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THE GAUSS SUMS OVER GALOIS RINGS AND ITS

ABSOLUTE VALUES

Young Ho Jang and Sang Pyo Jun†

Abstract. Let R denote the Galois ring of characteristic pn, where
p is a prime. In this paper, we investigate the elementary properties
of Gauss sums over R in accordance with conditions of characters
of Galois rings, and we restate results for Gauss sums in [1, 2, 3, 7,
12, 13]. Also, we compute the modulus of the Gauss sums.

1. Introduction

Throughout this paper, p will denote a prime number and n,m
positive integers. We set q = pm. Let C, C1, Fq, Zpn and a denote
the field of complex numbers, the unit circle in the complex plane, the
finite field of order q, the ring of integers modulo pn and the complex
conjugate of a ∈ C, respectively.

Let χ be a multiplicative character of Fq such that χ(0) = 0 and let
λx(x ∈ Fq) be an additive character of Fq. The Gauss sum related to
the pair (χ, λx) is defined by

G(χ, λx) =
∑
y∈F×

q

χ(y)λx(y).

If both χ and λ(= λ1) are not trivial character χ0 and λ0, respec-
tively, one uses the orthogonality relations of characters to establish
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that G(χ, λ) has absolute value
√
q and that

G(χ0, λ0) = q − 1, G(χ, λ0) = 0, G(χ0, λ) = −1.

For the Gauss sums over finite fields we refer to Lidl and Niederreiter’s
book [4].

Let R be the Galois ring of characteristic pn. As in the case of fields,
the Gauss sums over R considered here are of the form

(1.1) G(χ, ψx) =
∑
y∈R×

χ(y)ψx(y),

where R× is the multiplicative group of invertible elements of R, χ a
multiplicative character of R×, and ψx(x ∈ R) an additive character of
R.

The calculation of Gauss sums over quasi-Frobenius rings (we see
that Fq, Zpn and R are quasi-Frobenius rings) is initiated by Langevin
and Solé [3] in 1999. Using multiplicative characters defined differently
on Galois rings, the Gauss sums over Galois rings has been computed
in [1, 7, 12] for characteristic 22, in [13] for characteristic 2n, in [2] for
characteristic p2, and its absolute values given in [2, 3, 7]. In this paper,
we investigate the elementary properties of Gauss sums over R given by
(1.1) in accordance with conditions of characters of Galois rings, and we
restate results for Gauss sums in [1, 2, 3, 7, 12, 13]. Also, we compute
the modulus of the Gauss sums.

2. Basic properties of Galois rings and its characters

In this section, we discuss the Galois ring R of characteristic pn

and its additive and multiplicative characters. Also, we give some simple
but useful propositions which shall use later.

2.1. The Galois ring R of characteristic pn. The finite field Fq
of order q = pm is a simple algebraic extension over the prime field Fp.
That is, if ξ is a primitive element of Fq, then

(2.1) Fq = Fp[ξ] ∼= Fp[x]/〈f(x)〉

where f(x) is a monic primitive polynomial in Fp[x] of degree m having

ξ as a root. The ring Zpn is a finite commutative local ring with a
unique maximal ideal pZpn . Let µ : Zpn → Zpn/pZpn ∼= Fp be the mod-
p reduction map. We can extend µ to a map Zpn [x] → Fp[x] in the
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natural way. In (2.1), since ξ is a simple zero of f(x), if f(x) ∈ Zpn [x]

is a preimage of f(x) under the homomorphism µ, then, by [5, Lemma
(XV.1)], there is precisely one element ξ such that ξq−1 = 1, µ(ξ) = ξ
and f(ξ) = 0. Such polynomial f(x) is called a monic basic primitive
polynomial of degree m. The Galois ring GR(pn,m) of characteristic pn

is defined by

(2.2) R = Rn,m = GR(pn,m) = Zpn [ξ] ∼= Zpn [x]/〈f(x)〉.

The simplest examples of Galois rings are Rn,1 = GR(pn, 1) = Zpn
and R1,m = GR(p,m) = Fq. By definition (2.2) of Galois rings, every
element z ∈ R has a unique additive representation

(2.3) z = z0 + z1ξ + z2ξ
2 + · · ·+ zm−1ξ

m−1, zi ∈ Zpn ,

so that R is a finitely generated free Zpn-module and |R| = qn(= pnm).
Also, R is a local ring with a unique maximal ideal M = Mn,m = pR
which consisted of 0 and all zero divisors inR, and its residue fieldR/M
is isomorphic to Fq. Clearly µ has a natural extension toR and therefore
to R[x], and µ(R) = R/M ∼= Fq. For more knowledge on Galois rings
we refer to [5, 6, 9, 11].

The group R× = R\M of units has the direct decomposition (see [5,
Theorem XVIII.2]):

(2.4) R× = Γ×m × (1 +M)

where Γ×m = 〈ξ〉 is the cyclic group of order q − 1 and 1 + M is
the multiplicative p-group of order qn−1. Define Γm = Γ×m ∪ {0} =
{0, 1, ξ, · · · , ξq−2}. It can be shown that every element z ∈ R has a
unique p-adic representation

(2.5) z = z0 + z1p+ · · ·+ zn−1p
n−1, zi ∈ Γm.

From (2.5) we haveM = pRn−1,m, i.e., z ∈M if and only if z0 = 0 and
z ∈ R× if and only if z0 ∈ Γ×m. An arbitrary element z of R× is uniquely
represented as

z = z0 + z̃, z0 ∈ Γ×m, z̃ ∈M(2.6)

= ξkx = ξk(1 + py), x ∈ 1 +M, y ∈ Rn−1,m, 0 ≤ k ≤ q − 2.(2.7)

Any element of R\{0} is either a unit or a zero divisor. Since the zero
divisors in R are those elements divisible by p, any element z ∈ R\{0}
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can be written as
(2.8)
z = pku = pkξl(1+px), u ∈ R×, x ∈ Rn−1,m, 0 ≤ k ≤ n−1, 0 ≤ l ≤ q−2.

2.2. Additive characters of R. Let σ be the Frobenius map of R
over Zpn given by

σ(z) = zp0 + pzp1 + · · ·+ pn−1zpn−1

for z =
∑n−1

i=0 p
izi ∈ R, where zi ∈ Γm. As we know, σ is the generator

of the Galois group of R/Zpn which is a cyclic group of order m. The
trace mapping Trn : R → Zpn is defined by

Trn(z) = z + σ(z) + · · ·+ σm−1(z) for z ∈ R
where σj(z) = σ(σj−1(z)). Trn is an epimorphism of Zpn-modules and
Trn can be reduced by µ to the trace mapping tr : Fq → Fp of finite
fields. Then we have the following commutative diagram:

R Fq

Zpn Fp

µ

Trn tr
µ

Namely, we have µ(Trn(z)) = tr(µ(z)) for all z ∈ R.
An additive character of R is a homomorphism from the additive

group of R to C1. For any x, y ∈ R, the additive characters of R are
given by

(2.9) ψx(y) = e2πiTrn(xy)/pn ,

different x’s affording different additive characters. In fact, {ψx}x∈R con-
sists of all additive characters of R (see [10, Lemma 6]). ψ0 is the trivial
additive character of R and ψ(= ψ1) is called the canonical additive

character of R. Let R̂+ denote the additive characters group.

Remark 2.1 ( [1, 7, 12]). In the case of R = GR(22,m),

(2.10) ψx(y) =
√
−1

Tr2(xy)
.

Proposition 2.1 ( [8, Lemma 2.1, 2.2, 2.3]). For any x ∈ R we have

(2.11)
∑
y∈R

ψx(y) =

{
qn if x = 0
0 if x 6= 0

;
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(2.12)
∑
y∈M

ψx(y) =

{
qn−1 if x ∈ pn−1R
0 if x ∈ R\pn−1R ;

(2.13)
∑
y∈R×

ψx(y) =

 (q − 1)qn−1 if x = 0,
−qn−1 if x ∈ pn−1R\{0},
0 if x ∈ R\pn−1R.

Proposition 2.2 ( [10, Lemma 8]). For any x ∈ R we have

(2.14)
∑
y∈Γm

ψx(p
n−1y) =

{
q if x ∈M,
0 if x ∈ R×.

Proposition 2.3. If ψx ∈ R̂+ is nontrivial on M, then

(2.15)
∑
y∈R×

ψx(y) = −
∑
y∈M

ψx(y) = 0.

Proof. From the assumption, ψx ∈ R̂+ is nontrivial on R and so∑
y∈R×

ψx(y) =
∑
y∈R

ψx(y)−
∑
y∈M

ψx(y) = −
∑
y∈M

ψx(y)

by (2.11). Also, there exists z ∈ M such that ψx(z) 6= 1. Since adding
all y ∈M by z ∈M permutes M. we have∑

y∈M

ψx(y) =
∑

y+z∈M

ψx(y + z) = ψx(z)
∑
y∈M

ψx(y).

As 1− ψx(z) 6= 0, we get (2.15).

Proposition 2.4. If ψ ∈ R̂+ is trivial on M, then

(2.16)
∑
y∈R×

ψx(y) =
∑
y∈R×

ψ(xy) =

{
−qn−1 if x ∈ R×,
(q − 1)qn−1 if x ∈M.

Proof. If x ∈ R×, then multiplying all y ∈ R× by x permutes R×, so
that by setting z = xy ∈ R× we have∑
y∈R×

ψx(y) =
∑
y∈R×

ψ(xy) =
∑
z∈R×

ψ(z) =
∑
z∈R

ψ(z)−
∑
z∈M

ψ(z) = −
∑
z∈M

1 = −qn−1
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by (2.11) and the assumption. If x ∈ M, then xy ∈ M for all y ∈ R×
and ∑

y∈R×

ψx(y) =
∑
y∈R×

ψ(xy) =
∑
y∈R×

1 = (q − 1)qn−1

by the assumption.

In definition (2.2) of Galois rings R = Rn,m, for the monic basic prim-
itive polynomial f(x) in Zpn [x] of degree m, put ϕ(x) ≡ f(x) (mod pk),
where 1 ≤ k ≤ n− 1. Then ϕ(x) is a monic basic primitive polynomial
in Zpk [x] of degree m. Let θ ∈ Rk,m be a root of ϕ(x). Using additive
representation (2.3), we define the homomorphism τk as

(2.17) τk : R → Rk,m, τk

(
m−1∑
i=0

ziξ
i

)
=

m−1∑
i=0

z̃iθ
i

where z̃i ≡ zi (mod pk), zi ∈ Zpn and z̃i ∈ Zpk . Then we have the
following commutative diagram:

R Rk,m

Zpn Zpk

τk

Trn Trk

τk

Namely, we have

(2.18) τk(Trn(z)) = Trk(τk(z)) for z ∈ R.

In particular, for k = 1, we have R1,m = Fq, Zp = Fp, τ1 = µ and
Tr1 = tr.

Proposition 2.5. For any x ∈ R we have

∑
y∈M

ψx(y) =

{
qn−1 if τn−1(x) = 0,
0 if τn−1(x) 6= 0,

(2.19)

where τn−1 : R → Rn−1,m is the homomorphism defined by (2.17).
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Proof. The element y ∈ M = pRn−1,m is written as y = pz, z ∈
Rn−1,m. We have∑

y∈M

ψx(y) =
∑
y∈M

e2πiTrn(xy)/pn =
∑

z∈Rn−1,m

e2πiTrn(xpz)/pn

=
∑

z∈Rn−1,m

e2πiTrn−1(τn−1(x)z)/pn−1

(by (2.18))

=
∑

z∈Rn−1,m

ψτn−1(x)(z) (by (2.9)).

Since ψτn−1(x) is an additive character of Rn−1,m, from (2.11) we get
(2.19).

Proposition 2.6. For any x ∈ R we have

∑
y∈R×

ψx(y) =

 (q − 1)qn−1 if x = 0,
−qn−1 if x 6= 0 and τn−1(x) = 0,
0 if τn−1(x) 6= 0,

(2.20)

where τn−1 : R → Rn−1,m is the homomorphism defined by (2.17).

Proof. Since ∑
y∈R×

ψx(y) =
∑
y∈R

ψx(y)−
∑
y∈M

ψx(y),

combining (2.11) and (2.19) we get (2.20).

2.3. Multiplicative characters of R. A multiplicative character
χ of R× is defined by χ(xy) = χ(x)χ(y) for x, y ∈ R×, and each value
of χ(x) is a (q − 1)qn−1-th root of unity. We extend χ as the character
of R by defining χ(M) = 0. We call this the multiplicative character of

R. Let χ0 and R̂× denote the trivial multiplicative character of R and
the multiplicative characters group, respectively.

Proposition 2.7. For any character χ ∈ R̂×,

(2.21)
∑
x∈R

χ(x) =
∑
x∈R×

χ(x) =

{
(q − 1)qn−1 if χ = χ0,
0 if χ 6= χ0.

Proof. It is clear if χ = χ0. If χ 6= χ0, there exists y ∈ R× such that
χ(y) 6= 1. Since multiplying all x ∈ R× by y ∈ R× permutes R×, we
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have ∑
x∈R×

χ(x) =
∑

xy∈R×

χ(xy) = χ(y)
∑
x∈R×

χ(x).

As 1− χ(y) 6= 0, we get
∑

x∈R× χ(x) = 0.

Remark 2.2. In [7], the authors extend χ as the character of R =
GR(22,m) by defining χ(M) = 1 for χ = χ0 and χ(M) = 0 for χ 6= χ0,
and so that ∑

x∈R

χ(x) =

{
qn = (2m)2 = 4m if χ = χ0,
0 if χ 6= χ0,

which is a little different with (2.21).

Since R× = Γ×m × (1 +M) (see (2.4)), there are few kinds type of
multiplicative characters of R:
(I) The multiplicative characters χ of R that vanish on 1 +M (i.e.
χ(1 + x) = 1 for x ∈ M) are in one-to-one correspondence with the
multiplicative characters ηj of Γ×m defined by

(2.22) ηj(ξ
k) = e2πi(jk)/q−1 for 0 ≤ j, k ≤ q − 2.

Then ηj’s form a cyclic group with q−1 elements. It is familiar that the
order of each character ηj is a divisor of q − 1.

Remark 2.3 ( [10, Theorem 13]). Let ψx be a nontrivial additive
character of R given by (2.9) and χ a nontrivial multiplicative character
of Γ×m given by (2.22). Then∣∣∣∣∣∣

∑
y∈Γ×

m

χ(y)ψx(y)

∣∣∣∣∣∣ ≤ pn−1q1/2.

(II) The multiplicative characters χ of R that vanish on Γ×m (i.e. χ(x) =
1 for x ∈ Γ×m) are in one-to-one correspondence with the multiplicative
characters of the multiplicative p-group 1+M of order qn−1. In the case
of R = GR(p2,m), from the p-adic representation (2.5)

z = z0 + z1p (z0, z1 ∈ Γm), M = pΓm, M2 = 0

and

(1 +M, ·) = (1 + pΓm, ·) ∼= (Fq,+), 1 + py 7−→ y = y mod p for y ∈ Γm.

Hence multiplicative characters of R that vanish on Γ×m are given by

(2.23) χx(1 + py) = ϕx(y) (x, y ∈ Γm, x, y ∈ Fq).
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where ϕx is an additive character of Fq defined by

(2.24) ϕx(y) = e2πitr(xy)/p for all x, y ∈ Fq.

Remark 2.4 ( [12, Theorem 1, Theorem 2]). Let ψy be an additive
character of R = GR(22,m) given by (2.10) in Remark 2.1 and χx a
multiplicative character of R given by (2.23) such that χ2

x = χ0. Then
explicit form of Gauss sums over R is given as follows:

G(χx, ψy) =


χ(y)G(χx, ψ1) when y ∈ R×,
χ
(
y
2

)
G(χx, ψ2) when y ∈M\{0},

q(q − 1) = 2m(2m − 1) when x = 0 and y = 0,
0 when x 6= 0 and y = 0,

and

G(χx, ψy) =


2m
√
−1

Tr2(z)
when x 6= 0 and y = 1,

where z ≡ x (mod M), z ∈ Γ×m,
0 when x = 0 and y = 1,
0 when x 6= 0 and y = 2,
−2m when x = 0 and y = 2.

Remark 2.5 ( [1], [2]). Let ψy be an additive character of R =
GR(p2,m) given by (2.9) and χ a multiplicative character defined by

(2.25) χ = ηjχx (x ∈ Γm, 0 ≤ j ≤ q − 2),

where ηj is a multiplicative character of Γ×m given by (2.22) and χx is a
multiplicative character of 1 +M given by (2.23). The values of Gauss
sums over R have been calculated explicitly as follows:

G(χ, ψy) =


q(q − 1) for χ = χ0 and y = 0,
0 for χ 6= χ0 and y = 0,
−q for χ = χ0 and y ∈M\{0},
0 for χ = χ0 and y ∈ R×.

G(χ, ψy) =

{
χ(y)G(χ, ψ) for y ∈ R×,
χ(y)G(χ, ψp) for y = pz (z ∈ Γ×m).

G(χ, ψ) =

{
0 if x = 0,

qηj(x1)e2πiTr2(x1)/p2 if x ∈ Γ×m,
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where x1 = x for p = 2 and x1 = −x for p ≥ 3.

G(χ, ψp) =

{
q
∑

z∈Γ×
m
ηj(z)e2πitr(z)/p if x = 0,

0 if x ∈ Γ×m.

3. The Gauss sums over R and its absolute values

In this section, we give explicit form of the Gauss sum G(χ, ψx)
over R given by (1.1) in accordance with conditions of characters of
Galois rings, and we compute the modulus of the Gauss sums.

Let R = Rn,m = GR(pn,m), M = pR, R× = R\M, Γm, Γ×m, R̂+,

R̂×, and τk be as in Section 1 and Section 2. From (2.21), we have

(3.1) G(χ, ψ0) =

{
(q − 1)qn−1 if χ = χ0,
0 if χ 6= χ0.

Proposition 3.1. For x ∈ R we have

G(χ0, ψx) =

 (q − 1)qn−1 if x = 0,
−qn−1 if (x ∈ pn−1R\{0}) or (x 6= 0 and τn−1(x) = 0),
0 if (x 6∈ pn−1R) or (τn−1(x) 6= 0),

where τn−1 : R → Rn−1,m is the homomorphism defined by (2.17).

Proof. See (2.13) and Proposition 2.6.

Remark 3.1 ( [3, Proposition 1]). Let ψ ∈ R̂+. If χ ∈ R̂× is trivial
on 1 +M then

G(χ, ψ) =

{
qn−1GΓ×

m
(χ, ψ) if ψ is trivial on M,

0 else.

Proposition 3.2. Let x ∈ R\{0}. If χ ∈ R̂× is trivial on 1 +M,
then

G(χ, ψx) =


qn−1GΓ×

m
(χ, ψx) if (ψx is trivial on M) or (x ∈ pn−1R)

or (τn−1(x) = 0),
0 if (ψx is nontrivial on M) or (x 6∈ pn−1R)

or (τn−1(x) 6= 0),

where τn−1 : R → Rn−1,m is the homomorphism defined by (2.17).



The Gauss sums over Galois rings and its absolute values 529

Proof. Indeed,

G(χ, ψx) =
∑
z∈R×

χ(z)ψx(z)

=
∑
t∈Γ×

m

∑
y∈M

χ(t+ y)ψx(t+ y) (by (2.6))

=
∑
t∈Γ×

m

∑
y∈M

χ(t)χ(1 + t−1y)ψx(t)ψx(y) (where t−1y ∈M)

=
∑
t∈Γ×

m

χ(t)ψx(t)
∑
y∈M

ψx(y) (by assumption).

From (2.12), (2.15) and Proposition 2.5, we completes the proof of
Proposition 3.2.

Proposition 3.3. Let u ∈ R× and t a fixed integer with 0 ≤ t ≤
n− 1. Then

G(χ, ψptu) = χ(u)G(χ, ψpt).

Proof. Indeed,

G(χ, ψptu) =
∑
x∈R×

χ(x)ψptu(x) = χ(u)
∑
x∈R×

χ(ux)ψpt(ux) = χ(u)G(χ, ψpt)

since multiplying all x ∈ R× by u permutes R×.

We introduce a new operation ∗ in Rn,m, n ≥ 2. For elements x, y ∈
Rn,m, we let

(3.2) x ∗ y = x+ y + pxy.

Then the elements of the ring Rn,m form an abelian group with respect
to the new operation ∗, an identity element is 0 and inverse of an element
x is given by −x(1 + px)−1.

Let χ be a multiplicative character of R×n+1,m that vanish on Γ×m (i.e.
χn+1(x) = 1 for x ∈ Γ×m). For 1 + px, 1 + py ∈ 1 +Mn+1,m = 1 + pRn,m

where x, y ∈ Rn,m, we have

(1+px) ·(1+py) = 1+p(x+y)+p2xy = 1+p(x+y+pxy) = 1+p(x∗y).

Thus a multiplicative character χ of R×n+1,m that vanish on Γ×m can be
regarded as a multiplicative character χ∗ of the group Rn,m with respect
to the new operation ∗ that vanish on Γ×m. We extend χ as the character
of Rn+1,m by defining χ(Mn+1,m) = 0.
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Theorem 3.1 ( [13, Lemma 6] for p = 2). Let χ be a multiplicative
character of Rn+1,m that vanish on Γ×m and ψx (x ∈ Rn,m) an additive
character of Rn+1,m given by (2.9). Then for

x = pkξl(1 + py) ∈ Rn+1,m\{0}, y ∈ Rn,m, 0 ≤ k ≤ n, 0 ≤ l ≤ q − 2,

we have

G(χ, ψx) = χ

(
x

pk

)
G(χ, ψpk).

Proof. Indeed,

G(χ, ψx)

=
∑

y∈R×
n+1,m

χ(y)ψx(y) (put y = ξt(1 + pz), 0 ≤ t ≤ q − 2, z ∈ Rn,m)

=

q−2∑
t=0

∑
z∈Rn,m

χ(ξt(1 + pz))e2πiTrn+1(ξt(1+pz)pkξl(1+py))/pn+1

=

q−2∑
t=0

∑
z∈Rn,m

χ∗(z)e2πipkTrn+1(ξt(1+p(y∗z))/pn+1

(since 0 ∗ z = z and (1 + py)(1 + pz) = 1 + p(y ∗ z))

=

q−2∑
t=0

∑
z∈Rn,m

χ∗(y ∗ z)χ∗(y−1)e2πipkTrn+1(ξt(1+p(y∗z))/pn+1
(put y ∗ z = α)

= χ∗(y)

q−2∑
t=0

∑
α∈Rn,m

χ∗(α)e2πipkTrn+1(ξt(1+pα)/pn+1

= χ(ξl(1 + py))

q−2∑
t=0

∑
α∈Rn,m

χ(ξt(1 + pα))e2πipkTrn+1(ξt(1+pα)/pn+1

= χ(x/pk)
∑

β∈R×
n+1,m

χ(β)ψpk(β)

= χ(x/pk)G(χ, ψpk).

Lemma 3.1. Let χ ∈ R̂× be a nontrivial character. Then we have

G(χ, ψx) =

{
χ(x)G(χ, ψ) if x ∈ R×,
0 if x ∈M and ψ ∈ R̂+ is trivial on M.
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Proof. If x ∈ R×, then multiplying all y ∈ R× by x permutes R×, so
that by setting z = xy ∈ R× we have

G(χ, ψx) =
∑
y∈R×

χ(y)ψx(y) =
∑
y∈R×

χ(y)ψ(xy)

=
∑
z∈R×

χ(x−1z)ψ(z) = χ(x)
∑
z∈R×

χ(z)ψ(z)

= χ(x)G(χ, ψ).

If x ∈M and ψ ∈ R̂+ is trivial onM, then xy ∈M for all y ∈ R× and
ψ(xy) = 1, so that we have

GR(χ, ψx) =
∑
y∈R×

χ(y)ψx(y) =
∑
y∈R×

χ(y)ψ(xy) =
∑
y∈R×

χ(y) = 0

by (2.21).

The following result has been proved in [3, Proposition 3]. Here we
reproduce the proof for reader’s convenience.

Theorem 3.2. The modulus of a Gauss sum is completely deter-
mined:

(3.3) |G(χ, ψ)|2 =

{
qn if χ is nontrivial on 1 + ann(M),
0 if χ is trivial on 1 + ann(M),

where ann(M) = {x ∈ R | xy = 0 for all y ∈M}.

Proof. Let S = 1 + ann(M). Then S is a subgroup of R× and 1 ∈ S.
Since multiplying all x ∈ R× by y−1 ∈ R× permutes R×, so that by
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setting z = xy−1 ∈ R× we have

|G(χ, ψ)|2

=
∑
x∈R×

∑
y∈R×

χ(xy−1)ψ(x− y) (by (1.1))

=
∑
z∈R×

χ(z)
∑
y∈R×

ψ((z − 1)y)

=

∑
z∈S

χ(z) +
∑

z∈R×\S

χ(z)


{∑
y∈R

ψ((z − 1)y)−
∑
y∈M

ψ((z − 1)y)

}

= χ(1)
∑
y∈R

1−
∑
z∈S

χ(z)
∑
y∈M

1−
∑

z∈R×\S

χ(z)
∑
y∈M

ψ((z − 1)y) (by (2.11))

= qn − qn−1
∑
z∈S

χ(z)−
∑

z∈R×\S

χ(z)
∑
y∈M

ψz−1(y).

Since z − 1 6∈ pn−1R, from (2.12) we have
∑

z∈R×\S χ(z)
∑

y∈M ψ((z −
1)y) = 0. This completes the proof of (3.3).

Proposition 3.4. If τn−1(y) 6= 0 for all y ∈ R\{0}, where τn−1 :
R → Rn−1,m is the homomorphism defined by (2.17), then we have

|G(χ, ψ)|2 = (q − 1)qn−1.

Proof. Since multiplying all x ∈ R× by y−1 ∈ R× permutes R×, so
that by setting z = xy−1 ∈ R× we have

|G(χ, ψ)|2 =
∑
x∈R×

∑
y∈R×

χ(xy−1)ψ(x− y) (by (1.1))

=
∑
z∈R×

χ(z)
∑
y∈R×

ψ((z − 1)y)

= (q − 1)qn−1 +
∑

z∈R×\{1}

χ(z)
∑
y∈R×

ψz−1(y).

By the assumption, τn−1(z − 1) 6= 0 and from Proposition 2.6, we have∑
z∈R×\{1}

χ(z)
∑
y∈R×

ψz−1(y) = 0,

this completes the proof of Proposition 3.4.
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Theorem 3.3. Let χ ∈ R̂× be a nontrivial character. If ψ ∈ R̂+ is
trivial on M, then

(3.4) |G(χ, ψx)|2 =

{
qn if x ∈ R×,
0 if x ∈M.

Proof. It is clear if x ∈M by Lemma 3.1. Let x ∈ R×. The definition
(1.1) of Gauss sums yields that∑
x∈R

G(χ, ψx)G(χ, ψx) =
∑
x∈R

∑
y∈R×

χ(y)ψx(y)
∑
z∈R×

χ(z)ψx(z)

=
∑
y∈R×

∑
z∈R×

χ(y)χ(z)
∑
x∈R

ψy−z(x)

=
∑
z∈R×

1
∑
x∈R

1 +
∑

y,z∈R×

y−z 6=0

χ(y)χ(z)
∑
x∈R

ψy−z(x)

= (q − 1)qn−1qn (by (2.11)).

On the other hand, by Lemma 3.1 we have∑
x∈R

G(χ, ψx)G(χ, ψx) = G(χ, ψ)G(χ, ψ)
∑
x∈R×

1 = (q − 1)qn−1|G(χ, ψ)|2.

By comparing above two formulas we have |G(χ, ψ)|2 = qn. This com-
pletes the proof of Theorem 3.1.

Corollary 3.1. Let R = GR(p2,m). If χ ∈ R̂× is nontrivial on
1 +M, then

(3.5) |G(χ, ψx)|2 =

{
q2 if x ∈ R×,
0 if x ∈M.

Proof. From (2.4) and (2.25), we have χ = ηjϕt where ηj ∈ Γ̂×m and

ϕt ∈ F̂q+ (t ∈ Fq) is a nontrivial on Fq. Let y = z(1 + pw), z ∈ Γ×m, w ∈
Γm with w̄ ≡ w (mod p), w̄ ∈ Fq. Then

G(χ, ψx)

=
∑
y∈R×

χ(y)ψx(y) =
∑
z∈Γ×

m

∑
w̄∈Fq

ηj(z)ϕt(w̄)ψx(z(1 + pw))

=
∑
z∈Γ×

m

ηj(z)ψx(z)
∑
w̄∈Fq

ϕt(w̄)ψx(pzw) =
∑
z∈Γ×

m

ηj(z)ψx(z)
∑
w̄∈Fq

ϕt(w̄)ψz(pxw).
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If x ∈ M, then xw ∈ M for all w ∈ Γm ⊂ R× and so that pxw = 0,
i.e., ψz(pxw) = 1. Thus

G(χ, ψx) =
∑
z∈Γ×

m

ηj(z)ψx(z)
∑
w̄∈Fq

ϕt(w̄) = 0

since
∑

w̄∈Fq
ϕt(w̄) = 0 for a nontrivial character ϕt. For x ∈ R×, we

have the same proof of Theorem 3.3.
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[3] P. Langevin and P. Solé, Gauss sums over quasi-Frobenius rings, Proceedings of
The Fifth International Conference on Finite Fields and Applications Fq5, held
at the University of Augsburg, Germany, August 2–6, 1999, pp. 329–340.

[4] R. Lidl and H. Niederreiter, Finite fields, Addison-Wesley, London, 1997.
[5] B. R. McDonald, Finite Rings with Identity, Marcel Dekker, 1974.
[6] A. A. Nechaev, Kerdock code in a cyclic form, Discrete Math. Appl. 1 (1991),

365–384.
[7] Y. Oh and H. J. Oh, Gauss sums over Galois rings of characteristic 4,

Kangweon-Kyungki Math. Jour. 9 (1) (2001), 1–7.
[8] F. Ozbudak and Z. Saygi, Some constructions of systematic authentication codes

using Galois rings, Des. Codes Cryptography 41 (3) (2006), 343–357.
[9] R. Raghavendran, Finite associative rings, Compositio Math. 21 (1969), 195–

229.
[10] F. Shuqin and H. Wenbao, Character sums over Galois rings and primitive

polynomials over finite fields, Finite Fields and Their Applications 10 (2004),
36–52.

[11] Z. X. Wan, Lectures on Finite Fields and Galois Rings, World Scientific, 2003.
[12] M. Yamada, Distance-Regular Digraphs of Girth 4 Over an Extension Ring of

Z/4Z, Graphs and Combinatorics 6 (1990), 381–394.
[13] M. Yamada, Difference sets over the Galois rings with odd extension degrees and

characteristic an even power of 2, Des. Codes Cryptogr. 67 (2013), 37–57.



The Gauss sums over Galois rings and its absolute values 535

Young Ho Jang
Department of Mathematics
Inha University
Incheon, 22212, Korea
E-mail : yjang6105@inha.ac.kr

Sang Pyo Jun
Information Communication
Namseoul University
Chun-An 31020, Korea
E-mail : spjun7129@naver.com


	1. Introduction
	2. Basic properties of Galois rings and its characters
	2.1. The Galois ring R of characteristic pn
	2.2. Additive characters of R
	2.3. Multiplicative characters of R

	3. The Gauss sums over R and its absolute values
	References

