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EXISTENCE OF RANDOM ATTRACTORS FOR

STOCHASTIC NON-AUTONOMOUS

REACTION-DIFFUSION EQUATION WITH

MULTIPLICATIVE NOISE ON Rn

Fadlallah Mustafa Mosa, Qiaozhen Ma∗, and
Mohamed Y. A. Bakhet

Abstract. In this paper, we are concerned with the existence of
random dynamics for stochastic non-autonomous reaction-diffusion
equations driven by a Wiener-type multiplicative noise defined on
the unbounded domains.

1. Introduction

In this paper, we consider the following stochastic non-autonomous
reaction-diffusion equation on Rn perturbed by a Wiener-type multi-
plicative noise:

du

dt
+ λu−∆u = f(u) + g(t, x) + bu ◦ Ẇ (t), t > τ, τ ∈ R, (1.1)

u(x, τ) = uτ (x) , x ∈ Rn, τ ∈ R, (1.2)
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where −∆ is the Laplacian operator with respect to the variable x ∈ Rn,
u = (x, t) is a real function of x ∈ Rn and t > τ , uτ (x) ∈ L2(Rn), g ∈
L2
loc(R, L2(Rn)), λ, b > 0,W (t) is a Wiener process defined on a standard

probability space (Ω,F , P ), where Ω = {ω ∈ C(R,R) : ω(0) = 0}, and
F is the Borel σ -algebra induced by the compact-open topology of Ω
and P is the corresponding Wiener measure on F . The nonlinearity is a
smooth function and satisfies the following conditions for some positive
constants β1, β2, β3 and β4,

f(0) = 0, (1.3)

f(s)s ≤ −β1|s|p + β2|s|2, ∀s ∈ R, (1.4)

|f(s)| ≤ β3|s|p−1 + β4|s|, ∀s ∈ R, (1.5)

where p ≥ 2.
It is well known that the asymptotic behavior of a random dynamical
system is presented by a random attractor. The existence of random
attractors have been studied by many authors recently, see [1, 3, 5, 7 −
8, 11, 12, 14, 16, 18, 20] and the reference therein. Notice that the partial
differential equations (PDEs) studied in the most of these literatures are
all defined on the bounded domains.

In [8], the authors considered the stochastic non-autonomous reaction-
diffusion equation with multiplicative noise: du − ∆udt + f(u)dt =
g(x, t)dt + bu ◦ dW (t) in U × [τ,+∞), τ ∈ R, U is an open bounded
set of R3 and f(u) = a0 + a1u+ a2u

2 + a3u
3, a3 > 0, ai ∈ R, i = 0, 1, 2, 3

and ‖g‖2 = supt∈R ‖g(t, ·)‖2 <∞.
In [13], the authors investigated the existence of random exponential
attractor for the stochastic non-autonomous reaction-diffusion equation
with multiplicative noise: du+ (λu−∆u)dt = (f(x, u) + g(x, t))dt+ εu◦
dW , where t > τ , τ ∈ R.

Recently, in the case of unbounded domains, the existence of ran-
dom attractors was established for the autonomous stochastic reaction-
diffusion equation with additive noise in [2], and with multiplicative noise
in [6].
However, there is no results on random attractors for stochastic non-
autonomous reaction-diffusion equation with multiplicative noise on un-
bounded domain, while it is our concerned.

This paper is organized as follows. In section 2, we recall some basic
concepts and properties for general random dynamics system. In section
3, we define a random cocycle through the solution of Eq.(1.1) and give
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the attraction domain and the properties of Wiener process. In section
4, we prove the existence of random attractors in L2(Rn) by tail estimate
method and some compact embedding.

In the sequel, we use ‖ · ‖ and (·, ·) to denote the norm and inner
product of L2(Rn) , respectively.

2. Preliminaries and abstract results

As mentioned in the introduction, our main purpose is to prove the
existence of random attractor. For that matter, first, we will recapitulate
basic concepts related to random attractors for stochastic dynamical
systems. The reader is referred to [1, 10, 17, 19] for more details.

Let both (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be separable Banach spaces, where
X is called the initial space which contains all the initial data, and Y is
called a terminate space which contains all solutions of a SPDE. Both
X and Y are not necessary embedding in any direction, but we need to
impose the following hypothesis on them:

(H1) if {xn}n ⊂ X
⋂
Y such that xn

‖·‖X−→ x and xn
‖·‖Y−→ y respectively,

then
x = y ∈ X

⋂
Y .

Let Q be a nonempty set and (Ω,F , P ) be a probability space . We
assume that there are two groups {σt}t∈R and {ϑt}t∈R over Q and Ω,
respectively. Specifically, the mapping σ : R × Q −→ Q satisfies that
σ0 is the identity on Q, and σs+t = σs ◦ σt for all s, t ∈ R. Similarly ,
ϑ : R× Ω −→ Ω is a (B(R)× F ,F)- measurable mapping such that ϑ0

is the identity on Ω , ϑs+t = ϑs ◦ ϑt for all s, t ∈ R and ϑtP = P for all
t ∈ R. In particular, we call both (Q, {σt}t∈R) and (Ω,F , P, {ϑt}t∈R) the
parametric dynamical system. Let R+ = {t ∈ R : t ≥ 0} and 2X be the
collection of all subsets of X.

Definition 2.1. A mapping ϕ : R+×Q×Ω×X −→ X, (t, q, ω, x) 7→
ϕ(t, q, ω, x) is called a random cocycle on X over (Q, {σt}t∈R) and (Ω,F , P,
{ϑt}t∈R) , if for all q ∈ Q,ω ∈ Ω and s, t ∈ R+ , the following statements
are satisfied :
(i) ϕ(·, q, ·, ·) : R+ × Ω×X −→ X is (B(R+)×F × B(X),B(X))- mea-
surable.
(ii) ϕ(0, q, ω, ·)is the identity on X.
(iii) ϕ(t+ s, q, ω, ·) = ϕ(t, σsq, ϑsω, ·) ◦ ϕ(s, q, ω, ·).
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A random cocycle ϕ is said to be continuous in X if the operator
ϕ(t, q, ω, ·) is continuous in X for each q ∈ Q,ω ∈ Ω and t ∈ R+.
In the sequel the random cocycle ϕ on X is further assumed to take its
values into the terminate space Y in the following sense:
(H2) for any t > 0, q ∈ Q and ω ∈ Ω, ϕ(t, q, ω, ·) : X −→ Y.

Definition 2.2. A random cocycle ϕ is said to be D-omega-limit
compact in X if for each q ∈ Q,ω ∈ Ω and D ∈ D,

lim
T→∞

KX(
⋃
t≥T

ϕ(t, σ−tq, ϑ−tω,D(σ−tq, ϑ−tω))) = 0, (2.1)

where KX(·) is the Kuratowski non-compact measure such that for A ⊂
X,

KX(A) = inf{d > 0 : A has a finite cover by sets of diameter ≤ d}.

Similarly ϕ is called D-omega-limit compact in Y if and only if (2.1)
holds for the measure KY (·).

We after next recollect the existence theorem of random attractor in
both the initial and terminate spaces .The interesting novelty is that
in order to obtain a random attractor in Y we do not need the absorp-
tion and continuity properties for the random cocycle ϕ in the terminate
space Y . We can refer to [9, 15] for the detailed proof.

Proposition 2.3. Assume that ϕ is D-omega-limit compact in L2(Rn).
Then ϕ is D-omega-limit compact in Lr(Rr) if for every ζ > 0 , and
each q ∈ Q, ω ∈ Ω and D ∈ D , there exist positive constants M =
M(q, ω, ζ,D) and T = T (q, ω, ζ,D) such that for all t ≥ T ,

sup
u0∈D(σ−tq,ϑ−tω)

∫
(|ϕ(t)|≥M)

|ϕ(t)|rdx ≤ ζ,

where ϕ(t) =: ϕ(t, σ−tq, ϑ−tω, u0).

Theorem 2.4. Let ϕ be a continuous random cocycle in X over
(Q, {σt}t∈R) and (Ω,F , P, {ϑt}t∈R). Assume that
(i) ϕ has a closed and measurable D-pullpack bounded absorbing set
K = {K(q, ω) : q ∈ Q,ω ∈ Ω} ∈ D in X.
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(ii) ϕ is D-omega-limit compact in X. Then the random cocycle ϕ ad-
mite a unique D-random attractor A = {A(q, ω) : q ∈ Q,ω ∈ Ω} ∈ D,
whose section is structured by

A(q, ω) =
⋂
s≥0

⋃
t≥s

ϕ(t, σ−tq, ϑ−tω,K(σ−tq, ϑ−tω))
X

. (2.2)

If further (H1) and (H2) hold and
(iii) ϕ is D-omega-limit compact in Y , then A whose section is defined
by (2.2), is also a unique D-random attractor for ϕ in Y in the sense of
Definition 2.4, in [10].

If X = L2 and Y = Lr(r > 2) , then (H1) holds true automatically
, see Lemma 4.1 in [17]. Suppose that ϕ is a random cocycle on L2

over (Q, {σt}t∈R) and (Ω,F , P, {ϑt}t∈R) taking its values into Lr . Then
we have a way at hand to check the D-omega-limit compact for ϕ in
Lr(r > 2), which is called asymptotic a priori estimate technique, see
[4].

3. Non-autonomous stochastic reaction-diffusion equation on
Rn

In this section, we will give the transformed version of Eq.(1.1) by
using a Wiener process, which is rougher (thus has lower regularity)than
the Ornstein-Uhlenbeck process. The attraction domain D, which is
larger than the general one, is defined.

The non-autonomous term g ∈ L2
loc(R, L2(Rn)) satisfies, for any τ ∈ R

and some
0 < δ0 < δ = λ− β2,∫ τ

−∞
eδ0s‖g(s, ·)‖2L2(Rn)ds < +∞, (3.1)

which implies that for any τ ∈ R,
∫ 0

−∞ e
δ0s‖g(s + τ, ·)‖2L2(Rn)ds < +∞.

Throughout this paper, we can write that

λ− β2 > 0, where β2 is given in (1.4) (3.2)

To model the random noise in Eq.(1.1), we need to define a shift
operator {ϑt}t∈R on Ω (where Ω is defined in the introduction ) by
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ϑtω(s) = ω(s+t)−ω(t) for any ω ∈ Ω, s, t ∈ R . Then ϑt is a measure pre-
serving transformation group on (Ω,F , P ) such that (Ω,F , P, {ϑt}t∈R)
is ergodic in the sense that for every ϑt-invariant set B ∈ F we have
P (B) = 1 or P (B) = 0, see [19]. By the law of the iterated logarithm
(see [22], [23]), there exists a ϑt-invariant set Ω̃ ⊂ Ω of full measure such
that for any ω ∈ Ω̃,

ω(t)

t
→ 0, as |t| → +∞. (3.3)

By (3.3) we immediately have the following useful results.

Lemma 3.1. [10] For every δ0 > 0 and α ∈ R, we have

e−δ0t+αω(−t) −→ 0, e−δ0t+α|ω(−t)| −→ 0, for each ω ∈ Ω̃,

as t→ +∞.

In the sequel, all statements are understood to hold on a ϑt-invariant
set Ω̃ ⊂ Ω of full measure such that (3.3) holds, although for convenience
we keep the notation Ω for the set Ω̃.

We then put Q = R to model the non-autonomous term. Define a
family of shift operator {σt}t∈R on R by σt(τ) = t + τ for all t, τ ∈ R.
Then both (R, {σt}t∈R) and (Ω,F , P, {ϑt}t∈R) are parametric dynamical
systems. For τ ∈ R and ω ∈ Ω, let u satisfy Eq.(1.1) and write

v(t, τ, ω, vτ ) = e−bω(t)u(t, τ, ω, uτ ). (3.4)

Then v solves the following equation

dv

dt
+ λv −∆v = e−bω(t)f(ebω(t)v) + e−bω(t)g(t, x), (3.5)

with initial value

v(x, τ) = vτ (x) = e−bω(τ)uτ (x). (3.6)

By the Galerkin method we can show that if the nonlinear term satis-
fies (1.3) - (1.6), and the non-autonomous term satisfies (3.1), then for
any vτ (x) ∈ L2(Rn), Eq.(3.5) possesses a unique weak solution v which
is continuous with respect to the initial value vτ (x) in L2(Rn) for all
t > 0. Then formally u = ebω(t)v(t) is continuous solution to Eq. (1.1)
in L2(Rn).
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Given t ∈ R+, τ ∈ R, ω ∈ Ω and uτ ∈ L2(Rn), define

ϕ(t, τ, ω, uτ ) = u(t+ τ, τ, ϑ−τω, uτ ) = ebω(t)−bω(−τ)v(t+ τ, τ, ϑ−τω, vτ ),
(3.7)

where uτ = e−bω(−τ)vτ . Then it is easy to show that ϕ is a continuous
random cocycle ϕ associated with Eq. (1.1) on L2(Rn) over (Q, {σt}t∈R)
and (Ω,F , P, {ϑt}t∈R).
For the attraction domain, we consider a family D = {D(τ, ω) ⊂ L2(Rn) :
τ ∈ R, ω ∈ Ω} such that for each τ ∈ R and ω ∈ Ω,

lim
t→+∞

e−δt−2bω(−t)‖D(τ − t, ϑ−tω)‖2 = 0, (3.8)

where δ = λ − β2 > 0 and ‖D‖ = sup{‖u‖ : u ∈ D}. Denote by D the
collection of families of nonempty bounded subsets of L2(Rn) such that
(3.8) hold. Then it is obvious that D is inclusion closed.

4. Existence of random attractors in L2(Rn)

In this section, we prove the main results, and we will establish the
D-random attractor in L2(Rn) for the random cocycle ϕ defined in (3.7).
The method used here is standard. The key point is to prove the omega-
limit compact of solution in L2(Rn), which is achieved by the tail esti-
mate method and some compact embedding arguments as in [24].

Lemma 4.1. Assume that (1.3)-(1.6) and (3.1)-(3.2) hold. Let τ ∈
R, ω ∈ Ω, D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D and uτ−t ∈ D(τ − t, ϑ−tω).
Then there exists a random constant T = T (τ, ω,D, b) ≥ 1 such that for
all t ≥ T , the solution v of Eq. (3.5) satisfies

sup
ς∈[τ−1,τ ]

‖v(ς, τ − t, ϑ−τω, vτ−t)‖2 ≤ e2bω(−τ)C(τ, ω, b), (4.1)

∫ τ

τ−t
eδ0s+b(p−2)ω(s−τ)‖v(s, τ − t, ϑ−τω, vτ−t)‖pp ≤ eδ0τ+pω(−τ)C(τ, ω, b),

(4.2)
where vτ−t = e−bω(−t)+bω(−τ)uτ−t, δ = λ− β2 and

C(τ, ω, b) = eδ(1 + 1
δ

∫ 0

−∞ e
δs−2bω(s)‖g(s+ τ, ·)‖2ds) < +∞.
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Proof. Let v = v(t, τ − t, ϑ−τω, vτ−t) be the solution of Eq. (3.5) at
the sample ϑ−τω with the initial value vτ−t. Taking the inner product
of Eq.(3.5) with v, we find that

1

2

d

dt
‖v‖2+λ‖v‖2+‖∇v‖2 = (e−bϑ−τω(t)f(ebϑ−τω(t)v), v)+(e−bϑ−τω(t)g(t, x), v).

(4.3)
By condition (1.4), we get

(e−bϑ−τω(t)f(ebϑ−τω(t)v), v) ≤ −β1eb(p−2)ϑ−τω(t)‖v‖pp + β2‖v‖2. (4.4)

By the Hölder, inequality and the Young inequality, we have

(e−bϑ−τω(t)g(t, x), v) ≤ e−bϑ−τω(t)‖g(t, ·)‖·‖v‖ ≤ 1

2δ
e−2bϑ−τω(t)‖g(t, ·)‖2+δ

2
‖v‖2.

(4.5)

Then inserting (4.4)-(4.5) into (4.3), it leads to

1

2

d

dt
‖v‖2+

δ

2
‖v‖2+‖∇v‖2+β1e

b(p−2)ϑ−τω(t)‖v‖pp ≤
1

2δ
e−2bϑ−τω(t)‖g(t, ·)‖2,

(4.6)
where δ = λ− β2. Hence, we can rewrite (4.6) as

d

dt
‖v‖2 + δ‖v‖2 + β1e

b(p−2)ϑ−τω(t)‖v‖pp ≤
1

δ
e−2bϑ−τω(t)‖g(t, ·)‖2. (4.7)

By applying the Gronwall,s lemma to (4.7) over the interval [τ − t, ς]
with ς ∈ [τ − 1, τ ], we find that

‖v(ς)‖2 + e−δς
∫ ς

τ−t
eδs+b(p−2)ϑ−τω(s)‖v(s)‖ppds

≤ eδ(e−δt‖vτ−t‖2 +
e−δτ

δ

∫ τ

τ−t
eδs−2bϑ−τω(s)‖g(s, ·)‖2ds)

≤ eδ(e−δt−2bϑ−τω(τ−t)‖uτ−t‖2+
e−δτ

δ

∫ τ

τ−t
eδs−2bϑ−τω(s)‖g(s, ·)‖2ds), (4.8)

where we have used e(τ−ς)δ ≤ eδ for ς ∈ [τ − 1, τ ]. Using the relation
ϑ−τω(s) = ω(s − τ) − ω(−τ) , from (4.8) and (3.8) we deduce that for
each fixed τ ∈ R, ω ∈ Ω and all uτ−t ∈ D(τ − t, ϑ−τω) , there exists a
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T = T (τ, ω,D, b) ≥ 1 such that for all t ≥ T ,

‖v(ς)‖2 + e−δς−b(p−2)ω(−τ)
∫ ς

τ−t
eδs+b(p−2)ω(s−τ)‖v(s)‖ppds

≤eδ+2bω(−τ)(1 +
1

δ

∫ 0

−∞
eδs−2bω(s)‖g(s+ τ, ·)‖2ds).

(4.9)

Because of δ > δ0, by lemma 3.1, there is a random constant ρ(ω) > 0
such that

0 < e(δ−δ0)s−2bω(s) ≤ e(δ−δ0)s+2b|ω(s)| ≤ ρ(ω) < +∞, s ∈ (−∞, 0]. (4.10)

Then the integral on the right hand side of (4.9) is bounded by∫ 0

−∞
e(δ−δ0)s−2bω(s)eδ0s‖g(s+τ, ·)‖2ds ≤ ρ(ω)

∫ 0

−∞
eδ0s‖g(s+τ, ·)‖2ds < +∞,

which is finite by (3.1). This completes the proof.

We present a Gronwall-type lemma which is convenient tool for the
subsequential discussion.

Lemma 4.2. [10] Let y and h be two locally integrable functions on
R such that dy

dt
is also locally integrable and

dy(t)
dt

+ νy(t) ≤ h(t), for t ∈ R, and some ν ∈ R.

Then for any r > 0 and τ ∈ R.

y(τ + r) ≤ 1

r

∫ τ+r

τ

eν(s−τ−r)y(s)ds+

∫ τ+r

τ

eν(s−τ−r)h(s)ds.

In particular, if ν = 0 then

y(τ + r) ≤ 1

r

∫ τ+r

τ

y(s)ds+

∫ τ+r

τ

h(s)ds.

Lemma 4.3. Assume that (1.3)-(1.6) and (3.1)-(3.2) hold. Let τ ∈
R, ω ∈ Ω, D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D and uτ−t ∈ D(τ − t, ϑ−tω).
Then there exists a random constant L(τ, ω, b) and T = T (τ, ω,D, b) ≥ 2
such that for all t ≥ T the solution v of Eq. (3.5) satisfies

sup
ς∈[τ−1,τ ]

‖∇v(ς, τ − t, ϑ−tω, vτ−t)‖2 ≤ L(τ, ω, b). (4.11)
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Proof. Let v = v(t, τ − t, ϑ−τω, vτ−t) be the solution of Eq. (3.5) at
the sample ϑ−τω with the initial value vτ−t. Multiplying Eq.(3.5) with
|v|p−2v and integrating over Rn, noticing that (−∆v, |v|p−2v) > 0 for any
p ≥ 2, then by using the Hölder, inequality and the Young inequality
and condition (1.4) it is easy to calculate that

1

p

d

dt
‖v‖pp + λ‖v‖pp = e−bϑ−τω(t)((f(u), |v|p−2v) + (g(t, ·), |v|p−2v))

≤ −β1
2
eb(p−2)ϑ−τω(t)‖v‖2p−22p−2 + β2‖v‖pp +

1

2β1
e−bpϑ−τω(t)‖g(t, ·)‖2, (4.12)

which obviously gives

d

dt
‖v‖pp+λ‖v‖pp+

β1
2
eb(p−2)ϑ−τω(t)‖v‖2p−22p−2 ≤ β2p‖v‖pp+

p

2β1
e−bpϑ−τω(t)‖g(t, ·)‖2.

(4.13)
In (4.13), by using Lemma 4.2, over the interval [τ − 2, ς] with ς ∈
[τ − 1, τ ], we find that

‖v(ς)‖pp +
β1
2
e−λς

∫ ς

τ−2
eλs+b(p−2)ϑ−τω(s)‖v(s)‖2p−22p−2ds

≤ e−λς((
1

ς − τ + 2
+β2p)

∫ τ

τ−2
eλs‖v(s)‖ppds+

p

2β1

∫ τ

τ−2
eλs−bpϑ−τω(s)‖g(s, ·)‖2ds)

≤ e−λς((1 + β2p)

∫ τ

τ−2
eλs‖v(s)‖ppds+

p

2β1

∫ τ

τ−2
eλs−bpϑ−τω(s)‖g(s, ·)‖2ds),

(4.14)
where we have used 1

ς−τ+2
≤ 1 for each ς ∈ [τ − 1, τ ]. Since ω(·) is

continuous on R, using (4.2), there exists a random constant T ≥ 2 as
given in lemma 4.1, such that

sup
t≥T

∫ τ

τ−2
‖v(s)‖ppds ≤ L(τ, ω, b), (4.15)

where and in the following 0 < L(τ, ω, b) < +∞ is a random constant
independent of t, v, u and may possess different values in different place
even in the same line. Associated with g ∈ L2

loc(R, L2(Rn)), it follows
from (4.14) and (4.15) that

sup
t>T

sup
ς∈[τ−1,τ ]

‖v(ς)‖pp ≤ L(τ, ω, b), (4.16)
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and

sup
t>T

∫ τ

τ−2
‖v(s)‖2p−22p−2ds ≤ L(τ, ω, b). (4.17)

Taking the inner product of Eq. (3.5) with −∆v in L2(Rn), we find that

1

2

d

dt
‖∇v‖2+λ‖∇v‖2+‖∆v‖2 = e−bϑ−τω(t)(f(u),−∆v)+e−bϑ−τω(t)(g(t, ·),−∆v)

(4.18)

By the Hölder, inequality and the Young inequality, we have

e−bϑ−τω(t)(g(t, ·),−∆v) ≤ 1

2
e−bϑ−τω(t)‖g(t, ·)‖2 +

1

2
‖∆v‖2, (4.19)

and

e−bϑ−τω(t)(f(u),−∆v) ≤ 1

2
‖e−bϑ−τω(t)f(u)‖2 +

1

2
‖∆v‖2. (4.20)

Then inserting (4.19)-(4.20) into (4.18), it leads to

d

dt
‖∇v‖2 ≤ ‖e−bϑ−τω(t)f(u)‖2 + ‖e−bϑ−τω(t)g(t, ·)‖2. (4.21)

Then by (1.5), we get

d

dt
‖∇v‖2 ≤ β4‖v‖2+L(τ, ω, b)(‖v‖2p−22p−2+‖g(t, ·)‖2), t ∈ [τ−2, τ ]. (4.22)

We apply Lemma 4.2 (the case ν = 0) to (4.22) over the interval [τ−1, ς]
with ς ∈ [τ − 1, τ ]we get

‖∇v(ς)‖2 ≤ L(τ, ω, b)

∫ τ

τ−1
(‖∇v(s)‖2+‖v(s)‖2p−22p−2+‖g(s, ·)‖2)ds+β4

∫ τ

τ−1
‖v(s)‖2ds.

(4.23)

Then combining (4.23) with (4.1) and (4.17), we deduce that there
exists a random constant T ≥ 2 such that

sup
ς∈[τ−1,τ ]

‖∇v(ς, τ − t, ϑ−tω, vτ−t)‖2 ≤ L(τ, ω, b), for t ≥ T. (4.24)

This completes the proof .

Lemma 4.4. Assume that (1.3)-(1.6) and (3.1)-(3.2) hold. Let τ ∈
R, ω ∈ Ω, and D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D and uτ−t ∈
D(τ − t, ϑ−tω). Then for any ζ > 0, there exist random constants
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R = R(τ, ω, ζ, b) and T = T (τ, ω, ζ,D, b) ≥ 2 such that the solution
u of Eq. (1.1) satisfies

sup
t≥T

∫
QcR

|u(τ, τ − t, ϑ−τω, uτ−t)|2dx ≤ ζ,

where Qc
R = Rn −QR and QR is the ball of Rn centred zero with radius

R.

Proof. We first need to define a smooth function σ(·) from R+ into
[0, 1] such that σ(·) = 0 on [0, 1] and σ(·) = 1 on [2,+∞), which evidently
implies that there is a positive constant c such that the |σ′(s)| ≤ c for

all s ≥ 0. For convenience, we write σκ = σ( |x|
2

κ2
).

Multiplying Eq. (3.5) with σκv and integrating over Rn, we have

1

2

d

dt

∫
Rn
σκ|v|2dx+ λ

∫
Rn
σκ|v|2dx

=

∫
Rn

(∆v)σκvdx+ e−bω(t)(

∫
Rn
σκf(u)vdx+

∫
Rn
σκgvdx),

(4.25)

where ∫
Rn

(∆v)σκvdx = −
∫
Rn
|∇v|2σκdx−

∫
Rn
vσ′κ

2x

κ2
(∇v)dx

≤ −
∫
Rn
|∇v|2σκdx−

∫
κ≤|x|≤

√
2κ

vσ′κ
2x

κ2
(∇v)dx

≤ −
∫
Rn
|∇v|2σκdx+

2
√

2

κ

∫
κ≤|x|≤

√
2κ

|v| · |σ′κ| · |∇v|dx

≤ −
∫
Rn
|∇v|2σκdx+

2
√

2 c

κ

∫
Rn
|v| · |∇v|dx

≤ −
∫
Rn
|∇v|2σκdx+

C0

κ
(‖v‖2 + ‖∇v‖2), (4.26)

where C0 is a positive constant.
By condition (1.4), we get

e−bω(t)
∫
Rn
σκf(u)vdx ≤ −β1eb(p−2)ω(t)

∫
Rn
σκ|v|pdx+ β2

∫
Rn
σκ|v|2dx.

(4.27)
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For the last term in (4.25), we obtain

e−bω(t)
∫
Rn
σκgvdx ≤

δ

2

∫
Rn
σκ|v|2dx+

1

2δ
e−2bω(t)

∫
Rn
σκ|g(t, ·)|2dx.

(4.28)
Then inserting (4.26) - (4.28) into (4.25), it leads to

d

dt

∫
Rn
σκ|v|2dx+ δ

∫
Rn
σκ|v|2dx+ β1e

b(p−2)ω(t)
∫
Rn
σκ|v|pdx

≤ C0

κ
(‖v‖2 + ‖∇v‖2) +

1

δ
e−2bω(t)

∫
|x|≥κ
|g(t, ·)|2dx, (4.29)

where δ = λ − β2. By using the Gronwall,s lemma to (4.29) over the
interval [τ − t, τ ] to show that∫

Rn
σκ|v(τ)|2dx+ β1

∫ τ

τ−t
eδ(s−τ)+b(p−2)ϑ−τω(s)

∫
Rn
σκ|v(s)|pdxds

≤ e−δt
∫
Rn
σκ|vτ−t|2dx+

C0

κ

∫ τ

τ−t
eδ(s−τ)(‖v(s)‖2 + ‖∇v(s)‖2)ds

+
1

δ

∫ τ

τ−t
eδ(s−τ)−2bϑ−τω(s)

∫
|x|≥κ
|g(s, ·)|2dxds. (4.30)

We estimate every term on the right hand side of (4.30). First, by (3.8)
for t large enough, we have

e−δt
∫
Rn
σκ|vτ−t|2dx ≤ e−δt−2bϑ−τω(τ−t)‖uτ−t‖2 ≤

ζ

3
. (4.31)

From (4.1) and (4.11), for κ and t large enough , it follows that

C0

κ

∫ τ

τ−t
eδ(s−τ)(‖v‖2 + ‖∇v‖2)ds ≤ K(τ, ω, b)

κ
≤ ζ

3
. (4.32)

For the last term, we have

1

δ

∫ τ

τ−t
eδ(s−τ)−2bϑ−τω(s)

∫
|x|≥κ
|g(s, ·)|2dxds

=
e2bω(−τ)

δ

∫ 0

−∞
eδs−2bω(s)

∫
|x|≥κ
|g(s+ τ, ·)|2dxds

( by (4.10)) ≤ e2bω(−τ)ρ(ω)
δ

∫ 0

−∞ e
δ0s

∫
|x|≥κ |g(s+ τ, ·)|2dxds

(by (3.1)) ≤ ζ
3
. (4.33)
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For κ large enough. Then it follows from (4.30) to (4.33) that for t
and κ large enough ,∫

|x|≥
√
2κ

|v(τ)|2dx =

∫
Rn
σκ|v(τ)|2dx ≤ ζ.

Which and along with (3.4) imply the desired result.

Theorem 4.5. Suppose that (1.3)-(1.6) and (3.1)-(3.2)hold. Let D
be defined in (3.8). Then the random cocycle ϕ associated with Eq. (1.1)
possesses a unique D-random attractor A = {A(τ, ω) : τ ∈ R, ω ∈ Ω} in
the initial space L2(Rn).

Proof. We use the method of [10] to prove our main results.
Given τ ∈ R, ω ∈ Ω and D ∈ D, define

GT (τ, ω) =:
⋃
t≥T

ϕ(t, τ − t, ϑ−tω,D(τ − t, ϑ−tω)).

Let ζ > 0. From (4.1), there exist T1 = T1(τ, ω,D, b) and a ball
BL2(Rn)(0, C(τ, ω, b)) centred at zero with radium C(τ, ω, b) such that

GT1(τ, ω) ⊂ BL2(Rn)(0, C(τ, ω, b)).

We can use the compact sobolev embedding due to Lemma 4.3 in the
bounded domain, and thus for any ζ > 0 there exist a finite ζ/4 − net
in L2(QR) covering GT1(τ, ω)|QR . Therefore

κL2(GT1(τ, ω)|QR) ≤ ζ

2
,

where κL2(·) is non-compact measure in L2(QR). On the other hand, by
Lemma 4.4, there exist T2 = T2(τ, ω, ζ,D, b) and R(τ, ω, ζ, b) such that

GT2(τ, ω)|QcR ⊂ BL2(Rn)(0,
ζ

4
).

T = max{T1, T2}. Then by additive property of non-compact measure,
we have

κL2(GT (τ, ω)) ≤ κL2(GT1(τ, ω)|QR) + κL2(GT2(τ, ω)|QcR)

≤ ζ

2
+ κ(BL2(Rn)(0,

ζ

4
)) ≤ ζ

2
+
ζ

2
= ζ. (4.34)

Thus by the arbitrariness of ζ, ϕ is omega-limit compact in L2(Rn).
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Considering v(τ, τ−t, ϑ−τω, vτ−t) = ebω(−τ)u(τ, τ−t, ϑ−τω, uτ−t) in (3.4).
Then by (4.1) it follows that

‖u(τ, τ−t, ϑ−τω, uτ−t)‖2 ≤ C(τ, ω, b) =: eδ(1+
1

δ

∫ 0

−∞
eδs−2bω(s)‖g(s+τ, ·)‖2ds).

(4.35)
Notice that

C(τ − t, ϑ−τω, ω, b)
eδ

= 1 +
1

δ

∫ 0

−∞
eδs−2bϑ−τω(s)‖g(s+ τ − t, ·)‖2ds

= 1 +
e2bω(−t)

δ

∫ 0

−∞
eδs−2bω(s−t)‖g(s+ τ − t, ·)‖2ds

= 1 +
e2bω(−t)+δt

δ

∫ −t
−∞

eδs−2bω(s)‖g(s+ τ, ·)‖2ds. (4.36)

Then by (4.10), into (4.36) we get

C(τ − t, ϑ−τω, ω, b)
eδ

≤ 1 +
ρ(ω)(e2bω(−t)+δt)

δ

∫ −t
−∞

eδ0(s)‖g(s+ τ, ·)‖2ds.

(4.37)
Lemma 3.1, implies that limt−→+∞ e

−δt−2bω(−t) = 0, whence by (3.1) and
(4.37) we conclude that for any τ ∈ R and ω ∈ Ω,

lim
t−→+∞

e−δt−2bω(−t)C(τ − t, ϑ−τω, ω, b) = 0 .

Thus from (3.8) we have

K = {K(τ, ω) = {u ∈ L2(Rn) : ‖u‖2 ≤ C(τ, ω, b)} : τ ∈ R, ω ∈ Ω} ∈ D.
(4.38)

The measurability of the absorbing set K(τ, ω) follows from the measur-
ability of the variable C(τ, ω, b). Therefore by the first part of Theorem
2.4, the random cocycle ϕ of Eq.(1.1) possesses a unique compact ran-
dom attractor A = {A(τ, ω) : τ ∈ R, ω ∈ Ω} in L2(Rn). This completes
the proof.

Remark 4.6. In this paper, we study the multiplicative case for sto-
chastic non-autonomous reaction-diffusion equations on unbounded do-
mains. The additive noises are considered in the forthcoming article.
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