) with at least f1 is of regular relative (p, q, t)

growth with respect to g1, then one can verify that σ
(p,q,t)L
g1·g2 (f1) = σ(p,q,t)L

g2
(f1)

provided p > 1.
Therefore the second part of theorem follows from Case III and Case

IV.
Proof of the third part of the Theorem is omitted as it can be carried

out in view of Theorem 13 and Theorem 15 and the above cases.

Theorem 24. Let f1, f2, g1 and g2 be any four entire functions. Also

let λ
(p,q,t)L
g1 (f1), λ

(p,q,t)L
g1 (f2), λ

(p,q,t)L
g2 (f1) and λ

(p,q,t)L
g2 (f2) are all non zero

and finite where p, q ∈ N and t ∈ N ∪ {−1, 0}.
(A) Assume the functions f1, f2 and g1 satisfy the following conditions:

(i) λ
(p,q,t)L
g1 (fi) > λ

(p,q,t)L
g1 (fj) with at least fj is of regular relative (p, q, t)

growth with respect to g1 for i = j = 1, 2 and i 6= j;
(ii) g1 satisfy the Property (A) and q > 1, then

τ (p,q,t)L
g1

(f1 · f2) = τ (p,q,t)L
g1

(fi) | i = 1, 2 and

τ (p,q,t)L
g1

(f1 · f2) = τ (p,q,t)L
g1

(fi) | i = 1, 2 .

Similarly,

τ (p,q,t)L
g1

(
f1

f2

)
= τ (p,q,t)L

g1
(fi) | i = 1, 2 and

τ (p,q,t)L
g1

(
f1

f2

)
= τ (p,q,t)L

g1
(fi) | i = 1, 2



relative (p, q, t)L-th order and relative (p, q, t)L-th type of entire functions 257

holds provided f1
f2

is entire, at least f2 is of regular relative (p, q, t) growth

with respect to g1, g1 satisfy the Property (A) and q > 1 and λ
(p,q,t)L
g1 (fi)

> λ
(p,q,t)L
g1 (fj) | i = 1, 2; j = 1, 2; i 6= j.

(B) Assume the functions g1, g2 and f1 satisfy the following conditions:

(i) λ
(p,q,t)L
gi (f1) < λ

(p,q,t)L
gj (f1) for i = j = 1, 2 and i 6= j, and gi satisfy

the Property (A)
(ii) g1 · g2 satisfy the Property (A) and p > 1, then

τ (p,q,t)L
g1·g2 (f1) = τ (p,q,t)L

gi
(f1) | i = 1, 2 and

τ (p,q,t)L
g1·g2 (f1) = τ (p,q,t)L

gi
(f1) | i = 1, 2 .

Similarly,

τ
(p,q,t)L
g1
g2

(f1) = τ (p,q,t)L
gi

(f1) | i = 1, 2 and

τ
(p,q,t)L
g1
g2

(f1) = τ
(p,q,t)L
gi (f1) | i = 1, 2

holds provided g1
g2

is entire and satisfy the Property (A), g1 satisfy the

Property (A) and λ
(p,q,t)L
gi (f1) < λ

(p,q,t)L
gj (f1) | i = 1, 2; j = 1, 2; i 6= j.

(C) Assume the functions f1, f2, g1 and g2 satisfy the following condi-
tions:
(i) g1 · g2, g1 and g2 are satisfy the Property (A), p > 1 and q > 1;

(ii) λ
(p,q,t)L
g1 (fi) > λ

(p,q,t)L
g1 (fj) with at least fj is of regular relative (p, q, t)

growth with respect to g1 for i = 1, 2, j = 1, 2 and i 6= j;

(iii) λ
(p,q,t)L
g2 (fi) > λ

(p,q,t)L
g2 (fj) with at least fj is of regular relative

(p, q, t) growth with respect to g2 for i = 1, 2, j = 1, 2 and i 6= j;

(iv) λ
(p,q,t)L
gi (f1) < λ

(p,q,t)L
gj (f1) and λ

(p,q,t)L
gi (f2) < λ

(p,q,t)L
gj (f2) holds si-

multaneously for i = 1, 2; j = 1, 2 and i 6= j;

(v) λ
(p,q,t)L
gm (fl) =

min
[
max

{
λ

(p,q,t)L
g1 (f1) , λ

(p,q,t)L
g1 (f2)

}
,max

{
λ

(p,q,t)L
g2 (f1) , λ

(p,q,t)L
g2 (f2)

}]
|

l = m = 1, 2; then

τ (p,q,t)L
g1·g2 (f1 · f2) = τ (p,q,t)L

gm (fl) | l = m = 1, 2 and

τ (p,q,t)L
g1·g2 (f1 · f2) = τ (p,q,t)L

gm (fl) | l = m = 1, 2 .
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Similarly,

τ
(p,q,t)L
g1
g2

(
f1

f2

)
= τ (p,q,t)L

gm (fl) | l = m = 1, 2 and

τ
(p,q,t)L
g1
g2

(
f1

f2

)
= τ (p,q,t)L

gm (fl) | l = m = 1, 2 .

holds provided f1
f2

and g1
g2

are entire functions which satisfy the following

conditions:
(i) g1

g2
, g1 and g2 satisfy the Property (A), p > 1 and q > 1;

(ii) At least f2 is of regular relative (p, q, t) growth with respect to g1

and λ
(p,q,t)L
g1 (f1) 6= λ

(p,q,t)L
g1 (f2);

(iii) At least f2 is of regular relative (p, q, t) growth with respect to g2

and λ
(p,q,t)L
g2 (f1) 6= λ

(p,q,t)L
g2 (f2);

(iv) λ
(p,q,t)L
gi (f1) < λ

(p,q,t)L
gj (f1) and λ

(p,q,t)L
gi (f2) < λ

(p,q,t)L
gj (f2) holds si-

multaneously for i = 1, 2; j = 1, 2 and i 6= j;

(v) λ
(p,q,t)L
gm (fl) =

min
[
max

{
λ

(p,q,t)L
g1 (f1) , λ

(p,q,t)L
g1 (f2)

}
,max

{
λ

(p,q,t)L
g2 (f1) , λ

(p,q,t)L
g2 (f2)

}]
|

l = m = 1, 2.

Proof. Let us consider that λ
(p,q,t)L
g1 (f), λ

(p,q,t)L
g1 (f2), λ

(p,q,t)L
g2 (f1) and

λ
(p,q,t)L
g2 (f2) are all non zero and finite.

Case I. Suppose λ
(p,q,t)L
g1 (f1) > λ

(p,q,t)L
g1 (f2) with at least f2 is of regular

relative (p, q, t) growth with respect to g1 and g1 satisfy the Property
(A). Now for any arbitrary ε > 0, we obtain from (25) and (27) for a
sequence values of r tending to infinity that

M
f1·f2

(r) ≤

Mg1

[
exp[p−1]

{(
τ (p,q,t)L
g1 (f1) +

ε

2

) [
log[q−1] r · exp[t+1] L (r)

]λ(p,q,t)Lg1
(f1)
}]

×Mg1

[
exp[p−1]

{(
τ (p,q,t)L
g1 (f2) +

ε

2

) [
log[q−1] r · exp[t+1] L (r)

]λ(p,q,t)Lg1
(f2)
}]

.

Now in view of λ
(p,q,t)L
g1 (f1) > λ

(p,q,t)L
g1 (f2), we get that

lim
r→∞

(
τ

(p,q,t)L
g1 (f1) + ε

2

) [
log[q−1] r · exp[t+1] L (r)

]λ(p,q,t)Lg1
(f1)

(
τ (p,q,t)L
g1

(f2) + ε
2

) [
log[q−1] r · exp[t+1] L (r)

]λ(p,q,t)Lg1
(f2)

=∞ .
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Therefore we get for all sufficiently large values of r that

Mg1

[
exp[p−1]

{(
τ (p,q,t)L
g1 (f1) +

ε

2

) [
log[q−1] r · exp[t+1] L (r)

]λ(p,q,t)Lg1
(f1)
}]

> Mg1

[
exp[p−1]

{(
τ (p,q,t)L
g1 (f2) +

ε

2

) [
log[q−1] r · exp[t+1] L (r)

]λ(p,q,t)Lg1
(f2)
}]

holds and therefore from the above arguments it follows for a sequence
of values of r tending to infinity that

(43) M
f1·f2

(r) <[
Mg1

[
exp[p−1]

{(
τ (p,q,t)L
g1 (f1) +

ε

2

) [
log[q−1] r · exp[t+1] L (r)

]λ(p,q,t)Lg1
(f1)
}]]2

.

Now using the similar technique as explored in the proof of Case I of
Theorem 23 we obtain from (43) that

(44) τ (p,q,t)L
g1

(f1 · f2) ≤ τ (p,q,t)L
g1

(f1) .

In order to establish the equality of (44) , let us restrict ourselves on
the functions g1 and fi | i = 1, 2 such that q > 1. Now let h, h1, h2 and
k be any four entire functions such that h = h2

h1
, k satisfy the Property

(A) and h1 is of regular relative (p, q, t) growth with respect to k. Now
we know that T

h
(r) = T

h2
h1

(r) ≤ T
h2

(r) + Th1 (r). Therefore in view

of Lemma 3 and in the line of the construction of the proof as above it
follows that

τ
(p,q,t)L
k (h) = τ

(p,q,t)L
k

(
h2

h1

)
≤ τ

(p,q,t)L
k (h2) ,

when λ
(p,q,t)L
k (h1) < λ

(p,q,t)L
k (h2) with q > 1 and

(45) τ
(p,q,t)L
k (h) = τ

(p,q,t)L
k

(
h2

h1

)
≤ τ

(p,q,t)L
k (h1) ,

when λ
(p,q,t)L
k (h1) > λ

(p,q,t)L
k (h2) with q > 1.

Further without loss of any generality, let f = f1 · f2 and λ
(p,q,t)L
g1 (f2)

< λ
(p,q,t)L
g1 (f1) = λ

(p,q,t)L
g1 (f) . Then in view of (44) , we obtain that

τ
(p,q,t)L
g1 (f) = τ

(p,q,t)L
g1 (f1 · f2) ≤ τ

(p,q,t)L
g1 (f1) . Also f1 = f

f2
and in this

case we obtain from the above arguments that τ
(p,q,t)L
g1 (f1) ≤ τ

(p,q,t)L
g1 (f)
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= τ
(p,q,t)L
g1 (f1 · f2) . Hence τ

(p,q,t)L
g1 (f) = τ

(p,q,t)L
g1 (f1)⇒ τ

(p,q,t)L
g1 (f1 · f2) =

τ
(p,q,t)L
g1 (f1) provided q > 1.

Similarly, if we consider λ
(p,q,t)L
g1 (f1) < λ

(p,q,t)L
g1 (f2) with at least f1 is

of regular relative (p, q, t) growth with respect to g1, then one can easily

verify that τ
(p,q,t)L
g1 (f1 · f2) = τ

(p,q,t)L
g1 (f2) provided q > 1.

Next we may suppose that f = f1
f2

with f1, f2 and f are all entire

functions satisfying the conditions specified in the theorem.

Sub Case IA. Let λ
(p,q,t)L
g1 (f2) < λ

(p,q,t)L
g1 (f1). Therefore in view of The-

orem 8, λ
(p,q,t)L
g1 (f2) < λ

(p,q,t)L
g1 (f1) = λ

(p,q,t)L
g1 (f). We have f1 = f · f2.

So τ
(p,q,t)L
g1 (f1) = τ

(p,q,t)L
g1 (f) = τ

(p,q,t)L
g1

(
f1
f2

)
provided q > 1.

Sub Case IB. Let λ
(p,q,t)L
g1 (f2) > λ

(p,q,t)L
g1 (f1). Therefore in view of The-

orem 8, λ
(p,q,t)L
g1 (f1) < λ

(p,q,t)L
g1 (f2) = λ

(p,q,t)L
g1 (f). Now in view of (45) ,

we get that τ
(p,q,t)L
g1

(
f1
f2

)
≤ τ

(p,q,t)L
g1 (f2) . Further we have f2 = f1

f
and

in this case τ
(p,q,t)L
g1 (f2) ≤ τ

(p,q,t)L
g1

(
f1
f2

)
. So τ

(p,q,t)L
g1

(
f1
f2

)
= τ

(p,q,t)L
g1 (f2)

provided q > 1.

Case II. Let λ
(p,q,t)L
g1 (f1) > λ

(p,q,t)L
g1 (f2) with at least f2 is of regular

relative (p, q, t) growth with respect to g1 and g1 satisfy the Property
(A). Now for any arbitrary ε > 0, we get from (25) for all sufficiently
large values of r that

M
f1·f2

(r) ≤

Mg1

[
exp[p−1]

{(
τ (p,q,t)L
g1 (f1) +

ε

2

) [
log[q−1] r · exp[t+1] L (r)

]λ(p,q,t)Lg1
(f1)
}]

×Mg1

[
exp[p−1]

{(
τ (p,q,t)L
g1 (f2) +

ε

2

) [
log[q−1] r · exp[t+1] L (r)

]λ(p,q,t)Lg1
(f2)
}]

.

Now in view of λ
(p,q,t)L
g1 (f1) > λ

(p,q,t)L
g1 (f2), we get that

lim
r→∞

(
τ (p,q,t)L
g1

(f1) + ε
2

) [
log[q−1] r · exp[t+1] L (r)

]λ(p,q,t)Lg1
(f1)

(
τ (p,q,t)L
g1

(f2) + ε
2

) [
log[q−1] r · exp[t+1] L (r)

]λ(p,q,t)Lg1
(f2)

=∞ .
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Therefore it follows for all sufficiently large values of r that

Mg1

[
exp[p−1]

{(
τ (p,q,t)L
g1 (f1) +

ε

2

) [
log[q−1] r · exp[t+1] L (r)

]λ(p,q,t)Lg1
(f1)
}]

> Mg1

[
exp[p−1]

{(
τ (p,q,t)L
g1 (f2) +

ε

2

) [
log[q−1] r · exp[t+1] L (r)

]λ(p,q,t)Lg1
(f2)
}]

holds and therefore from the above arguments we get for all sufficiently
large values of r that

(46) M
f1·f2

(r) <[
Mg1

[
exp[p−1]

{(
τ (p,q,t)L
g1 (f1) +

ε

2

) [
log[q−1] r · exp[t+1] L (r)

]λ(p,q,t)Lg1
(f1)
}]]2

.

Now using the similar technique as explored in the proof of Case I of
Theorem 24 we obtain from (46) that τ (p,q,t)L

g1
(f1 · f2) = τ (p,q,t)L

g1
(f1) and

τ
(p,q,t)L
g1
g2

(f1) = τ
(p,q,t)L
gi (f1) | i = 1, 2 under the conditions specified in the

theorem.
Likewise, if we consider λ

(p,q,t)L
g1 (f1) < λ

(p,q,t)L
g1 (f2) with at least f1 is

of regular relative (p, q, t) growth with respect to g1, then one can easily
verify that τ (p,q,t)L

g1
(f1 · f2) = τ (p,q,t)L

g1
(f2) provided q > 1.

Therefore the first part of theorem follows Case I and Case II.

Case III. Let λ
(p,q,t)L
g1 (f1) < λ

(p,q,t)L
g2 (f1) , g1 ·g2 and g1 are satisfy the

Property (A). Now for all sufficiently large values of r and λ
(p,q,t)L
g1 (f1) <

λ
(p,q,t)L
g2 (f1) , we get that

exp[p−1]

{(
τ (p,q,t)L
g2 (f1)− ε

) [
log[q−1] r · exp[t+1] L (r)

]λ(p,q,t)Lg2
(f1)
}
>

exp[p−1]

{(
τ (p,q,t)L
g1 (f1)− ε

) [
log[q−1] r · exp[t+1] L (r)

]λ(p,q,t)Lg1
(f1)
}

holds. Therefore

Mg2

[
exp[p−1]

{(
τ (p,q,t)L
g2 (f1)− ε

) [
log[q−1] r · exp[t+1] L (r)

]λ(p,q,t)Lg2
(f1)
}]

>

Mg2

[
exp[p−1]

{(
τ (p,q,t)L
g1 (f1)− ε

) [
log[q−1] r · exp[t+1] L (r)

]λ(p,q,t)Lg1
(f1)
}]

.
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also holds.
Therefore in view of (26) we obtain for all sufficiently large values of

r that
(47)

Mg1·g2

[
exp[p−1]

{(
τ (p,q,t)L
g1 (f1)− ε

) [
log[q−1] r · exp[t+1] L (r)

]λ(p,q,t)Lg1
(f1)
}]

≤ [Mf1 (r)]2 .

Now using the similar technique as explored in the proof of Case III
of Theorem 23 we obtain from (47) that

(48) τ (p,q,t)L
g1·g2 (f1) ≤ τ (p,q,t)L

g1
(f1) .

In order to establish the equality of (48), let us restrict ourselves on
the functions gi | i = 1, 2 and f1 such that p > 1. Now let h, h1, h2 and
k be any four entire functions such that h = h1

h2
, h and h1 are satisfy the

Property (A). Now we know that T
h

(r) = T
h2
h1

(r) ≤ T
h2

(r) + Th1 (r).

Therefore in view of Lemma 3 and in the line of the construction of the
proof as above it follows that

τ
(p,q,t)L
h (k) = τ

(p,q,t)L
h1
h2

(k) ≥ τ
(p,q,t)L
h1

(k) ,

when λ
(p,q,t)L
h1

(k) < λ
(p,q,t)L
h2

(k) with p > 1 and

(49) τ
(p,q,t)L
h (k) = τ

(p,q,t)L
h1
h2

(k) ≥ τ
(p,q,t)L
h2

(k) ,

when λ
(p,q,t)L
h1

(k) > λ
(p,q,t)L
h2

(k) with p > 1.

Further without loss of any generality, let g = g1 · g2 and λ
(p,q,t)L
g (f1)

= λ
(p,q,t)L
g1 (f1) < λ

(p,q,t)L
g2 (f1) . Then in view of (48) , we obtain that

τ
(p,q,t)L
g (f1) = τ

(p,q,t)L
g1·g2 (f1) ≥ τ

(p,q,t)L
g1 (f1). Also g1 = g

g2
and in this

case we obtain from above arguments that τ
(p,q,t)L
g1 (f1) ≥ τ

(p,q,t)L
g (f1) =

τ
(p,q,t)L
g1·g2 (f1). Hence τ

(p,q,t)L
g (f1) = τ

(p,q,t)L
g1 (f1)⇒ τ

(p,q,t)L
g1·g2 (f1) = τ

(p,q,t)L
g1 (f1)

provided p > 1.

If λ
(p,q,t)L
g1 (f1) > λ

(p,q,t)L
g2 (f1) , then one can easily verify that τ

(p,q,t)L
g1·g2 (f1)

= τ
(p,q,t)L
g2 (f1) provided p > 1.

Next we may suppose that g = g1
g2

with g1, g2, g are all entire functions

satisfying the conditions specified in the theorem.
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Sub Case IIIA. Let λ
(p,q,t)L
g1 (f1) < λ

(p,q,t)L
g2 (f1). Therefore in view

of Theorem 10, λ
(p,q,t)L
g (f1) = λ

(p,q,t)L
g1 (f1) < λ

(p,q,t)L
g2 (f1). We have

g1 = g · g2. So τ
(p,q,t)L
g1 (f1) = τ

(p,q,t)L
g (f1) = τ

(p,q,t)L
g1
g2

(f1) provided p > 1.

Sub Case IIIB. Let λ
(p,q,t)L
g1 (f1) > λ

(p,q,t)L
g2 (f1). Therefore in view of

Theorem 10, λ
(p,q,t)L
g (f1) = λ

(p,q,t)L
g2 (f1) < λ

(p,q,t)L
g1 (f1). Now in view of

(49) , we get that τ
(p,q,t)L
g1
g2

(f1) ≤ τ
(p,q,t)L
g2 (f1) . Further we have g2 = g1

g

and in this case τ
(p,q,t)L
g2 (f1) ≤ τ

(p,q,t)L
g1
g2

(f1) . So τ
(p,q,t)L
g1
g2

(f1) = τ
(p,q,t)L
g2 (f1)

provided p > 1.

Case IV. Suppose λ
(p,q,t)L
g1 (f1) < λ

(p,q,t)L
g2 (f1) , g1 ·g2 and g1 are satisfy

the Property (A). Therefore for all sufficiently large values of r we obtain
that

exp[p−1]

{(
τ (p,q,t)L
g2 (f1)− ε

) [
log[q−1] rn · exp[t+1] L (rn)

]λ(p,q,t)Lg2
(f1)
}
>

exp[p−1]

{(
τ (p,q,t)L
g1 (f1)− ε

) [
log[q−1] rn · exp[t+1] L (rn)

]λ(p,q,t)Lg1
(f1)
}

holds. Naturally,

Mg2

[
exp[p−1]

{(
τ (p,q,t)L
g2 (f1)− ε

) [
log[q−1] rn · exp[t+1] L (rn)

]λ(p,q,t)Lg2
(f1)
}]

>

Mg2

[
exp[p−1]

{(
τ (p,q,t)L
g1 (f1)− ε

) [
log[q−1] rn · exp[t+1] L (rn)

]λ(p,q,t)Lg1
(f1)
}]

.

also holds.
Therefore in view of (26) and (27) we obtain for a sequence of values

of r tending to infinity that
(50)

Mg1·g2

[
exp[p−1]

{(
τ (p,q,t)L
g1 (f1)− ε

) [
log[q−1] rn · exp[t+1] L (rn)

]λ(p,q,t)Lg1
(f1)
}]

≤ [Mf1 (r)]2 .
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Now using the similar technique as explored in the proof of Case III

of Theorem 24, we obtain from (50) that τ
(p,q,t)L
g1·g2 (f1) = τ (p,q,t)L

g1
(f1) and

τ
(p,q,t)L
g1
g2

(f1) = τ
(p,q,t)L
gi (f1) | i = 1, 2.

Similarly if we consider that λ
(p,q,t)L
g1 (f1) > λ

(p,q,t)L
g2 (f1) , then one can

easily verify that τ
(p,q,t)L
g1·g2 (f1) = τ (p,q,t)L

g2
(f1) provided p > 1.

Therefore the second part of the theorem follows from Case III and
Case IV.

Proof of the third part of the Theorem is omitted as it can be carried
out in view of Theorem 14 , Theorem 16 and the above cases.

Theorem 25. Let f1, f2, g1 and g2 be any four entire functions. Also
let p, q ∈ N and t ∈ N ∪ {−1, 0}.
(A) The following condition is assumed to be satisfied:

(i) Either σ
(p,q,t)L
g1 (f1) 6= σ

(p,q,t)L
g1 (f2) or σ(p,q,t)L

g1
(f1) 6= σ(p,q,t)L

g1
(f2) holds

and q > 1;
(ii) g1 satisfies the Property (A), then

ρ(p,q,t)L
g1

(f1 · f2) = ρ(p,q,t)L
g1

(f1) = ρ(p,q,t)L
g1

(f2) .

(B) The following conditions are assumed to be satisfied:

(i) Either σ
(p,q,t)L
g1 (f1) 6= σ

(p,q,t)L
g2 (f1) or σ(p,q,t)L

g1
(f1) 6= σ(p,q,t)L

g2
(f1) holds

and p > 1;
(ii) f1 is of regular relative (p, q, t) growth with respect to at least any
one of g1 or g2. Also g1 · g2 satisfy the Property (A). Then we have

ρ(p,q,t)L
g1·g2 (f1) = ρ(p,q,t)L

g1
(f1) = ρ(p,q,t)L

g2
(f1) .

Proof. Let f1, f2, g1 and g2 be any four entire functions satisfying the
conditions of the theorem.

Case I. Suppose that ρ
(p,q,t)L
g1 (f1) = ρ

(p,q,t)L
g1 (f2) (0 < ρ

(p,q,t)L
g1 (f1) , ρ

(p,q,t)L
g1 (f2)

<∞) and g1 satisfy the Property (A). Now in view of Theorem 9, it is

easy to see that ρ
(p,q,t)L
g1 (f1 · f2) ≤ ρ

(p,q,t)L
g1 (f1) = ρ

(p,q,t)L
g1 (f2) . If possible

let

(51) ρ(p,q,t)L
g1

(f1 · f2) < ρ(p,q,t)L
g1

(f1) = ρ(p,q,t)L
g1

(f2) .

Let σ
(p,q,t)L
g1 (f1) 6= σ

(p,q,t)L
g1 (f2) . Now in view of the first part of

Theorem 23 and (51) we obtain that σ
(p,q,t)L
g1 (f1) = σ

(p,q,t)L
g1

(
f1·f2
f2

)
=

σ
(p,q,t)L
g1 (f2) which is a contradiction. Hence ρ

(p,q,t)L
g1 (f1 · f2) = ρ

(p,q,t)L
g1 (f1)
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= ρ
(p,q,t)L
g1 (f2) . Similarly with the help of the first part of Theorem 23,

one can obtain the same conclusion under the hypothesis σ(p,q,t)L
g1

(f1) 6=
σ(p,q,t)L
g1

(f2) . This prove the first part of the theorem.

Case II. Let us consider that ρ
(p,q,t)L
g1 (f1) = ρ

(p,q,t)L
g2 (f1) (0< ρ

(p,q,t)L
g1 (f1) ,

ρ
(p,q,t)L
g2 (f1) <∞), f1 is of regular relative (p, q, t) growth with respect to

at least any one of g1 or g2. Also g1 · g2 satisfy the Property (A). There-

fore in view of Theorem 11, it follows that ρ
(p,q,t)L
g1·g2 (f1) ≥ ρ

(p,q,t)L
g1 (f1) =

ρ
(p,q,t)L
g2 (f1) and if possible let

(52) ρ(p,q,t)L
g1·g2 (f1) > ρ(p,q,t)L

g1
(f1) = ρ(p,q,t)L

g2
(f1) .

Further suppose that σ
(p,q,t)L
g1 (f1) 6= σ

(p,q,t)L
g2 (f1) . Therefore in view

of the proof of the second part of Theorem 23 and (52), we obtain that

σ
(p,q,t)L
g1 (f1) = σ

(p,q,t)L
g1·g2
g2

(f1) = σ
(p,q,t)L
g2 (f1) which is a contradiction. Hence

ρ
(p,q,t)L
g1·g2 (f1) = ρ

(p,q,t)L
g1 (f1) = ρ

(p,q,t)L
g2 (f1) . Likewise in view of the proof

of second part of Theorem 23, one can obtain the same conclusion under
the hypothesis σ(p,q,t)L

g1
(f1) 6= σ(p,q,t)L

g2
(f1) . This proves the second part

of the theorem.

Theorem 26. Let f1, f2, g1 and g2 be any four entire functions. Also
let p, q ∈ N and t ∈ N ∪ {−1, 0}.
(A) The following conditions are assumed to be satisfied:
(i) (f1 · f2) is of regular relative (p, q, t) growth with respect to at least
any one g1 or g2;
(ii) (g1 · g2), g1 and g2 all satisfy the Property (A);

(iii) Either σ
(p,q,t)L
g1 (f1 · f2) 6= σ

(p,q,t)L
g2 (f1 · f2) or σ(p,q,t)L

g1
(f1 · f2)

6= σ(p,q,t)L
g2

(f1 · f2);

(iv) Either σ
(p,q,t)L
g1 (f1) 6= σ

(p,q,t)L
g1 (f2) or σ(p,q,t)L

g1
(f1) 6= σ(p,q,t)L

g1
(f2);

(v) Either σ
(p,q,t)L
g2 (f1) 6= σ

(p,q,t)L
g2 (f2) or σ(p,q,t)L

g2
(f1) 6= σ(p,q,t)L

g2
(f2);

(vi) min {p, q} > 1; then

ρ(p,q,t)L
g1·g2 (f1 · f2) = ρ(p,q,t)L

g1
(f1) = ρ(p,q,t)L

g1
(f2) = ρ(p,q,t)L

g2
(f1) = ρ(p,q,t)L

g2
(f2) .

(B) The following conditions are assumed to be satisfied:
(i) (g1 · g2) satisfy the Property (A);
(ii) f1 and f2 are of regular relative (p, q, t) growth with respect to at
least any one g1 or g2;

(iii) Either σ
(p,q,t)L
g1·g2 (f1) 6= σ

(p,q,t)L
g1·g2 (f2) or σ

(p,q,t)L
g1·g2 (f1) 6= σ

(p,q,t)L
g1·g2 (f2);
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(iv) Either σ
(p,q,t)L
g1 (f1) 6= σ

(p,q,t)L
g2 (f1) or σ(p,q,t)L

g1
(f1) 6= σ(p,q,t)L

g2
(f1);

(v) Either σ
(p,q,t)L
g1 (f2) 6= σ

(p,q,t)L
g2 (f2) or σ(p,q,t)L

g1
(f2) 6= σ(p,q,t)L

g2
(f2);

(vi) min {p, q} > 1; then

ρ(p,q,t)L
g1·g2 (f1 · f2) = ρ(p,q,t)L

g1
(f1) = ρ(p,q,t)L

g1
(f2) = ρ(p,q,t)L

g2
(f1) = ρ(p,q,t)L

g2
(f2) .

We omit the proof of Theorem 26 as it is a natural consequence of
Theorem 25.

Theorem 27. Let f1, f2, g1 and g2 be any four entire functions.
(A) The following conditions are assumed to be satisfied:
(i) At least any one of f1 or f2 are of regular relative (p, q, t) growth with
respect to g1 where p, q ∈ N and t ∈ N ∪ {−1, 0};
(ii) Either τ

(p,q,t)L
g1 (f1) 6= τ

(p,q,t)L
g1 (f2) or τ (p,q,t)L

g1
(f1) 6= τ (p,q,t)L

g1
(f2) holds

and q > 1.
(iii) g1 satisfies the Property (A), then

λ(p,q,t)L
g1

(f1 · f2) = λ(p,q,t)L
g1

(f1) = λ(p,q,t)L
g1

(f2) .

(B) The following conditions are assumed to be satisfied:

(i) f1, g1 and g2 be any three entire functions such that λ
(p,q,t)L
g1 (f1) and

λ
(p,q,t)L
g2 (f1) exist where p, q ∈ N, t ∈ N∪ {−1, 0} and g1 · g2 satisfies the

Property (A);

(ii) Either τ
(p,q,t)L
g1 (f1) 6= τ

(p,q,t)L
g2 (f1) or τ (p,q,t)L

g1
(f1) 6= τ (p,q,t)L

g2
(f1) holds

and p > 1, then

λ(p,q,t)L
g1·g2 (f1) = λ(p,q,t)L

g1
(f1) = λ(p,q,t)L

g2
(f1) .

Proof. Let f1, f2, g1 and g2 be any four entire functions satisfying the
conditions of the theorem.

Case I. Let λ
(p,q,t)L
g1 (f1) = λ

(p,q,t)L
g1 (f2) (0 < λ

(p,q,t)L
g1 (f1) , λ

(p,q,t)L
g1 (f2) <

∞), g1 satisfy the Property (A) and at least f1 or f2 is of regular relative
(p, q, t) growth with respect to g1. Now in view of Theorem 7 it is easy

to see that λ
(p,q,t)L
g1 (f1 · f2) ≤ λ

(p,q,t)L
g1 (f1) = λ

(p,q,t)L
g1 (f2) . If possible let

(53) λ(p,q,t)L
g1

(f1 · f2) < λ(p,q,t)L
g1

(f1) = λ(p,q,t)L
g1

(f2) .

Also let τ
(p,q,t)L
g1 (f1) 6= τ

(p,q,t)L
g1 (f2) . Then in view of the proof of first

part of Theorem 24 and (53) , we obtain that τ
(p,q,t)L
g1 (f1) = τ

(p,q,t)L
g1

(
f1·f2
f2

)
= τ

(p,q,t)L
g1 (f2) which is a contradiction. Hence λ

(p,q,t)L
g1 (f1 · f2) = λ

(p,q,t)L
g1 (f1)
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= λ
(p,q,t)L
g1 (f2) . Analogously, in view of the proof of first part of The-

orem 24, one can derived the same conclusion under the hypothesis
τ (p,q,t)L
g1

(f1) 6= τ (p, q, t)L (f2). Hence the first part of the theorem is
established.
Case II. Let us consider that λ

(p,q,t)L
g1 (f1) = λ

(p,q,t)L
g2 (f1) (0< λ

(p,q,t)L
g1 (f1) ,

λ
(p,q,t)L
g2 (f1) <∞) and g1 · g2 satisfy the Property (A). Therefore in view

of Theorem 10, it follows that λ
(p,q,t)L
g1·g2 (f1) ≥ λ

(p,q,t)L
g1 (f1) = λ

(p,q,t)L
g2 (f1)

and if possible let

(54) λ(p,q,t)L
g1·g2 (f1) > λ(p,q,t)L

g1
(f1) = λ(p,q,t)L

g2
(f1) .

Further let τ
(p,q,t)L
g1 (f1) 6= τ

(p,q,t)L
g2 (f1) . Then in view of second part

of Theorem 24 and (54), we obtain that τ
(p,q,t)L
g1 (f1) = τ

(p,q,t)L
g1·g2
g2

(f1) =

τ
(p,q,t)L
g2 (f1) which is a contradiction. Hence λ

(p,q,t)L
g1·g2 (f1) = λ

(p,q,t)L
g1 (f1)

= λ
(p,q,t)L
g2 (f1) . Similarly by second part of Theorem 24, we get the same

conclusion when τ (p,q,t)L
g1

(f1) 6= τ (p,q,t)L
g2

(f1) and therefore the second part
of the theorem follows.

Theorem 28. Let f1, f2, g1 and g2 be any four entire functions.
(A) The following conditions are assumed to be satisfied:
(i) g1 · g2, g1 and g2 satisfy the Property (A);
(ii) At least any one of f1 or f2 are of regular relative (p, q, t) growth
with respect to g1 and g2 where p, q ∈ N and t ∈ N ∪ {−1, 0};
(iii) Either τ

(p,q,t)L
g1 (f1 · f2) 6= τ

(p,q,t)L
g2 (f1 · f2) or τ (p,q,t)L

g1
(f1 · f2)

6= τ (p,q,t)L
g2

(f1 · f2);

(iv) Either τ
(p,q,t)L
g1 (f1) 6= τ

(p,q,t)L
g1 (f2) or τ (p,q,t)L

g1
(f1) 6= τ (p,q,t)L

g1
(f2);

(v) Either τ
(p,q,t)L
g2 (f1) 6= τ

(p,q,t)L
g2 (f2) or τ (p,q,t)L

g2
(f1) 6= τ (p,q,t)L

g2
(f2); then

λ(p,q,t)L
g1·g2 (f1 · f2) = λ(p,q,t)L

g1
(f1) = λ(p,q,t)L

g1
(f2) = λ(p,q,t)L

g2
(f1) = λ(p,q,t)L

g2
(f2) .

(B) The following conditions are assumed to be satisfied:
(i) g1 · g2 satisfy the Property (A);
(ii) At least any one of f1 or f2 are of regular relative (p, q, t) growth
with respect to g1 · g2 where p, q ∈ N and t ∈ N ∪ {−1, 0};
(iii) Either τ

(p,q,t)L
g1·g2 (f1) 6= τ

(p,q,t)L
g1·g2 (f2) or τ

(p,q,t)L
g1·g2 (f1) 6= τ

(p,q,t)L
g1·g2 (f2) holds;

(iv) Either τ
(p,q,t)L
g1 (f1) 6= τ

(p,q,t)L
g2 (f1) or τ (p,q,t)L

g1
(f1) 6= τ (p,q,t)L

g2
(f1) holds;

(v) Either τ
(p,q,t)L
g1 (f2) 6= τ

(p,q,t)L
g2 (f2) or τ (p,q,t)L

g1
(f2) 6= τ (p,q,t)L

g2
(f2) holds,
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then

λ(p,q,t)L
g1·g2 (f1 · f2) = λ(p,q,t)L

g1
(f1) = λ(p,q,t)L

g1
(f2) = λ(p,q,t)L

g2
(f1) = λ(p,q,t)L

g2
(f2) .

We omit the proof of Theorem 28 as it is a natural consequence of
Theorem 27.

Remark 1. If we take f1
f2

instead of f1 · f2 and g1
g2

instead of g1 · g2

where f1
f2

and g1
g2

are entire functions and the other conditions of Theorem

25, Theorem 26, Theorem 27 and Theorem 28 remain the same, then
conclusion of Theorem 25, Theorem 26, Theorem 27 and Theorem 28
remains valid.

4. Concluding Remarks

In this paper, we study certain properties of relative (p, q, t)L-th or-
der, relative (p, q, t)L-th type, and relative (p, q, t)L-th weak type of
entire functions with respect to another entire function where p, q ∈ N
and t ∈ N ∪ {−1, 0}. Moreover, if we rewrite Definition 2 as

ρ
(p,q,t)L
g (f)

λ
(p,q,t)L
g (f)

= lim
r→∞

sup
inf

log[p] M−1
g Mf (r)

log[q] [r exp[t] L (r)]
,

and also alter Definition 3 and Definition 4 accordingly where p, q ∈ N
and t ∈ N ∪ {0} , then substituting log[q] r + exp[t] L (r) and log[q−1] r ·
exp[t+1] L (r) by log[q]

[
r exp[t] L (r)

]
and log[q−1]

[
r exp[t] L (r)

]
respec-

tively, all the above results can be derived which gives another direction
of growth measurement of entire functions.
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