# THE GAUSS SUMS OVER GALOIS RINGS AND ITS ABSOLUTE VALUES 

Young Ho Jang and Sang Pyo Jun ${ }^{\dagger}$


#### Abstract

Let $\mathcal{R}$ denote the Galois ring of characteristic $p^{n}$, where $p$ is a prime. In this paper, we investigate the elementary properties of Gauss sums over $\mathcal{R}$ in accordance with conditions of characters of Galois rings, and we restate results for Gauss sums in $[1,2,3,7$, $12,13]$. Also, we compute the modulus of the Gauss sums.


## 1. Introduction

Throughout this paper, $p$ will denote a prime number and $n, m$ positive integers. We set $q=p^{m}$. Let $\mathbb{C}, \mathbb{C}^{1}, \mathbb{F}_{q}, \mathbb{Z}_{p^{n}}$ and $\bar{a}$ denote the field of complex numbers, the unit circle in the complex plane, the finite field of order $q$, the ring of integers modulo $p^{n}$ and the complex conjugate of $a \in \mathbb{C}$, respectively.

Let $\chi$ be a multiplicative character of $\mathbb{F}_{q}$ such that $\chi(0)=0$ and let $\lambda_{x}\left(x \in \mathbb{F}_{q}\right)$ be an additive character of $\mathbb{F}_{q}$. The Gauss sum related to the pair ( $\chi, \lambda_{x}$ ) is defined by

$$
G\left(\chi, \lambda_{x}\right)=\sum_{y \in \mathbb{F}_{q}^{\times}} \chi(y) \lambda_{x}(y) .
$$

If both $\chi$ and $\lambda\left(=\lambda_{1}\right)$ are not trivial character $\chi_{0}$ and $\lambda_{0}$, respectively, one uses the orthogonality relations of characters to establish

[^0]that $G(\chi, \lambda)$ has absolute value $\sqrt{q}$ and that
$$
G\left(\chi_{0}, \lambda_{0}\right)=q-1, G\left(\chi, \lambda_{0}\right)=0, G\left(\chi_{0}, \lambda\right)=-1 .
$$

For the Gauss sums over finite fields we refer to Lidl and Niederreiter's book [4].

Let $\mathcal{R}$ be the Galois ring of characteristic $p^{n}$. As in the case of fields, the Gauss sums over $\mathcal{R}$ considered here are of the form

$$
\begin{equation*}
G\left(\chi, \psi_{x}\right)=\sum_{y \in \mathcal{R}^{\times}} \chi(y) \psi_{x}(y), \tag{1.1}
\end{equation*}
$$

where $\mathcal{R}^{\times}$is the multiplicative group of invertible elements of $\mathcal{R}, \chi$ a multiplicative character of $\mathcal{R}^{\times}$, and $\psi_{x}(x \in \mathcal{R})$ an additive character of $\mathcal{R}$.

The calculation of Gauss sums over quasi-Frobenius rings (we see that $\mathbb{F}_{q}, \mathbb{Z}_{p^{n}}$ and $\mathcal{R}$ are quasi-Frobenius rings) is initiated by Langevin and Solé [3] in 1999. Using multiplicative characters defined differently on Galois rings, the Gauss sums over Galois rings has been computed in $[1,7,12]$ for characteristic $2^{2}$, in [13] for characteristic $2^{n}$, in [2] for characteristic $p^{2}$, and its absolute values given in $[2,3,7]$. In this paper, we investigate the elementary properties of Gauss sums over $\mathcal{R}$ given by (1.1) in accordance with conditions of characters of Galois rings, and we restate results for Gauss sums in $[1,2,3,7,12,13]$. Also, we compute the modulus of the Gauss sums.

## 2. Basic properties of Galois rings and its characters

In this section, we discuss the Galois ring $\mathcal{R}$ of characteristic $p^{n}$ and its additive and multiplicative characters. Also, we give some simple but useful propositions which shall use later.
2.1. The Galois ring $\mathcal{R}$ of characteristic $p^{n}$. The finite field $\mathbb{F}_{q}$ of order $q=p^{m}$ is a simple algebraic extension over the prime field $\mathbb{F}_{p}$. That is, if $\bar{\xi}$ is a primitive element of $\mathbb{F}_{q}$, then

$$
\begin{equation*}
\mathbb{F}_{q}=\mathbb{F}_{p}[\bar{\xi}] \cong \mathbb{F}_{p}[x] /\langle\bar{f}(x)\rangle \tag{2.1}
\end{equation*}
$$

where $\bar{f}(x)$ is a monic primitive polynomial in $\mathbb{F}_{p}[x]$ of degree $m$ having $\bar{\xi}$ as a root. The ring $\mathbb{Z}_{p^{n}}$ is a finite commutative local ring with a unique maximal ideal $p \mathbb{Z}_{p^{n}}$. Let $\mu: \mathbb{Z}_{p^{n}} \rightarrow \mathbb{Z}_{p^{n}} / p \mathbb{Z}_{p^{n}} \cong \mathbb{F}_{p}$ be the mod$p$ reduction map. We can extend $\mu$ to a map $\mathbb{Z}_{p^{n}}[x] \rightarrow \mathbb{F}_{p}[x]$ in the
natural way. In (2.1), since $\bar{\xi}$ is a simple zero of $\bar{f}(x)$, if $f(x) \in \mathbb{Z}_{p^{n}}[x]$ is a preimage of $\bar{f}(x)$ under the homomorphism $\mu$, then, by [5, Lemma (XV.1)], there is precisely one element $\xi$ such that $\xi^{q-1}=1, \mu(\xi)=\bar{\xi}$ and $f(\xi)=0$. Such polynomial $f(x)$ is called a monic basic primitive polynomial of degree $m$. The Galois ring $G R\left(p^{n}, m\right)$ of characteristic $p^{n}$ is defined by

$$
\begin{equation*}
\mathcal{R}=\mathcal{R}_{n, m}=G R\left(p^{n}, m\right)=\mathbb{Z}_{p^{n}}[\xi] \cong \mathbb{Z}_{p^{n}}[x] /\langle f(x)\rangle \tag{2.2}
\end{equation*}
$$

The simplest examples of Galois rings are $\mathcal{R}_{n, 1}=G R\left(p^{n}, 1\right)=\mathbb{Z}_{p^{n}}$ and $\mathcal{R}_{1, m}=G R(p, m)=\mathbb{F}_{q}$. By definition (2.2) of Galois rings, every element $z \in \mathcal{R}$ has a unique additive representation

$$
\begin{equation*}
z=z_{0}+z_{1} \xi+z_{2} \xi^{2}+\cdots+z_{m-1} \xi^{m-1}, z_{i} \in \mathbb{Z}_{p^{n}} \tag{2.3}
\end{equation*}
$$

so that $\mathcal{R}$ is a finitely generated free $\mathbb{Z}_{p^{n}}$-module and $|\mathcal{R}|=q^{n}\left(=p^{n m}\right)$. Also, $\mathcal{R}$ is a local ring with a unique maximal ideal $\mathcal{M}=\mathcal{M}_{n, m}=p \mathcal{R}$ which consisted of 0 and all zero divisors in $\mathcal{R}$, and its residue field $\mathcal{R} / \mathcal{M}$ is isomorphic to $\mathbb{F}_{q}$. Clearly $\mu$ has a natural extension to $\mathcal{R}$ and therefore to $\mathcal{R}[x]$, and $\mu(\mathcal{R})=\mathcal{R} / \mathcal{M} \cong \mathbb{F}_{q}$. For more knowledge on Galois rings we refer to $[5,6,9,11]$.

The group $\mathcal{R}^{\times}=\mathcal{R} \backslash \mathcal{M}$ of units has the direct decomposition (see [5, Theorem XVIII.2]):

$$
\begin{equation*}
\mathcal{R}^{\times}=\Gamma_{m}^{\times} \times(1+\mathcal{M}) \tag{2.4}
\end{equation*}
$$

where $\Gamma_{m}^{\times}=\langle\xi\rangle$ is the cyclic group of order $q-1$ and $1+\mathcal{M}$ is the multiplicative $p$-group of order $q^{n-1}$. Define $\Gamma_{m}=\Gamma_{m}^{\times} \cup\{0\}=$ $\left\{0,1, \xi, \cdots, \xi^{q-2}\right\}$. It can be shown that every element $z \in \mathcal{R}$ has a unique $p$-adic representation

$$
\begin{equation*}
z=z_{0}+z_{1} p+\cdots+z_{n-1} p^{n-1}, z_{i} \in \Gamma_{m} . \tag{2.5}
\end{equation*}
$$

From (2.5) we have $\mathcal{M}=p \mathcal{R}_{n-1, m}$, i.e., $z \in \mathcal{M}$ if and only if $z_{0}=0$ and $z \in \mathcal{R}^{\times}$if and only if $z_{0} \in \Gamma_{m}^{\times}$. An arbitrary element $z$ of $\mathcal{R}^{\times}$is uniquely represented as

$$
\begin{align*}
z & =z_{0}+\tilde{z}, z_{0} \in \Gamma_{m}^{\times}, \tilde{z} \in \mathcal{M}  \tag{2.6}\\
& =\xi^{k} x=\xi^{k}(1+p y), x \in 1+\mathcal{M}, y \in \mathcal{R}_{n-1, m}, 0 \leq k \leq q-2 . \tag{2.7}
\end{align*}
$$

Any element of $\mathcal{R} \backslash\{0\}$ is either a unit or a zero divisor. Since the zero divisors in $\mathcal{R}$ are those elements divisible by $p$, any element $z \in \mathcal{R} \backslash\{0\}$
can be written as
$z=p^{k} u=p^{k} \xi^{l}(1+p x), u \in \mathcal{R}^{\times}, x \in \mathcal{R}_{n-1, m}, 0 \leq k \leq n-1,0 \leq l \leq q-2$.
2.2. Additive characters of $\mathcal{R}$. Let $\sigma$ be the Frobenius map of $\mathcal{R}$ over $\mathbb{Z}_{p^{n}}$ given by

$$
\sigma(z)=z_{0}^{p}+p z_{1}^{p}+\cdots+p^{n-1} z_{n-1}^{p}
$$

for $z=\sum_{i=0}^{n-1} p^{i} z_{i} \in \mathcal{R}$, where $z_{i} \in \Gamma_{m}$. As we know, $\sigma$ is the generator of the Galois group of $\mathcal{R} / \mathbb{Z}_{p^{n}}$ which is a cyclic group of order $m$. The trace mapping $\operatorname{Tr}_{n}: \mathcal{R} \rightarrow \mathbb{Z}_{p^{n}}$ is defined by

$$
\operatorname{Tr}_{n}(z)=z+\sigma(z)+\cdots+\sigma^{m-1}(z) \text { for } z \in \mathcal{R}
$$

where $\sigma^{j}(z)=\sigma\left(\sigma^{j-1}(z)\right)$. $\operatorname{Tr}_{n}$ is an epimorphism of $\mathbb{Z}_{p^{n}}$-modules and $\operatorname{Tr}_{n}$ can be reduced by $\mu$ to the trace mapping $\operatorname{tr}: \mathbb{F}_{q} \rightarrow \mathbb{F}_{p}$ of finite fields. Then we have the following commutative diagram:


Namely, we have $\mu\left(\operatorname{Tr}_{n}(z)\right)=\operatorname{tr}(\mu(z))$ for all $z \in \mathcal{R}$.
An additive character of $\mathcal{R}$ is a homomorphism from the additive group of $\mathcal{R}$ to $\mathbb{C}^{1}$. For any $x, y \in R$, the additive characters of $\mathcal{R}$ are given by

$$
\begin{equation*}
\psi_{x}(y)=e^{2 \pi i \operatorname{Tr}_{n}(x y) / p^{n}} \tag{2.9}
\end{equation*}
$$

different $x$ 's affording different additive characters. In fact, $\left\{\psi_{x}\right\}_{x \in \mathcal{R}}$ consists of all additive characters of $\mathcal{R}$ (see [10, Lemma 6]). $\psi_{0}$ is the trivial additive character of $\mathcal{R}$ and $\psi\left(=\psi_{1}\right)$ is called the canonical additive character of $\mathcal{R}$. Let $\widehat{\mathcal{R}^{+}}$denote the additive characters group.

Remark 2.1 ( $[1,7,12])$. In the case of $\mathcal{R}=G R\left(2^{2}, m\right)$,

$$
\begin{equation*}
\psi_{x}(y)=\sqrt{-1}^{\operatorname{Tr}_{2}(x y)} . \tag{2.10}
\end{equation*}
$$

Proposition 2.1 ( [8, Lemma 2.1, 2.2, 2.3]). For any $x \in \mathcal{R}$ we have

$$
\sum_{y \in \mathcal{R}} \psi_{x}(y)= \begin{cases}q^{n} & \text { if } x=0  \tag{2.11}\\ 0 & \text { if } x \neq 0\end{cases}
$$

$$
\begin{gather*}
\sum_{y \in \mathcal{M}} \psi_{x}(y)= \begin{cases}q^{n-1} & \text { if } x \in p^{n-1} \mathcal{R} \\
0 & \text { if } x \in \mathcal{R} \backslash p^{n-1} \mathcal{R}\end{cases}  \tag{2.12}\\
\sum_{y \in \mathcal{R}^{\times}} \psi_{x}(y)= \begin{cases}(q-1) q^{n-1} & \text { if } x=0 \\
-q^{n-1} & \text { if } x \in p^{n-1} \mathcal{R} \backslash\{0\}, \\
0 & \text { if } x \in \mathcal{R} \backslash p^{n-1} \mathcal{R} .\end{cases} \tag{2.13}
\end{gather*}
$$

Proposition 2.2 ( [10, Lemma 8]). For any $x \in \mathcal{R}$ we have

$$
\sum_{y \in \Gamma_{m}} \psi_{x}\left(p^{n-1} y\right)= \begin{cases}q & \text { if } x \in \mathcal{M}  \tag{2.14}\\ 0 & \text { if } x \in \mathcal{R}^{\times}\end{cases}
$$

Proposition 2.3. If $\psi_{x} \in \widehat{\mathcal{R}^{+}}$is nontrivial on $\mathcal{M}$, then

$$
\begin{equation*}
\sum_{y \in \mathcal{R}^{\times}} \psi_{x}(y)=-\sum_{y \in \mathcal{M}} \psi_{x}(y)=0 . \tag{2.15}
\end{equation*}
$$

Proof. From the assumption, $\psi_{x} \in \widehat{\mathcal{R}^{+}}$is nontrivial on $\mathcal{R}$ and so

$$
\sum_{y \in \mathcal{R}^{\times}} \psi_{x}(y)=\sum_{y \in \mathcal{R}} \psi_{x}(y)-\sum_{y \in \mathcal{M}} \psi_{x}(y)=-\sum_{y \in \mathcal{M}} \psi_{x}(y)
$$

by (2.11). Also, there exists $z \in \mathcal{M}$ such that $\psi_{x}(z) \neq 1$. Since adding all $y \in \mathcal{M}$ by $z \in \mathcal{M}$ permutes $\mathcal{M}$. we have

$$
\sum_{y \in \mathcal{M}} \psi_{x}(y)=\sum_{y+z \in \mathcal{M}} \psi_{x}(y+z)=\psi_{x}(z) \sum_{y \in \mathcal{M}} \psi_{x}(y) .
$$

As $1-\psi_{x}(z) \neq 0$, we get (2.15).
Proposition 2.4. If $\psi \in \widehat{\mathcal{R}^{+}}$is trivial on $\mathcal{M}$, then

$$
\sum_{y \in \mathcal{R}^{\times}} \psi_{x}(y)=\sum_{y \in \mathcal{R}^{\times}} \psi(x y)= \begin{cases}-q^{n-1} & \text { if } x \in \mathcal{R}^{\times}  \tag{2.16}\\ (q-1) q^{n-1} & \text { if } x \in \mathcal{M} .\end{cases}
$$

Proof. If $x \in \mathcal{R}^{\times}$, then multiplying all $y \in \mathcal{R}^{\times}$by $x$ permutes $\mathcal{R}^{\times}$, so that by setting $z=x y \in \mathcal{R}^{\times}$we have

$$
\sum_{y \in \mathcal{R}^{\times}} \psi_{x}(y)=\sum_{y \in \mathcal{R}^{\times}} \psi(x y)=\sum_{z \in \mathcal{R}^{\times}} \psi(z)=\sum_{z \in \mathcal{R}} \psi(z)-\sum_{z \in \mathcal{M}} \psi(z)=-\sum_{z \in \mathcal{M}} 1=-q^{n-1}
$$

by (2.11) and the assumption. If $x \in \mathcal{M}$, then $x y \in \mathcal{M}$ for all $y \in \mathcal{R}^{\times}$ and

$$
\sum_{y \in \mathcal{R}^{\times}} \psi_{x}(y)=\sum_{y \in \mathcal{R}^{\times}} \psi(x y)=\sum_{y \in \mathcal{R}^{\times}} 1=(q-1) q^{n-1}
$$

by the assumption.

In definition (2.2) of Galois rings $\mathcal{R}=\mathcal{R}_{n, m}$, for the monic basic primitive polynomial $f(x)$ in $\mathbb{Z}_{p^{n}}[x]$ of degree $m$, put $\varphi(x) \equiv f(x)\left(\bmod p^{k}\right)$, where $1 \leq k \leq n-1$. Then $\varphi(x)$ is a monic basic primitive polynomial in $\mathbb{Z}_{p^{k}}[x]$ of degree $m$. Let $\theta \in \mathcal{R}_{k, m}$ be a root of $\varphi(x)$. Using additive representation (2.3), we define the homomorphism $\tau_{k}$ as

$$
\begin{equation*}
\tau_{k}: \mathcal{R} \rightarrow \mathcal{R}_{k, m}, \tau_{k}\left(\sum_{i=0}^{m-1} z_{i} \xi^{i}\right)=\sum_{i=0}^{m-1} \tilde{z}_{i} \theta^{i} \tag{2.17}
\end{equation*}
$$

where $\tilde{z}_{i} \equiv z_{i}\left(\bmod p^{k}\right), z_{i} \in \mathbb{Z}_{p^{n}}$ and $\tilde{z}_{i} \in \mathbb{Z}_{p^{k}}$. Then we have the following commutative diagram:


Namely, we have

$$
\begin{equation*}
\tau_{k}\left(\operatorname{Tr}_{n}(z)\right)=\operatorname{Tr}_{k}\left(\tau_{k}(z)\right) \text { for } z \in \mathcal{R} \tag{2.18}
\end{equation*}
$$

In particular, for $k=1$, we have $\mathcal{R}_{1, m}=\mathbb{F}_{q}, \mathbb{Z}_{p}=\mathbb{F}_{p}, \tau_{1}=\mu$ and $\mathrm{Tr}_{1}=t r$.

Proposition 2.5. For any $x \in \mathcal{R}$ we have

$$
\sum_{y \in \mathcal{M}} \psi_{x}(y)= \begin{cases}q^{n-1} & \text { if } \tau_{n-1}(x)=0  \tag{2.19}\\ 0 & \text { if } \tau_{n-1}(x) \neq 0\end{cases}
$$

where $\tau_{n-1}: \mathcal{R} \rightarrow \mathcal{R}_{n-1, m}$ is the homomorphism defined by (2.17).

Proof. The element $y \in \mathcal{M}=p \mathcal{R}_{n-1, m}$ is written as $y=p z, z \in$ $\mathcal{R}_{n-1, m}$. We have

$$
\begin{aligned}
\sum_{y \in \mathcal{M}} \psi_{x}(y) & =\sum_{y \in \mathcal{M}} e^{2 \pi i \operatorname{Tr}_{n}(x y) / p^{n}}=\sum_{z \in \mathcal{R}_{n-1, m}} e^{2 \pi i \operatorname{Tr}_{n}(x p z) / p^{n}} \\
& =\sum_{z \in \mathcal{R}_{n-1, m}} e^{2 \pi i \operatorname{Tr}_{n-1}\left(\tau_{n-1}(x) z\right) / p^{n-1}}(\text { by }(2.18)) \\
& =\sum_{z \in \mathcal{R}_{n-1, m}} \psi_{\tau_{n-1}(x)}(z)(\text { by }(2.9)) .
\end{aligned}
$$

Since $\psi_{\tau_{n-1}(x)}$ is an additive character of $\mathcal{R}_{n-1, m}$, from (2.11) we get (2.19).

Proposition 2.6. For any $x \in \mathcal{R}$ we have

$$
\sum_{y \in \mathcal{R}^{\times}} \psi_{x}(y)= \begin{cases}(q-1) q^{n-1} & \text { if } x=0,  \tag{2.20}\\ -q^{n-1} & \text { if } x \neq 0 \text { and } \tau_{n-1}(x)=0 \\ 0 & \text { if } \tau_{n-1}(x) \neq 0,\end{cases}
$$

where $\tau_{n-1}: \mathcal{R} \rightarrow \mathcal{R}_{n-1, m}$ is the homomorphism defined by (2.17).
Proof. Since

$$
\sum_{y \in \mathcal{R}^{\times}} \psi_{x}(y)=\sum_{y \in \mathcal{R}} \psi_{x}(y)-\sum_{y \in \mathcal{M}} \psi_{x}(y),
$$

combining (2.11) and (2.19) we get (2.20).
2.3. Multiplicative characters of $\mathcal{R}$. A multiplicative character $\chi$ of $\mathcal{R}^{\times}$is defined by $\chi(x y)=\chi(x) \chi(y)$ for $x, y \in \mathcal{R}^{\times}$, and each value of $\chi(x)$ is a $(q-1) q^{n-1}$-th root of unity. We extend $\chi$ as the character of $\mathcal{R}$ by defining $\chi(\mathcal{M})=0$. We call this the multiplicative character of $\mathcal{R}$. Let $\chi_{0}$ and $\widehat{\mathcal{R}^{\times}}$denote the trivial multiplicative character of $\mathcal{R}$ and the multiplicative characters group, respectively.

Proposition 2.7. For any character $\chi \in \widehat{\mathcal{R}^{×}}$,

$$
\sum_{x \in \mathcal{R}} \chi(x)=\sum_{x \in \mathcal{R}^{\times}} \chi(x)= \begin{cases}(q-1) q^{n-1} & \text { if } \chi=\chi_{0}  \tag{2.21}\\ 0 & \text { if } \chi \neq \chi_{0}\end{cases}
$$

Proof. It is clear if $\chi=\chi_{0}$. If $\chi \neq \chi_{0}$, there exists $y \in \mathcal{R}^{\times}$such that $\chi(y) \neq 1$. Since multiplying all $x \in \mathcal{R}^{\times}$by $y \in \mathcal{R}^{\times}$permutes $\mathcal{R}^{\times}$, we
have

$$
\sum_{x \in \mathcal{R}^{\times}} \chi(x)=\sum_{x y \in \mathcal{R}^{\times}} \chi(x y)=\chi(y) \sum_{x \in \mathcal{R}^{\times}} \chi(x) .
$$

As $1-\chi(y) \neq 0$, we get $\sum_{x \in \mathcal{R} \times} \chi(x)=0$.
REmARK 2.2. In [7], the authors extend $\chi$ as the character of $\mathcal{R}=$ $G R\left(2^{2}, m\right)$ by defining $\chi(\mathcal{M})=1$ for $\chi=\chi_{0}$ and $\chi(\mathcal{M})=0$ for $\chi \neq \chi_{0}$, and so that

$$
\sum_{x \in \mathcal{R}} \chi(x)= \begin{cases}q^{n}=\left(2^{m}\right)^{2}=4^{m} & \text { if } \chi=\chi_{0} \\ 0 & \text { if } \chi \neq \chi_{0}\end{cases}
$$

which is a little different with (2.21).
Since $\mathcal{R}^{\times}=\Gamma_{m}^{\times} \times(1+\mathcal{M})($ see (2.4) $)$, there are few kinds type of multiplicative characters of $\mathcal{R}$ :
(I) The multiplicative characters $\chi$ of $\mathcal{R}$ that vanish on $1+\mathcal{M}$ (i.e. $\chi(1+x)=1$ for $x \in \mathcal{M})$ are in one-to-one correspondence with the multiplicative characters $\eta_{j}$ of $\Gamma_{m}^{\times}$defined by

$$
\begin{equation*}
\eta_{j}\left(\xi^{k}\right)=e^{2 \pi i(j k) / q-1} \text { for } 0 \leq j, k \leq q-2 \tag{2.22}
\end{equation*}
$$

Then $\eta_{j}$ 's form a cyclic group with $q-1$ elements. It is familiar that the order of each character $\eta_{j}$ is a divisor of $q-1$.

Remark 2.3 ( $\left[10\right.$, Theorem 13]). Let $\psi_{x}$ be a nontrivial additive character of $\mathcal{R}$ given by (2.9) and $\chi$ a nontrivial multiplicative character of $\Gamma_{m}^{\times}$given by (2.22). Then

$$
\left|\sum_{y \in \Gamma_{m}^{\times}} \chi(y) \psi_{x}(y)\right| \leq p^{n-1} q^{1 / 2}
$$

(II) The multiplicative characters $\chi$ of $\mathcal{R}$ that vanish on $\Gamma_{m}^{\times}$(i.e. $\chi(x)=$ 1 for $\left.x \in \Gamma_{m}^{\times}\right)$are in one-to-one correspondence with the multiplicative characters of the multiplicative $p$-group $1+\mathcal{M}$ of order $q^{n-1}$. In the case of $\mathcal{R}=G R\left(p^{2}, m\right)$, from the $p$-adic representation (2.5)

$$
z=z_{0}+z_{1} p\left(z_{0}, z_{1} \in \Gamma_{m}\right), \mathcal{M}=p \Gamma_{m}, \mathcal{M}^{2}=0
$$

and
$(1+\mathcal{M}, \cdot)=\left(1+p \Gamma_{m}, \cdot\right) \cong\left(\mathbb{F}_{q},+\right), 1+p y \longmapsto \bar{y}=y \bmod p$ for $y \in \Gamma_{m}$.
Hence multiplicative characters of $\mathcal{R}$ that vanish on $\Gamma_{m}^{\times}$are given by

$$
\begin{equation*}
\chi_{x}(1+p y)=\varphi_{\bar{x}}(\bar{y})\left(x, y \in \Gamma_{m}, \bar{x}, \bar{y} \in \mathbb{F}_{q}\right) \tag{2.23}
\end{equation*}
$$

where $\varphi_{\bar{x}}$ is an additive character of $\mathbb{F}_{q}$ defined by

$$
\begin{equation*}
\varphi_{\bar{x}}(\bar{y})=e^{2 \pi i \operatorname{tr}(\bar{x} y) / p} \text { for all } \bar{x}, \bar{y} \in \mathbb{F}_{q} . \tag{2.24}
\end{equation*}
$$

Remark 2.4 ( [12, Theorem 1, Theorem 2]). Let $\psi_{y}$ be an additive character of $\mathcal{R}=G R\left(2^{2}, m\right)$ given by (2.10) in Remark 2.1 and $\chi_{x}$ a multiplicative character of $\mathcal{R}$ given by (2.23) such that $\chi_{x}^{2}=\chi_{0}$. Then explicit form of Gauss sums over $\mathcal{R}$ is given as follows:

$$
G\left(\chi_{x}, \psi_{y}\right)= \begin{cases}\chi(y) G\left(\chi_{x}, \psi_{1}\right) & \text { when } y \in \mathcal{R}^{\times}, \\ \chi\left(\frac{y}{2}\right) G\left(\chi_{x}, \psi_{2}\right) & \text { when } y \in \mathcal{M} \backslash\{0\}, \\ q(q-1)=2^{m}\left(2^{m}-1\right) & \text { when } x=0 \text { and } y=0, \\ 0 & \text { when } x \neq 0 \text { and } y=0,\end{cases}
$$

and
$G\left(\chi_{x}, \psi_{y}\right)= \begin{cases}2^{m} \sqrt{-1}^{\operatorname{Tr}_{2}(z)} & \text { when } x \neq 0 \text { and } y=1, \\ 0 & \text { where } z \equiv \bar{x}(\bmod \mathcal{M}), z \in \Gamma_{m}^{\times}, \\ 0 & \text { when } x=0 \text { and } y=1, \\ 0 & \text { when } x \neq 0 \text { and } y=2, \\ -2^{m} & \text { when } x=0 \text { and } y=2 .\end{cases}$
Remark 2.5 ( [1], [2]). Let $\psi_{y}$ be an additive character of $\mathcal{R}=$ $G R\left(p^{2}, m\right)$ given by (2.9) and $\chi$ a multiplicative character defined by

$$
\begin{equation*}
\chi=\eta_{j} \chi_{x}\left(x \in \Gamma_{m}, 0 \leq j \leq q-2\right) \tag{2.25}
\end{equation*}
$$

where $\eta_{j}$ is a multiplicative character of $\Gamma_{m}^{\times}$given by (2.22) and $\chi_{x}$ is a multiplicative character of $1+\mathcal{M}$ given by (2.23). The values of Gauss sums over $\mathcal{R}$ have been calculated explicitly as follows:

$$
\begin{gathered}
G\left(\chi, \psi_{y}\right)= \begin{cases}q(q-1) & \text { for } \chi=\chi_{0} \text { and } y=0, \\
0 & \text { for } \chi \neq \chi_{0} \text { and } y=0, \\
-q & \text { for } \chi=\chi_{0} \text { and } y \in \mathcal{M} \backslash\{0\}, \\
0 & \text { for } \chi=\chi_{0} \text { and } y \in \mathcal{R}^{\times} .\end{cases} \\
G\left(\chi, \psi_{y}\right)= \begin{cases}\bar{\chi}(y) G(\chi, \psi) & \text { for } y \in \mathcal{R}^{\times} \\
\bar{\chi}(y) G\left(\chi, \psi_{p}\right) & \text { for } y=p z\left(z \in \Gamma_{m}^{\times}\right) .\end{cases} \\
G(\chi, \psi)= \begin{cases}0 & \text { if } x=0, \\
q \eta_{j}\left(x_{1}\right) e^{2 \pi i \operatorname{Tr}} \operatorname{Tr}_{2}\left(x_{1}\right) / p^{2} & \text { if } x \in \Gamma_{m}^{\times}\end{cases}
\end{gathered}
$$

where $x_{1}=x$ for $p=2$ and $x_{1}=-x$ for $p \geq 3$.

$$
G\left(\chi, \psi_{p}\right)= \begin{cases}q \sum_{z \in \Gamma_{m}^{\times}} \eta_{j}(z) e^{2 \pi i \operatorname{tr}(\bar{z}) / p} & \text { if } x=0 \\ 0 & \text { if } x \in \Gamma_{m}^{\times}\end{cases}
$$

## 3. The Gauss sums over $\mathcal{R}$ and its absolute values

In this section, we give explicit form of the Gauss sum $G\left(\chi, \psi_{x}\right)$ over $\mathcal{R}$ given by (1.1) in accordance with conditions of characters of Galois rings, and we compute the modulus of the Gauss sums.

Let $\mathcal{R}=\mathcal{R}_{n, m}=G R\left(p^{n}, m\right), \mathcal{M}=p \mathcal{R}, \mathcal{R}^{\times}=\mathcal{R} \backslash \mathcal{M}, \Gamma_{m}, \Gamma_{m}^{\times}, \widehat{\mathcal{R}^{+}}$, $\widehat{\mathcal{R}^{\times}}$, and $\tau_{k}$ be as in Section 1 and Section 2. From (2.21), we have

$$
G\left(\chi, \psi_{0}\right)= \begin{cases}(q-1) q^{n-1} & \text { if } \chi=\chi_{0},  \tag{3.1}\\ 0 & \text { if } \chi \neq \chi_{0} .\end{cases}
$$

Proposition 3.1. For $x \in \mathcal{R}$ we have

$$
G\left(\chi_{0}, \psi_{x}\right)= \begin{cases}(q-1) q^{n-1} & \text { if } x=0, \\ -q^{n-1} & \text { if }\left(x \in p^{n-1} \mathcal{R} \backslash\{0\}\right) \text { or }\left(x \neq 0 \text { and } \tau_{n-1}(x)=0\right), \\ 0 & \text { if }\left(x \notin p^{n-1} \mathcal{R}\right) \text { or }\left(\tau_{n-1}(x) \neq 0\right),\end{cases}
$$

where $\tau_{n-1}: \mathcal{R} \rightarrow \mathcal{R}_{n-1, m}$ is the homomorphism defined by (2.17).
Proof. See (2.13) and Proposition 2.6.
Remark 3.1 ( [3, Proposition 1]). Let $\psi \in \widehat{\mathcal{R}^{+}}$. If $\chi \in \widehat{\mathcal{R}^{\times}}$is trivial on $1+\mathcal{M}$ then

$$
G(\chi, \psi)= \begin{cases}q^{n-1} G_{\Gamma_{m}^{\times}}(\chi, \psi) & \text { if } \psi \text { is trivial on } \mathcal{M}, \\ 0 & \text { else. }\end{cases}
$$

Proposition 3.2. Let $x \in \mathcal{R} \backslash\{0\}$. If $\chi \in \widehat{\mathcal{R}^{\times}}$is trivial on $1+\mathcal{M}$, then
$G\left(\chi, \psi_{x}\right)= \begin{cases}q^{n-1} G_{\Gamma_{m}^{\times}}\left(\chi, \psi_{x}\right) & \text { if }\left(\psi_{x} \text { is trivial on } \mathcal{M}\right) \text { or }\left(x \in p^{n-1} \mathcal{R}\right) \\ & \text { or }\left(\tau_{n-1}(x)=0\right), \\ 0 & \text { if }\left(\psi_{x} \text { is nontrivial on } \mathcal{M}\right) \text { or }\left(x \notin p^{n-1} \mathcal{R}\right) \\ & \text { or }\left(\tau_{n-1}(x) \neq 0\right),\end{cases}$
where $\tau_{n-1}: \mathcal{R} \rightarrow \mathcal{R}_{n-1, m}$ is the homomorphism defined by (2.17).

Proof. Indeed,

$$
\begin{aligned}
G\left(\chi, \psi_{x}\right) & =\sum_{z \in \mathcal{R}^{\times}} \chi(z) \psi_{x}(z) \\
& =\sum_{t \in \Gamma_{m}^{\times}} \sum_{y \in \mathcal{M}} \chi(t+y) \psi_{x}(t+y)(\text { by }(2.6)) \\
& =\sum_{t \in \Gamma_{m}^{\times}} \sum_{y \in \mathcal{M}} \chi(t) \chi\left(1+t^{-1} y\right) \psi_{x}(t) \psi_{x}(y)\left(\text { where } t^{-1} y \in \mathcal{M}\right) \\
& =\sum_{t \in \Gamma_{m}^{\times}} \chi(t) \psi_{x}(t) \sum_{y \in \mathcal{M}} \psi_{x}(y)(\text { by assumption }) .
\end{aligned}
$$

From (2.12), (2.15) and Proposition 2.5, we completes the proof of Proposition 3.2.

Proposition 3.3. Let $u \in \mathcal{R}^{\times}$and $t$ a fixed integer with $0 \leq t \leq$ $n-1$. Then

$$
G\left(\chi, \psi_{p^{t} u}\right)=\bar{\chi}(u) G\left(\chi, \psi_{p^{t}}\right) .
$$

Proof. Indeed,
$G\left(\chi, \psi_{p^{t} u}\right)=\sum_{x \in \mathcal{R}^{\times}} \chi(x) \psi_{p^{t} u}(x)=\bar{\chi}(u) \sum_{x \in \mathcal{R}^{\times}} \chi(u x) \psi_{p^{t}}(u x)=\bar{\chi}(u) G\left(\chi, \psi_{p^{t}}\right)$ since multiplying all $x \in \mathcal{R}^{\times}$by $u$ permutes $\mathcal{R}^{\times}$.

We introduce a new operation $*$ in $\mathcal{R}_{n, m}, n \geq 2$. For elements $x, y \in$ $\mathcal{R}_{n, m}$, we let

$$
\begin{equation*}
x * y=x+y+p x y . \tag{3.2}
\end{equation*}
$$

Then the elements of the ring $\mathcal{R}_{n, m}$ form an abelian group with respect to the new operation $*$, an identity element is 0 and inverse of an element $x$ is given by $-x(1+p x)^{-1}$.

Let $\chi$ be a multiplicative character of $\mathcal{R}_{n+1, m}^{\times}$that vanish on $\Gamma_{m}^{\times}$(i.e. $\chi_{n+1}(x)=1$ for $\left.x \in \Gamma_{m}^{\times}\right)$. For $1+p x, 1+p y \in 1+\mathcal{M}_{n+1, m}=1+p \mathcal{R}_{n, m}$ where $x, y \in \mathcal{R}_{n, m}$, we have
$(1+p x) \cdot(1+p y)=1+p(x+y)+p^{2} x y=1+p(x+y+p x y)=1+p(x * y)$.
Thus a multiplicative character $\chi$ of $\mathcal{R}_{n+1, m}^{\times}$that vanish on $\Gamma_{m}^{\times}$can be regarded as a multiplicative character $\chi^{*}$ of the group $\mathcal{R}_{n, m}$ with respect to the new operation $*$ that vanish on $\Gamma_{m}^{\times}$. We extend $\chi$ as the character of $\mathcal{R}_{n+1, m}$ by defining $\chi\left(\mathcal{M}_{n+1, m}\right)=0$.

Theorem 3.1 ( [13, Lemma 6] for $p=2$ ). Let $\chi$ be a multiplicative character of $\mathcal{R}_{n+1, m}$ that vanish on $\Gamma_{m}^{\times}$and $\psi_{x}\left(x \in \mathcal{R}_{n, m}\right)$ an additive character of $\mathcal{R}_{n+1, m}$ given by (2.9). Then for

$$
x=p^{k} \xi^{l}(1+p y) \in \mathcal{R}_{n+1, m} \backslash\{0\}, y \in \mathcal{R}_{n, m}, 0 \leq k \leq n, 0 \leq l \leq q-2,
$$

we have

$$
G\left(\chi, \psi_{x}\right)=\bar{\chi}\left(\frac{x}{p^{k}}\right) G\left(\chi, \psi_{p^{k}}\right) .
$$

Proof. Indeed,

$$
\begin{aligned}
&= \sum_{y \in \mathcal{R}_{n+1, m}^{\times}}^{G\left(\chi, \psi_{x}\right)} \chi(y) \psi_{x}(y)\left(\text { put } y=\xi^{t}(1+p z), 0 \leq t \leq q-2, z \in \mathcal{R}_{n, m}\right) \\
&= \sum_{t=0}^{q-2} \sum_{z \in \mathcal{R}_{n, m}} \chi\left(\xi^{t}(1+p z)\right) e^{2 \pi i \operatorname{Tr}_{n+1}\left(\xi^{t}(1+p z) p^{k} \xi^{l}(1+p y)\right) / p^{n+1}} \\
&=\sum_{t=0}^{q-2} \sum_{z \in \mathcal{R}_{n, m}} \chi^{*}(z) e^{2 \pi i p^{k} \operatorname{Tr}_{n+1}\left(\xi^{t}(1+p(y * z)) / p^{n+1}\right.} \\
&(\text { since } 0 * z=z \text { and }(1+p y)(1+p z)=1+p(y * z)) \\
&= \sum_{t=0}^{q-2} \sum_{z \in \mathcal{R}_{n, m}} \chi^{*}(y * z) \chi^{*}\left(y^{-1}\right) e^{2 \pi i p^{k} \operatorname{Tr}_{n+1}\left(\xi^{t}(1+p(y * z)) / p^{n+1}\right.}(\text { put } y * z=\alpha) \\
&= \overline{\chi^{*}}(y) \sum_{t=0}^{q-2} \sum_{\alpha \in \mathcal{R}_{n, m}}^{q-2} \chi^{*}(\alpha) e^{2 \pi i p^{k} \operatorname{Tr}_{n+1}\left(\xi^{t}(1+p \alpha) / p^{n+1}\right.} \\
&=\bar{\chi}\left(\xi^{l}(1+p y)\right) \sum_{t=0}^{q-2} \sum_{\alpha \in \mathcal{R}_{n, m}} \chi\left(\xi^{t}(1+p \alpha)\right) e^{2 \pi i p^{k} T T_{n+1}\left(\xi^{t}(1+p \alpha) / p^{n+1}\right.} \\
&=\bar{\chi}\left(x / p^{k}\right) \sum_{\beta \in \mathcal{R}_{n+1, m}^{\times}} \chi(\beta) \psi_{p^{k}}(\beta) \\
&=\bar{\chi}\left(x / p^{k}\right) G\left(\chi, \psi_{p^{k}}\right) .
\end{aligned}
$$

Lemma 3.1. Let $\chi \in \widehat{\mathcal{R}^{\times}}$be a nontrivial character. Then we have
$G\left(\chi, \psi_{x}\right)= \begin{cases}\bar{\chi}(x) G(\chi, \psi) & \text { if } x \in \mathcal{R}^{\times}, \\ 0 & \text { if } x \in \mathcal{M} \text { and } \psi \in \widehat{\mathcal{R}^{+}} \text {is trivial on } \mathcal{M} .\end{cases}$

Proof. If $x \in \mathcal{R}^{\times}$, then multiplying all $y \in \mathcal{R}^{\times}$by $x$ permutes $\mathcal{R}^{\times}$, so that by setting $z=x y \in \mathcal{R}^{\times}$we have

$$
\begin{aligned}
G\left(\chi, \psi_{x}\right) & =\sum_{y \in \mathcal{R}^{\times}} \chi(y) \psi_{x}(y)=\sum_{y \in \mathcal{R}^{\times}} \chi(y) \psi(x y) \\
& =\sum_{z \in \mathcal{R}^{\times}} \chi\left(x^{-1} z\right) \psi(z)=\bar{\chi}(x) \sum_{z \in \mathcal{R}^{\times}} \chi(z) \psi(z) \\
& =\bar{\chi}(x) G(\chi, \psi) .
\end{aligned}
$$

If $x \in \mathcal{M}$ and $\psi \in \widehat{\mathcal{R}^{+}}$is trivial on $\mathcal{M}$, then $x y \in \mathcal{M}$ for all $y \in \mathcal{R}^{\times}$and $\psi(x y)=1$, so that we have

$$
G R\left(\chi, \psi_{x}\right)=\sum_{y \in \mathcal{R}^{\times}} \chi(y) \psi_{x}(y)=\sum_{y \in \mathcal{R}^{\times}} \chi(y) \psi(x y)=\sum_{y \in \mathcal{R}^{\times}} \chi(y)=0
$$

by (2.21).

The following result has been proved in [3, Proposition 3]. Here we reproduce the proof for reader's convenience.

Theorem 3.2. The modulus of a Gauss sum is completely determined:

$$
|G(\chi, \psi)|^{2}= \begin{cases}q^{n} & \text { if } \chi \text { is nontrivial on } 1+\operatorname{ann}(\mathcal{M})  \tag{3.3}\\ 0 & \text { if } \chi \text { is trivial on } 1+\operatorname{ann}(\mathcal{M})\end{cases}
$$

where $\operatorname{ann}(\mathcal{M})=\{x \in R \mid x y=0$ for all $y \in \mathcal{M}\}$.

Proof. Let $S=1+\operatorname{ann}(\mathcal{M})$. Then $S$ is a subgroup of $\mathcal{R}^{\times}$and $1 \in S$. Since multiplying all $x \in \mathcal{R}^{\times}$by $y^{-1} \in \mathcal{R}^{\times}$permutes $\mathcal{R}^{\times}$, so that by
setting $z=x y^{-1} \in \mathcal{R}^{\times}$we have

$$
\begin{aligned}
& =\sum_{x \in \mathcal{R}^{\times}} \sum_{y \in \mathcal{R}^{\times}} \chi\left(x y^{-1}\right) \psi(x-y)(\text { by }(1.1)) \\
& =\sum_{z \in \mathcal{R}^{\times}} \chi(z) \sum_{y \in \mathcal{R}^{\times}} \psi((z-1) y) \\
& =\left\{\sum_{z \in S} \chi(z)+\sum_{z \in \mathcal{R}^{\times} \backslash S} \chi(z)\right\}\left\{\sum_{y \in \mathcal{R}} \psi((z-1) y)-\sum_{y \in \mathcal{M}} \psi((z-1) y)\right\} \\
& =\chi(1) \sum_{y \in \mathcal{R}} 1-\sum_{z \in S} \chi(z) \sum_{y \in \mathcal{M}} 1-\sum_{z \in \mathcal{R}^{\times} \backslash S} \chi(z) \sum_{y \in \mathcal{M}} \psi((z-1) y)(\text { by }(2.11)) \\
& =q^{n}-q^{n-1} \sum_{z \in S} \chi(z)-\sum_{z \in \mathcal{R}^{\times} \backslash S} \chi(z) \sum_{y \in \mathcal{M}} \psi_{z-1}(y) .
\end{aligned}
$$

Since $z-1 \notin p^{n-1} \mathcal{R}$, from (2.12) we have $\sum_{z \in \mathcal{R} \times \backslash S} \chi(z) \sum_{y \in \mathcal{M}} \psi((z-$ $1) y)=0$. This completes the proof of (3.3).

Proposition 3.4. If $\tau_{n-1}(y) \neq 0$ for all $y \in \mathcal{R} \backslash\{0\}$, where $\tau_{n-1}$ : $\mathcal{R} \rightarrow \mathcal{R}_{n-1, m}$ is the homomorphism defined by (2.17), then we have

$$
|G(\chi, \psi)|^{2}=(q-1) q^{n-1}
$$

Proof. Since multiplying all $x \in \mathcal{R}^{\times}$by $y^{-1} \in \mathcal{R}^{\times}$permutes $\mathcal{R}^{\times}$, so that by setting $z=x y^{-1} \in \mathcal{R}^{\times}$we have

$$
\begin{aligned}
|G(\chi, \psi)|^{2} & =\sum_{x \in \mathcal{R}^{\times}} \sum_{y \in \mathcal{R}^{\times}} \chi\left(x y^{-1}\right) \psi(x-y)(\text { by }(1.1)) \\
& =\sum_{z \in \mathcal{R}^{\times}} \chi(z) \sum_{y \in \mathcal{R}^{\times}} \psi((z-1) y) \\
& =(q-1) q^{n-1}+\sum_{z \in \mathcal{R}^{\times} \backslash\{1\}} \chi(z) \sum_{y \in \mathcal{R}^{\times}} \psi_{z-1}(y) .
\end{aligned}
$$

By the assumption, $\tau_{n-1}(z-1) \neq 0$ and from Proposition 2.6, we have

$$
\sum_{z \in \mathcal{R} \times \backslash\{1\}} \chi(z) \sum_{y \in \mathcal{R}^{\times}} \psi_{z-1}(y)=0,
$$

this completes the proof of Proposition 3.4.

Theorem 3.3. Let $\chi \in \widehat{\mathcal{R}^{\times}}$be a nontrivial character. If $\psi \in \widehat{\mathcal{R}^{+}}$is trivial on $\mathcal{M}$, then

$$
\left|G\left(\chi, \psi_{x}\right)\right|^{2}= \begin{cases}q^{n} & \text { if } x \in \mathcal{R}^{\times}  \tag{3.4}\\ 0 & \text { if } x \in \mathcal{M} .\end{cases}
$$

Proof. It is clear if $x \in \mathcal{M}$ by Lemma 3.1. Let $x \in \mathcal{R}^{\times}$. The definition (1.1) of Gauss sums yields that

$$
\begin{aligned}
\sum_{x \in \mathcal{R}} G\left(\chi, \psi_{x}\right) \overline{G\left(\chi, \psi_{x}\right)} & =\sum_{x \in \mathcal{R}} \sum_{y \in \mathcal{R}^{\times}} \chi(y) \psi_{x}(y) \sum_{z \in \mathcal{R}^{\times}} \overline{\chi(z) \psi_{x}(z)} \\
& =\sum_{y \in \mathcal{R}^{\times} \times} \sum_{z \in \mathcal{R}^{\times}} \chi(y) \overline{\chi(z)} \sum_{x \in \mathcal{R}} \psi_{y-z}(x) \\
& =\sum_{z \in \mathcal{R}^{\times}} 1 \sum_{x \in \mathcal{R}} 1+\sum_{\substack{y, z \in \mathcal{R} \times \\
y-z \neq 0}} \chi(y) \overline{\chi(z)} \sum_{x \in \mathcal{R}} \psi_{y-z}(x) \\
& =(q-1) q^{n-1} q^{n}(\text { by }(2.11)) .
\end{aligned}
$$

On the other hand, by Lemma 3.1 we have

$$
\sum_{x \in R} G\left(\chi, \psi_{x}\right) \overline{G\left(\chi, \psi_{x}\right)}=G(\chi, \psi) \overline{G(\chi, \psi)} \sum_{x \in \mathcal{R}^{\times}} 1=(q-1) q^{n-1}|G(\chi, \psi)|^{2} .
$$

By comparing above two formulas we have $|G(\chi, \psi)|^{2}=q^{n}$. This completes the proof of Theorem 3.1.

Corollary 3.1. Let $\mathcal{R}=G R\left(p^{2}, m\right)$. If $\chi \in \widehat{\mathcal{R}^{\times}}$is nontrivial on $1+\mathcal{M}$, then

$$
\left|G\left(\chi, \psi_{x}\right)\right|^{2}= \begin{cases}q^{2} & \text { if } x \in \mathcal{R}^{\times}  \tag{3.5}\\ 0 & \text { if } x \in \mathcal{M} .\end{cases}
$$

Proof. From (2.4) and (2.25), we have $\chi=\eta_{j} \varphi_{t}$ where $\eta_{j} \in \widehat{\Gamma_{m}^{\times}}$and $\varphi_{t} \in \widehat{\mathbb{F}_{q}^{+}}\left(t \in \mathbb{F}_{q}\right)$ is a nontrivial on $\mathbb{F}_{q}$. Let $y=z(1+p w), z \in \Gamma_{m}^{\times}, w \in$ $\Gamma_{m}$ with $\bar{w} \equiv w(\bmod p), \bar{w} \in \mathbb{F}_{q}$. Then

$$
\begin{aligned}
& G\left(\chi, \psi_{x}\right) \\
= & \sum_{y \in \mathcal{R}^{\times}} \chi(y) \psi_{x}(y)=\sum_{z \in \Gamma_{m}^{\times}} \sum_{\bar{w} \in \mathbb{F}_{q}} \eta_{j}(z) \varphi_{t}(\bar{w}) \psi_{x}(z(1+p w)) \\
= & \sum_{z \in \Gamma_{m}^{\times}} \eta_{j}(z) \psi_{x}(z) \sum_{\bar{w} \in \mathbb{F}_{q}} \varphi_{t}(\bar{w}) \psi_{x}(p z w)=\sum_{z \in \Gamma_{m}^{\times}} \eta_{j}(z) \psi_{x}(z) \sum_{\bar{w} \in \mathbb{F}_{q}} \varphi_{t}(\bar{w}) \psi_{z}(p x w) .
\end{aligned}
$$

If $x \in \mathcal{M}$, then $x w \in \mathcal{M}$ for all $w \in \Gamma_{m} \subset \mathcal{R}^{\times}$and so that $p x w=0$, i.e., $\psi_{z}(p x w)=1$. Thus

$$
G\left(\chi, \psi_{x}\right)=\sum_{z \in \Gamma_{m}^{×}} \eta_{j}(z) \psi_{x}(z) \sum_{\bar{w} \in \mathbb{F}_{q}} \varphi_{t}(\bar{w})=0
$$

since $\sum_{\bar{w} \in \mathbb{F}_{q}} \varphi_{t}(\bar{w})=0$ for a nontrivial character $\varphi_{t}$. For $x \in \mathcal{R}^{\times}$, we have the same proof of Theorem 3.3.

## References

[1] H. Ishibashi, The Terwilliger algebras of certain association schemes over the Galois rings of characteristic 4, Graphs and Combinatorics 12 (1) (1996), 3954.
[2] L. Jin, Z. ShiXin and F. KeQin, The Gauss sums and Jacobi sums over Galois ring $G R\left(p^{2}, r\right)$, Science China 56 (2013), 1457-1465.
[3] P. Langevin and P. Solé, Gauss sums over quasi-Frobenius rings, Proceedings of The Fifth International Conference on Finite Fields and Applications Fq5, held at the University of Augsburg, Germany, August 2-6, 1999, pp. 329-340.
[4] R. Lidl and H. Niederreiter, Finite fields, Addison-Wesley, London, 1997.
[5] B. R. McDonald, Finite Rings with Identity, Marcel Dekker, 1974.
[6] A. A. Nechaev, Kerdock code in a cyclic form, Discrete Math. Appl. 1 (1991), 365-384.
[7] Y. Oh and H. J. Oh, Gauss sums over Galois rings of characteristic 4, Kangweon-Kyungki Math. Jour. 9 (1) (2001), 1-7.
[8] F. Ozbudak and Z. Saygi, Some constructions of systematic authentication codes using Galois rings, Des. Codes Cryptography 41 (3) (2006), 343-357.
[9] R. Raghavendran, Finite associative rings, Compositio Math. 21 (1969), 195229.
[10] F. Shuqin and H. Wenbao, Character sums over Galois rings and primitive polynomials over finite fields, Finite Fields and Their Applications 10 (2004), 36-52.
[11] Z. X. Wan, Lectures on Finite Fields and Galois Rings, World Scientific, 2003.
[12] M. Yamada, Distance-Regular Digraphs of Girth 4 Over an Extension Ring of $\mathbb{Z} / 4 \mathbb{Z}$, Graphs and Combinatorics 6 (1990), 381-394.
[13] M. Yamada, Difference sets over the Galois rings with odd extension degrees and characteristic an even power of 2, Des. Codes Cryptogr. 67 (2013), 37-57.

Young Ho Jang<br>Department of Mathematics<br>Inha University<br>Incheon, 22212, Korea<br>E-mail: yjang6105@inha.ac.kr

Sang Pyo Jun<br>Information Communication<br>Namseoul University<br>Chun-An 31020, Korea<br>E-mail: spjun7129@naver.com


[^0]:    Received May 7, 2018. Revised September 1, 2018. Accepted September 10, 2018. 2010 Mathematics Subject Classification: 11T24, 16L60, 42A38, 42B10.
    Key words and phrases: Galois ring, characters of Galois rings, Gauss sums over Galois rings.
    $\dagger$ Funding for this paper was provided by Namseoul University.
    (c) The Kangwon-Kyungki Mathematical Society, 2018.

    This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

