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GROWTH ANALYSIS OF COMPOSITE ENTIRE

FUNCTIONS FROM THE VIEW POINT OF RELATIVE

(p, q)-TH ORDER

Tanmay Biswas

Abstract. In this paper we study some comparative growth prop-
erties of composite entire functions on the basis of relative (p, q)-th
order and relative (p, q)-th lower order of entire function with re-
spect to another entire function where p and q are any two positive
integers.

1. Introduction, Definitions and Notations

Throughout this paper, we assume that the reader is familiar with
the fundamental results and the standard notations of the theory of
entire functions which are available in [17]. For any entire function
f defined in the open complex plane C, the maximum modulus func-
tion Mf (r) is defined as Mf (r) = max

|z|=r
|f (z) |. Since Mf (r) is strictly

increasing and continuous, therefore there exists its inverse function
M−1

f : (|f (0)| ,∞) → (0,∞) with lim
s→∞

M−1
f (s) = ∞. However, for an-

other entire function g, Mg (r) is defined and the ratio
Mf (r)

Mg(r)
as r → ∞

is called the growth of f with respect to g in terms of their maximum
moduli. The maximum term µf (r) of f can be defined in the following
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way:

µf (r) = max
n≥0

(|an|rn) .

In fact µf (r) is much weaker than Mf (r) in some sense. So from

another angle of view
µf (r)

µg(r)
as r →∞ is also called the growth of f with

respect to g where µg (r) denotes the maximum term of entire g.
However, the order ρf (resp. lower order λf ) of an entire function f

which is generally used in computational purpose is defined in terms of
the growth of f with respect to the exp z function as

ρf = lim
r→∞

log logMf (r)

log logMexp z (r)
= lim

r→∞

log logMf (r)

log r(
resp. λf = lim

r→∞

log logMf (r)

log logMexp z (r)
= lim

r→∞

log logMf (r)

log r

)
.

Extending this notion, Juneja et. al. [10] defined the (p, q)-th order
(resp. (p, q)-th lower order) of an entire function f for any two positive
integers p, q with p ≥ q which is as follows:

ρf (p, q) = lim
r→∞

log[p]Mf (r)

log[q] r

(
resp. λf (p, q) = lim

r→∞

log[p]Mf (r)

log[q] r

)
,

where

log[k] x = log
(

log[k−1] x
)

for k = 1, 2, 3, · · · and

log[0] x = x;

and

exp[k] x = exp
(
exp[k−1] x

)
for k = 1, 2, 3, · · · and

exp[0] x = x.

These definitions extend the generalized order ρ
[l]
f and generalized

lower order λ
[l]
f of an entire function f considered in [13] for each integer

l ≥ 2 since these correspond to the particular case ρ
[l]
f = ρf (l, 1) and

λ
[l]
f = λf (l, 1) . Clearly, ρf (2, 1) = ρf and λf (2, 1) = λf .
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In this connection, let us recall that if 0 < ρf (p, q) < ∞, then the
following properties hold

ρf (p− n, q) =∞ for n < p, ρf (p, q − n) = 0 for n < q, and

ρf (p+ n, q + n) = 1 for n = 1, 2, ...

Similarly for 0 < λf (p, q) <∞, one can easily verify that

λf (p− n, q) =∞ for n < p, λf (p, q − n) = 0 for n < q, and

λf (p+ n, q + n) = 1 for n = 1, 2, .... .

Recalling that for any pair of integer numbers m,n the Kroenecker
function is defined by δm,n = 1 for m = n and δm,n = 0 for m 6= n, the
aforementioned properties provide the following definition.

Definition 1. [10] An entire function f is said to have index-pair
(1, 1) if 0 < ρf (1, 1) < ∞. Otherwise, f is said to have index-pair
(p, q) 6= (1, 1), p ≥ q ≥ 1, if δp−q,0 < ρf (p, q) <∞ and ρf (p− 1, q − 1) /∈
R+.

Definition 2. [10] An entire function f is said to have lower index-
pair (1, 1) if 0 < λf (1, 1) < ∞. Otherwise, f is said to have lower
index-pair (p, q) 6= (1, 1), p ≥ q ≥ 1, if δp−q,0 < λf (p, q) < ∞ and
λf (p− 1, q − 1) /∈ R+.

An entire function f of index-pair (p, q) is said to be of regular (p, q)-
growth if its (p, q)-th order coincides with its (p, q)-th lower order, oth-
erwise f is said to be of irregular (p, q)-growth.

Since for 0 ≤ r < R,

µf (r) ≤Mf (r) ≤ R

R− r
µf (R) {cf. [15] }

it is easy to see that

ρf (p, q) = lim
r→∞

log[p] µf (r)

log[q] r

(
respectively λf (p, q) = lim

r→∞

log[p] µf (r)

log[q] r

)
.

L. Bernal [1,2] introduced the relative order between two entire func-
tions to avoid comparing growth just with exp z. In the case of relative
order, it was then natural for Lahiri and Banerjee [11] to define the
relative (p, q)-th order of entire functions as follows.
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Definition 3. [11] Let p and q be any two positive integers with
p > q. The relative (p, q)-th order of f with respect to g is defined by

ρ(p,q)g (f) = lim
r→∞

log[p−1]M−1
g Mf (r)

log[q] r
.

Then ρ
(p,q)
exp z (f) = ρf (p, q) and ρ

(k+1,1)
g (f) = ρkg (f) for any k ≥ 1.

Sánchez Ruiz et al. [12] gave a more natural definition of relative
(p, q) th order of an entire function in the light of index-pair which is as
follows:

Definition 4. [12] Let f and g be any two entire functions with
index-pairs (m, q) and (m, p) respectively where p, q,m are all positive
integers such that m ≥ p and m ≥ q. Then the relative (p, q) th order of
f with respect to g is defined as

ρ(p,q)g (f) = lim
r→∞

log[p]M−1
g Mf (r)

log[q] r

Similarly one can define the relative (p, q) th lower order of an entire

function f with respect to another entire function g denoted by λ
(p,q)
g (f)

where p and q are any two positive integers in the following way:

λ(p,q)g (f) = lim
r→∞

log[p]M−1
g Mf (r)

log[q] r
.

In fact Definition 4 improves Definition 3 ignoring the restriction p ≥
q.

If f and g have got index-pair (m, 1) and (m, k) , respectively, then
Definition 4 reduces to generalized relative order of f with respect to g.
If the entire functions f and g have the same index-pair (p, 1) where p
is any positive integer, we get the definition of relative order introduced

by Bernal [1, 2] and if g = exp[m−1] z, then ρg (f) = ρ
[m]
f and ρ

(p,q)
g (f) =

ρf (m, q) . Further if f is an entire function with index-pair (2, 1) and
g = exp z, then Definition 4 becomes the classical one given in [16].

An entire function f for which relative (p, q)-th order and relative
(p, q)-th lower order with respect to another entire function g are the
same is called a function of regular relative (p, q) growth with respect to
g. Otherwise, f is said to be irregular relative (p, q) growth with respect
to g.
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In terms of maximum terms of entire functions, Definition 4 can be
reformulated as:

Definition 5. For any positive integer p and q, the growth indicators

ρ
(p,q)
g (f) and λ

(p,q)
g (f) of an entire function f with respect to another

entire function g are defined as:

ρ(p,q)g (f) = lim
r→∞

log[p] µ−1g µf (r)

log[q] r
and λ(p,q)g (f) = lim

r→∞

log[p] µ−1g µf (r)

log[q] r
.

In fact, Lemma 6 states the equivalence of Definition 4 and Definition
5.

For entire functions, the notions of their growth indicators such as
order is classical in complex analysis and during the past decades, sev-
eral researchers have already been exploring their studies in the area of
comparative growth properties of composite entire functions in different
directions using the classical growth indicators. But at that time, the
concepts of relative orders of entire functions and as well as their tech-
nical advantages of not comparing with the growths of exp z are not at
all known to the researchers of this area. Therefore the studies of the
growths of composite entire functions in the light of their relative orders
are the prime concern of this paper. In fact some light has already been
thrown on such type of works by Datta et al. in [4], [5], [6], [7], [8] and [9].
Actually in this paper we establish some newly developed results related
to the growth rates of composite entire functions on the basis of relative
(p, q) th order and relative (p, q) th lower order improving some earlier
results where p, q are any two positive integers.

2. Lemmas

In this section we present some lemmas which will be needed in the
sequel.

Lemma 1. [3] If f and g are any two entire functions with g (0) = 0.

Let β satisfy 0 < β < 1 and c (β) = (1−β)2
4β

. Then for all sufficiently

large values of r,

Mf (c (β)Mg (βr)) ≤Mf◦g (r) ≤Mf (Mg (r)) .
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In addition if β = 1
2
, then for all sufficiently large values of r,

Mf◦g (r) ≥Mf

(
1

8
Mg

(r
2

))
.

Lemma 2. [14] Let f and g be any two entire functions. Then for
every α > 1 and 0 < r < R,

µf◦g (r) ≤ α

α− 1
µf

(
αR

R− r
µg (R)

)
.

Lemma 3. [14] If f and g are any two entire functions with g (0) = 0,
then for all sufficiently large values of r,

µf◦g(r) ≥
1

2
µf

(
1

8
µg

(r
4

)
− |g (0)|

)
.

Lemma 4. [2] Suppose f is an entire function and α > 1, 0 < β < α.
Then for all sufficiently large r,

Mf (αr) ≥ βMf (r).

Lemma 5. [6] If f be an entire and α > 1, 0 < β < α, then for all
sufficiently large r,

µf (αr) ≥ βµf (r) .

Lemma 6. Definition 4 and Definition 5 are equivalent.

Proof. Taking R = αr in the inequalities µg (r) ≤Mg (r) ≤ R
R−rµg (R)

{cf. [15] } , for 0 ≤ r < R we obtain that

M−1
g (r) ≤ µ−1g (r)

and

µ−1g (r) ≤ αM−1
g

(
αr

(α− 1)

)
.

Since M−1
g (r) and µ−1g (r) are increasing functions of r, then for any

α > 1 it follows from the above and the inequalities µf (r) ≤ Mf (r) ≤
α
α−1µf (αr) {cf. [15] } that

(1) M−1
g Mf (r) ≤ µ−1g

[
α

(α− 1)
µf (αr)

]
and

(2) µ−1g µf (r) ≤ αM−1
g

[
α

(α− 1)
Mf (r)

]
.
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Therefore in view of Lemma 5, we have from (1) that

M−1
g Mf (r) ≤ µ−1g µf

[
(2α− 1)α

(α− 1)
· r
]
.

Thus from above we get that

log[p]M−1
g Mf (r)

log[q] r
≤

log[p] µ−1g µf

[
(2α−1)α
(α−1) · r

]
log[q] r

i.e.,
log[p]M−1

g Mf (r)

log[q] r
≤

log[p] µ−1g µf

[
(2α−1)α
(α−1) · r

]
log[q]

[
(2α−1)α
(α−1) · r

]
+O(1)

(3) i.e., ρ(p,q)g (f) ≤ lim
r→∞

log[p] µ−1g µf (r)

log[q] r

and accordingly

(4) λ(p,q)g (f) ≤ lim
r→∞

log[p] µ−1g µf (r)

log[q] r
.

Similarly, in view of Lemma 4 it follows from (2) that

µ−1g µf (r) ≤ αM−1
g Mf

[(
2α− 1

α− 1

)
· r
]

and from above we obtain that

log[p] µ−1g µf (r)

log[q] r
≤

log[p] αM−1
g Mf

[(
2α−1
α−1

)
· r
]

log[q] r

i.e.,
log[p] µ−1g µf (r)

log[q] r
≤

log[p]M−1
g Mf

[(
2α−1
α−1

)
· r
]

+O(1)

log[q]
[(

2α−1
α−1

)
· r
]

+O(1)

(5) i.e., ρ(p,q)g (f) ≥ lim
r→∞

log[p] µ−1g µf (r)

log[q] r

and consequently

(6) λ(p,q)g (f) ≥ lim
r→∞

log[p] µ−1g µf (r)

log[q] r
.
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Combining (3), (5) and (4), (6) we obtain that

ρ(p,q)g (f) = lim
r→∞

log[p] µ−1g µf (r)

log[q] r
and λ(p,q)g (f) = lim

r→∞

log[p] µ−1g µf (r)

log[q] r
.

This proves the lemma.

3. Main Results

In this section we present the main results of the paper.

Theorem 1. Let f and h be any two entire functions such that

0 < λ
(p,q)
h (f) ≤ ρ

(p,q)
h (f) < ∞. Also let g be an entire function with

finite (m,n)-th lower order where p, q,m, n are all positive integers with
m > n. Then for every positive constant A and every real number α,

(i) lim
r→∞

log[p] µ−1h µf◦g(exp[n−1] r){
log[p] µ−1h µf (rA)

}1+α = ∞ if q = 1,

(ii) lim
r→∞

log[p] µ−1h µf◦g(exp[n−1] r){
log[p] µ−1h µf (exp[q−1] rA)

}1+α = ∞ if q > 1 and q < m

and

(iii) lim
r→∞

log[p−1] µ−1h µf◦g(exp[n−1] r){
log[p] µ−1h µf (rA)

}1+α =∞ if q > 1 and q ≥ m.

Proof. If α be such that 1 + α ≤ 0 then the theorem is trivial. So we

suppose that 1 + α > 0. Now from the definition of ρ
(p,q)
h (f) in terms of

maximum terms, it follows for all sufficiently large values of r that

(7) log[p] µ−1h µf (exp[q−1] rA) ≤
(
ρ
(p,q)
h (f) + ε

)
log[q] exp[q−1] rA.

Case I. Let q = 1. Then we have from (7) for all sufficiently large values
of r that

log[p] µ−1h µf (r
A) ≤

(
ρ
(p,q)
h (f) + ε

)
A log r

i.e.,
{

log[p] µ−1h µf (r
A)
}1+α

≤
(
ρ
[p]
h (f) + ε

)1+α
A1+α (log r)1+α .(8)
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Case II. Let q > 1. Then we obtain from (7) for all sufficiently large
values of r that

log[p] µ−1h µf (exp[q−1] rA) ≤
(
ρ
(p,q)
h (f) + ε

)
A log r

(9) i.e.,
{

log[p] µ−1h µf (exp[q−1] rA)
}1+α

≤(
ρ
(p,q)
h (f) + ε

)1+α
A1+α (log r)1+α .

Case III. Again let q > 1. Then it follows from (7) for all sufficiently
large values of r that

log[p] µ−1h µf (r
A) ≤

(
ρ
(p,q)
h (f) + ε

)
log[q] r +O(1)

log[p] µ−1h µf (r
A) ≤

(
ρ
(p,q)
h (f) + ε

)
log[q] r

1 +
O(1)(

ρ
(p,q)
h (f) + ε

)
log[q] r


(10) i.e.,

{
log[p] µ−1h µf (r

A)
}1+α

≤

(
ρ
(p,q)
h (f) + ε

)1+α (
log[q] r

)1+α1 +
O(1)(

ρ
(p,q)
h (f) + ε

)
log[q] r

[1+α]

.

Let us choose 0 < ε < min(λ
(p,q)
h (f) , λ(m,n) (g)) .

Now from Lemma 3 we get for all sufficiently large values of r that

µf◦g(r) ≥
1

2
µf

(
1

16
µg

(r
4

))
{cf. [15] } .

Therefore in view of Lemma 5, we obtain from abvove for all sufficiently
large values of r that

(11) µf◦g(r) ≥ µf

(
1

48
µg

(r
4

))
.

Since µ−1h (r) is an increasing function of r, it follows from (11) for all
sufficiently large values r that

µ−1h µf◦g(exp[n−1] r) ≥ µ−1h µf

(
1

48
µg

(
exp[n−1] r

4

))
i.e., log[p] µ−1h µf◦g(exp[n−1] r) ≥



414 Tanmay Biswas(
λ
(p,q)
h (f)− ε

)
log[q]

{
1

48
µg

(
exp[n−1] r

4

)}
(12) i.e., log[p] µ−1h µf◦g(exp[n−1] r) ≥(

λ
(p,q)
h (f)− ε

)
log[q] µg

(
exp[n−1] r

4

)
+O(1).

Case IV. Let q < m. Then from (12) it follows for all sufficiently large
values of r that

(13) log[p] µ−1h µf◦g(exp[n−1] r) ≥(
λ
(p,q)
h (f)− ε

)
exp[m−q−1] log[m−1] µg

(
exp[n−1] r

4

)
+O(1).

Now from the definition of (m,n)-th lower order of g in terms of maxi-
mum terms we obtain for arbitrary positive ε (> 0) and for all sufficiently
large values of r that

log[m] µg

(
exp[n−1] r

4

)
> (λg (m,n)− ε) log[n](

exp[n−1] r

4
)

i.e., log[m] µg

(
exp[n−1] r

4

)
> (λg (m,n)− ε) log r +O(1)

i.e., log[m] µg

(
exp[n−1] r

4

)
> log r(λg(m,n)−ε) +O(1) .

Also for all sufficiently large values of r we get from (??) that

(14) log[m−1] µg

(
exp[n−1] r

4

)
> r(λg(m,n)−ε) +O(1) .

Now from (13) and (14) it follows for all sufficiently large values of r
that

(15) log[p] µ−1h µf◦g(exp[n−1] r) ≥(
λ
(p,q)
h (f)− ε

)
exp[m−q−1] r(λg(m,n)−ε) +O(1) .

Case V. Let q > m. Then from (12) we obtain for all sufficiently large
values of r that

(16) log[p] µ−1h µf◦g(exp[n−1] r)

>
(
λ
(p,q)
h (f)− ε

)
log[q−m] log[m] µg

(
exp[n−1] r

4

)
+O(1).
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Now from (??) and (16) we have for all sufficiently large values of r
that

log[p] µ−1h µf◦g(exp[n−1] r)

>
(
λ
(p,q)
h (f)− ε

)
log[q−m] log r(λg(m,n)−ε) +O(1)

i.e., log[p] µ−1h µf◦g(exp[n−1] r) >
(
λ
(p,q)
h (f)− ε

)
log[q−m+1] r +O(1)

i.e., log[p] µ−1h µf◦g(exp[n−1] r) > log
(

log[q−m] r
)(λ(p,q)h (f)−ε

)
+O(1)

(17) i.e., log[p−1] µ−1h µf◦g(exp[n−1] r) >
(

log[q−m] r
)(λ(p,q)h (f)−ε

)
+O(1).

Now combining (8) of Case I and (15) of Case IV it follows for all
sufficiently large values of r that

log[p] µ−1h µf◦g(exp[n−1] r){
log[p] µ−1h µf (rA)

}1+α ≥

(
λ
[p]
h (f)− ε

)
exp[m−2] r(λg(m,n)−ε) +O(1)(

ρ
[p]
h (f) + ε

)1+α
A1+α (log r)1+α

.

Since exp[m−2] r(λg(m,n)−ε)

(log r)1+α
→ ∞ as r → ∞, then from above it follows

that

lim
r→∞

log[p] µ−1h µf◦g(exp[n−1] r){
log[p] µ−1h µf (rA)

}1+α =∞,

from which the first part of the theorem follows.
Again combining (9) of Case II and (15) of Case IV we obtain for all

sufficiently large values of r that

log[p] µ−1h µf◦g(exp[n−1] r){
log[p] µ−1h µf (exp[q−1] rA)

}1+α ≥

(
λ
(p,q)
h (f)− ε

)
exp[m−q−1] r(λg(m,n)−ε) +O(1)(

ρ
(p,q)
h (f) + ε

)1+α
A1+α (log r)1+α

.

As exp[m−q−1] r(λg(m,n)−ε)

(log r)1+α
→ ∞ as r → ∞, then we obtain from above

that

lim
r→∞

log[p] µ−1h µf◦g(exp[n−1] r){
log[p] µ−1h µf (exp[q−1] rA)

}1+α =∞ .

This establishes the second part of the theorem .
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Again combining (10) of Case III and (17) of Case V it follows for all
sufficiently large values of r that

log[p−1] µ−1h µf◦g(exp[n−1] r){
log[p] µ−1h µf (rA)

}1+α

≥

(
log[q−m] r

)(λ(p,q)h (f)−ε
)

+O(1)(
ρ
(p,q)
h (f) + ε

)1+α (
log[q] r

)1+α(
1 + O(1)(

ρ
(p,q)
h (f)+ε

)
log[q] r

)1+α .

Since q − m < q, so
(log[q−m] r)(

λ
(p,q)
h

(f)−ε)

(log[q] r)
1+α → ∞ as r → ∞. Thus it

follows from above that

lim
r→∞

log[p−1] µ−1h µf◦g(exp[n−1] r){
log[p] µ−1h µf (rA)

}1+α =∞ .

This proves the third part of the theorem.
Thus the theorem follows .

Remark 1. Theorem 1 is still valid with “limit superior” instead of

“limit” if we replace the condition “ 0 < λ
(p,q)
h (f) ≤ ρ

(p,q)
h (f) < ∞” by

“ 0 < λ
(p,q)
h (f) <∞”.

In the line of Theorem 1 one may state the following theorem without
proof:

Theorem 2. Let f, g and h be any three entire functions such that g

is of finite (m,n)-th lower order, λ
(p,q)
h (f) > 0 and ρ

(p,n)
h (g) <∞ where

p, q,m, n are all positive integers with m > min {p, q, n} . Then for every
positive constant A and every real number α,

lim
r→∞

log[p] µ−1h µf◦g(exp[n−1] r){
log[p] µ−1h µg(exp[n−1] rA)

}1+α =∞.

Remark 2. In Theorem 2 if we take the condition λ
(p,n)
h (g) < ∞

instead of ρ
(p,n)
h (g) <∞, then also Theorem 2 remains true with “limit

superior” in place of “ limit ”.
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Theorem 3. Let f and h be any two entire functions such that

λ
(p,q)
h (f) > 0 and g be an entire function with finite (m,n)-th order

where p, q,m, n are all positive integers with m > n. Then for each
α ∈ (−∞,∞) ,

(i) lim
r→∞

{
log[p] µ−1h µf◦g (r)

}1+α

log[p] µ−1h µf (exp[q] (rA))
= 0 if q > m

and

(ii) lim
r→∞

{
log[p+m−q−1] µ−1h µf◦g (r)

}1+α

log[p] µ−1h µf (exp[q] (rA))
= 0 if q < m,

where A > (1 + α)ρg (m,n) .

Proof. If 1+α ≤ 0, then the theorem is obvious. We consider 1+α >
0. Let us we choose ε such that

(18) 0 < ε < min

{
λ
(p,q)
h (f) ,

A

1 + α
− ρg(m,n)

}
.

Since µ−1h (r) is an increasing function of r, taking R = βr in Lemma
2 and in view of Lemma 5 it follows for all sufficiently large values of r
that

log[p] µ−1h µf◦g (r) ≤ log[p] µ−1h µf

(
(2α− 1)αβ

(α− 1) (β − 1)
µg (βr)

)
i.e., log[p] µ−1h µf◦g (r) ≤

(
ρ
(p,q)
h (f) + ε

)
log[q] µg (βr) +O(1) .(19)

Now the following cases may arise :
Case I. Let q > m. Then we have from (19) for all sufficiently large
values of r that

(20) log[p] µ−1h µf◦g (r) ≤
(
ρ
(p,q)
h (f) + ε

)
log[m−1] µg (βr) +O(1) .

Now from the definition of (m,n)-th order of g in terms of maximum
terms, we get for arbitrary positive ε and for all sufficiently large values
of r that

log[m] µg (βr) 6 (ρg(m,n) + ε) log[n] r +O(1)

i.e., log[m] µg (βr) 6 (ρg(m,n) + ε) log r +O(1) .(21)

Also for all sufficiently large values of r it follows from (21) that

(22) log[m−1] µg (βr) 6 r(ρg(m,n)+ε) +O(1) .
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So from (20) and (22) it follows for all sufficiently large values of r
that

(23) log[p] µ−1h µf◦g (r) ≤
(
ρ
(p,q)
h (f) + ε

)
r(ρg(m,n)+ε) +O(1) .

Case II. Let q < m. Then we get from(19) for all sufficiently large values
of r that

(24) log[p] µ−1h µf◦g (r) ≤
(
ρ
(p,q)
h (f) + ε

)
exp[m−q] log[m] µg (βr) +O(1).

Since (ρg(m,n)+ε) log r

O(1)
→ ∞ as r → ∞, we obtain from (21) for all

sufficiently large values of r, that

exp[m−q] log[m] µg (βr) 6 exp[m−q] log r(2ρg(m,n)+ε)

i.e., exp[m−q] log[m] µg (βr) 6 exp[m−q−1] r(2ρg(m,n)+ε).(25)

Now from (24) and (25) we obtain for all sufficiently large values of r
that

log[p] µ−1h µf◦g (r) 6
(
ρ
(p,q)
h (f) + ε

)
exp[m−q−1] r(2ρg(m,n)+ε) +O(1)

(26) i.e., log[p+m−q−1] µ−1h µf◦g (r) 6 r(2ρg(m,n)+ε) +O(1) .

Again for all sufficiently large values of r we get that

log[p] µ−1h µf
(
exp[q]

(
rA
))
≥

(
λ
(p,q)
h (f)− ε

)
log[q] exp[q]

(
rA
)

i.e., log[p] µ−1h µf
(
exp[q]

(
rA
))
≥

(
λ
(p,q)
h (f)− ε

)
rA .(27)

Now if q > m, we get from (23) , (27) and in view of (18) for all
sufficiently large values of r that{

log[p] µ−1h µf◦g (r)
}1+α

log[p] µ−1h µf
(
exp[q] (rA)

) 6

(
ρ
(p,q)
h (f) + ε

)1+α
r(ρg(m,n)+ε)(1+α) +O(1)(

λ
(p,q)
h (f)− ε

)
rA

i.e., lim
r→∞

{
log[p] µ−1h µf◦g (r)

}1+α

log[p] µ−1h µf
(
exp[q] (rA)

) = 0 ,

which proves the first part of the theorem.
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Again when q < m, we obtain from (26) , (27) and (18) for all suffi-
ciently large values of r that{

log[p+m−q−1] µ−1h µf◦g (r)
}1+α

log[p] µ−1h µf (exp[q] (rA))
6
r(2ρg(m,n)+ε)(1+α)

(
1 + O(1)

r(2ρg(m,n)+ε)

)1+α(
λ
(p,q)
h (f)− ε

)
rA

i.e., lim
r→∞

{
log[p+m−q−1] µ−1h µf◦g (r)

}1+α

log[p] µ−1h µf (exp[q] (rA))
= 0 .

This proves the second part of the theorem.

Remark 3. In Theorem 3 if we take the condition ρ
(p,q)
h (f) > 0

instead of λ
(p,q)
h (f) > 0, the theorem remains true with “ limit inferior”

in place of “limit ”.

In view of Theorem 3 the following theorem can be carried out:

Theorem 4. Let f, g and h be any three entire functions where

g is of finite (m,n) th order, λ
(p,n)
h (g) > 0 and ρ

(p,q)
h (f) < ∞ where

p, q,m, n are all positive integers with m > min {p, q, n} . Then for each
α ∈ (−∞,∞) ,

lim
r→∞

{
log[p+m−q−1] µ−1h µf◦g (r)

}1+α

log[p] µ−1h µg (exp[n] (rA))
= 0 if A > (1 + α)ρg (m,n) .

The proof is omitted.

Remark 4. In Theorem 4, if we take the condition ρ
(p,n)
h (g) > 0

instead of λ
(p,n)
h (g) > 0, the theorem remains true with “ limit replaced

by limit inferior”.

Theorem 5. Let f, g and h be any three entire functions such that

ρ
(p,q)
h (f) < ∞ and λ

(p,q)
h (f ◦ g) = ∞ where p and q are any positive

integers with q > 1. Then for every A (> 0) ,

lim
r→∞

log[p] µ−1h µf◦g (r)

log[p] µ−1h µf (rA)
=∞ .

Proof. If possible, let there exists a constant β such that for a sequence
of values of r tending to infinity we have

(28) log[p] µ−1h µf◦g (r) ≤ β · log[p] µ−1h µf
(
rA
)
.



420 Tanmay Biswas

Again from the definition of ρ
(p,q)
h (f) in terms of maximum terms, it

follows for all sufficiently large values of r that

(29) log[p] µ−1h µf
(
rA
)
≤
(
ρ
(p,q)
h (f) + ε

)
log[q] r +O(1) .

Now combining (28) and (29) we obtain for a sequence of values of r
tending to infinity that

log[p] µ−1h µf◦g (r) ≤ β ·
(
ρ
(p,q)
h (f) + ε

)
log[q] r +O(1)

i.e., λ
(p,q)
h (f ◦ g) ≤ β ·

(
ρ
(p,q)
h (f) + ε

)
,

which contradicts the condition λ
(p,q)
h (f ◦ g) = ∞. So for any positive

integer q and for all sufficiently large values of r we get that

log[p] µ−1h µf◦g (r) ≥ β · log[p] µ−1h µf
(
rA
)
,

from which the theorem follows.

In the line of Theorem 5, one can easily prove the following theorem
and therefore its proof is omitted.

Theorem 6. Let f, g and h be any three entire functions such that

ρ
(p,q)
h (g) < ∞ and λ

(p,q)
h (f ◦ g) = ∞ where p and q are any positive

integers with q > 1. Then for every A (> 0) ,

lim
r→∞

log[p] µ−1h µf◦g (r)

log[p] µ−1h µg (rA)
=∞ .

Remark 5. Theorem 5 is also valid with “limit superior” instead of

“limit” if λ
(p,q)
h (f ◦ g) = ∞ is replaced by ρ

(p,q)
h (f ◦ g) = ∞ and the

other conditions remain the same.

Remark 6. Theorem 6 is also valid with “limit superior” instead of

“limit” if λ
(p,q)
h (f ◦ g) = ∞ is replaced by ρ

(p,q)
h (f ◦ g) = ∞ and the

other conditions remain the same.

Corollary 1. Under the assumptions of Theorem 5 and Remark 5,

lim
r→∞

log[p−1] µ−1h µf◦g (r)

log[p−1] µ−1h µf (rA)
=∞ and lim

r→∞

log[p−1] µ−1h µf◦g (r)

log[p−1] µ−1h µf (rA)
=∞

respectively.
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Proof. By Theorem 5 we obtain for all sufficiently large values of r
and for K > 1,

log[p] µ−1h µf◦g (r) ≥ K · log[p] µ−1h µf
(
rA
)

i.e., log[p−1] µ−1h µf◦g (r) ≥
{

log[p−1] µ−1h µf
(
rA
)}K

,

from which the first part of the corollary follows.
Similarly using Remark 5, we obtain the second part of the corollary.

Corollary 2. Under the assumptions of Theorem 6 and Remark 6,

lim
r→∞

log[p−1] µ−1h µf◦g (r)

log[p−1] µ−1h µg (rA)
=∞ and lim

r→∞

log[p−1] µ−1h µf◦g (r)

log[p−1] µ−1h µg (rA)
=∞

respectively.

In the line of Corollary 1, one can easily verify Corollary 2 with the
help of Theorem 6 and Remark 6 respectively and therefore its proof is
omitted.

Theorem 7. If f, g and h be any three entire functions such that

ρg (m,n) < λ
(p,q)
h (f) ≤ ρ

(p,q)
h (f) < ∞ where p, q,m, n are all positive

integers with m > n. Then

(i) lim
r→∞

log[p] µ−1h µf◦g (r)

log[p−1] µ−1h µf (exp[q−1] rA)
= 0 if q > m

and

(ii) lim
r→∞

log[p+m−q−1] µ−1h µf◦g (r)

log[p−1] µ−1h µf (exp[q−1] rA)
= 0 if q < m

where A > 0.

Proof. From the definition of relative (p, q)-th order in terms of max-
imum terms, we obtain for all sufficiently large values of r that

log[p] µ−1h µf
(
exp[q−1] rA

)
>
(
λ
(p,q)
h (f)− ε

)
log[q] exp[q−1] rA

(30) i.e., log[p−1] µ−1h µf
(
exp[q−1] rA

)
> r

A
(
λ
(p,q)
h (f)−ε

)
.

As ρg (m,n) < λ
(p,q)
h (f) , we can choose ε (> 0) in such a way that

(31) ρg (m,n) + ε < A
(
λ
(p,q)
h (f)− ε

)
.
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Now if q > m, combining (23) , (30) and in view of (31) we have for
all sufficiently large values of r that

log[p] µ−1h µf◦g (r)

log[p−1] µ−1h µf (exp[q−1] rA)
6

(
ρ
(p,q)
h (f) + ε

)
r(ρg(m,n)+ε) +O(1)

r
A
(
λ
(p,q)
h (f)−ε

)

i.e., lim
r→∞

log[p] µ−1h µf◦g (r)

log[p−1] µ−1h µf (exp[q−1] rA)
= 0 .

This proves the first part of the theorem.
When q < m, combining (26) and (30) it follows for all sufficiently

large values of r that

log[p+m−q−1] µ−1h µf◦g (r)

log[p−1] µ−1h µf (exp[q−1] rA)
6
r(2ρg(m,n)+ε)

(
1 + O(1)

r(2ρg(m,n)+ε)

)
r
A
(
λ
(p,q)
h (f)−ε

) .

Since ρg (m,n) < λ
(p,q)
h (f) and ε (> 0) is arbitrary, we get from above

lim
r→∞

log[p+m−q−1] µ−1h µf◦g (r)

log[p−1] µ−1h µf (exp[q−1] rA)
= 0,

which is the second part of the theorem.

Theorem 8. If f, g and h be any three entire functions with λg (m,n) <

λ
(p,q)
h (f) ≤ ρ

(p,q)
h (f) < ∞ where p, q,m, n are all positive integers such

that m > n. Then

(i) lim
r→∞

log[p] µ−1h µf◦g (r)

log[p−1] µ−1h µf (exp[q−1] rA)
= 0 if q > m

and

(ii) lim
r→∞

log[p+m−q−1] µ−1h µf◦g (r)

log[p−1] µ−1h µf (exp[q−1] rA)
= 0 if q < m

where A > 0.

Proof of Theorem 8 is omitted as it can be carried out in the line of
Theorem 7.

Theorem 9. Let h and f be any two entire functions such that

0 < λ
(p,q)
h (f) ≤ ρ

(p,q)
h (f) <∞. Then for any entire function g with finite

(m, q) th order,

lim
r→∞

log[p+m−q] µ−1h µf◦g (r)

log[p] µ−1h µf (r)
≤ ρg (m, q)

λ
(p,q)
h (f)

,
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where p, q and m are all positive integers with m > q.

Proof. Since q < m, we get from(24) for all sufficiently large values of
r that

log[p+m−q] µ−1h µf◦g (r) 6 log[m] µg (βr) +O(1)

i.e.,
log[p+m−q] µ−1h µf◦g (r)

log[p] µ−1h µf (r)
≤ log[m] µg (βr) +O(1)

log[q] r
· log[q] r

log[p] µ−1h µf (r)

i.e., lim
r→∞

log[p+m−q] µ−1h µf◦g (r)

log[p] µ−1h µf (r)
≤ lim

r→∞

log[m] µg (βr) +O(1)

log[q] (βr) +O(1)
· lim
r→∞

log[q] r

log[p] µ−1h µf (r)

i.e., lim
r→∞

log[p+m−q] µ−1h µf◦g (r)

log[p] µ−1h µf (r)
≤ ρg (m, q) · 1

λ
(p,q)
h (f)

=
ρg (m, q)

λ
(p,q)
h (f)

.

This proves the theorem.

In the line of Theorem 9 we may state the following theorem without
proof.

Theorem 10. Let f, g and h be any three entire functions satisfying

(i) ρ
(p,q)
h (f) <∞, (ii) λ

(p,n)
h (g) > 0 and (iii) ρg (m,n) <∞.Then

lim
r→∞

log[p+m−q] µ−1h µf◦g (r)

log[p] µ−1h µg (r)
≤ ρg (m,n)

λ
(p,n)
h (g)

,

where p, q,m and n are all positive integers with m > n.

Remark 7. The same results of above theorems, remarks and corol-
lary in terms of maximum modulus of entire functions can also be de-
duced with the help of Lemma 1.
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