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COMPLEX VALUED DISLOCATED METRIC SPACES

Ozgur Ege∗ and Ismet Karaca

Abstract. In this paper, we introduce complex valued dislocated
metric spaces. We prove Banach contraction principle, Kannan and
Chatterjea type fixed point theorems in this new space. Moreover,
we give some applications of the results to differential equations and
iterated functions.

1. Introduction

Fixed point theory plays a key role in various fields of mathemat-
ics such as mathematical analysis, general topology and especially func-
tional analysis. There are important applications of fixed point theory in
mathematics, computer science, engineering, image processing (see [9]),
etc. Banach [3] proved a well-known fixed point theorem for contraction
mapping in metric space and then many researchers have proved a great
number of fixed point theorems and have established many generaliza-
tion of this theorem. Banach contraction principle is the most useful
way for solution of existence problems in mathematical analysis since
its structure is simple. For some studies using the Banach contraction
principle and different type contractions, see [4, 10, 13,15,16,22,25].

Hitzler and Seda [12] introduced the concept of dislocated metric
space in 2000. In dislocated metric space, the self distance of a point need
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not to be zero necessarily. They also generalized the Banach contraction
principle in this space. Dislocated metric space has a significant role in
topology, logical programming and electronics engineering. Zeyada et
al. [26] presented the complete dislocated quasi-metric spaces and gen-
eralized the result of Hitzler [11] in dislocated quasi-metric space. In [1],
some fixed point theorems in single and pair of mappings in dislocated
metric space were established. Jha and Panthi [14] established a com-
mon fixed point theorem for two pairs of weakly compatible mappings
in dislocated metric space. For some important studies about dislocated
metric spaces, see [17–19].

On the other hand, Azam et al. [2] defined the notion of complex
valued metric spaces and gave common fixed point result for mappings.
In 2012, Sintunavarat and Kumam [23] extended and improved a result
of Azam and applied this to the unique common solution of system of
Urysohn integral equation. Rao et al. [20] introduced the complex valued
b-metric spaces. For other works, see [5–8,21,24].

This paper is organized as follows. In the first part, we give the re-
quired background about dislocated and complex valued metric spaces.
In the next section, we introduce complex valued dislocated metric spaces
and prove Banach, Kannan and Chatterjea type fixed point theorems in
this space. An application of Banach contraction principle to differential
equations is given at the end of the study.

2. Preliminaries

In this section, we give definitions, lemmas and theorems.

Definition 2.1. [26]. Let X be a nonempty set and d : X×X → R+

be a function satisfying the following conditions:

(i) d(x, y) = d(y, x);
(ii) d(x, y) = d(y, x) = 0 implies x = y;
(iii) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called dislocated metric (or simply d-metric) on X.

It is clear that every metric is a d-metric but the converse is not
necessarily true by the following example.

Example 2.2. Let d : X ×X → R+ be defined by

d(x, y) = max{x, y},
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where X = R+. It is easy to check that d is a dislocated metric but not
a metric.

Now we recall some definitions from [12].

Definition 2.3. [12]. A sequence {xn} in d-metric space (X, d) is
called Cauchy sequence if for ε > 0 there exists a positive integer n0 ∈ N
such that for m,n ≥ n0, we have d(xm, xn) < ε.

Definition 2.4. [12]. A sequence {xn} is said to be d-convergent in
(X, d) if

lim
n→∞

d(xn, x) = lim
n→∞

d(x, xn) = 0.

Definition 2.5. [12]. A d-metric space (X, d) is called complete if
every Cauchy sequence in X converges to a point of X.

Definition 2.6. [12]. Let (X, d) be a d-metric space. A mapping
T : X → X is said to be contraction if there exists 0 ≤ α < 1 such that

d(Tx, Ty) ≤ αd(x, y) for all x, y ∈ X.
Hitzler and Seda [12] showed that limit in a d-metric space is unique

and proved an analogue to Banach contraction principle in d-metric
spaces.

Theorem 2.7. Let (X, d) be a complete d-metric space and T : X →
X be a contraction. Then T has a unique fixed point.

The complex metric space was initiated by Azam et al. [2]. Let C be
the set of complex numbers and z1, z2 ∈ C. Define a partial order - on
C as follows:

z1 - z2 if and only if Re(z1) ≤ Re(z2) and Im(z1) ≤ Im(z2).

It follows that z1 - z2 if one of the following conditions is satisfied:

(C1) Re(z1) = Re(z2) and Im(z1) = Im(z2),
(C2) Re(z1) < Re(z2) and Im(z1) = Im(z2),
(C3) Re(z1) = Re(z2) and Im(z1) < Im(z2),
(C4) Re(z1) < Re(z2) and Im(z1) < Im(z2).

Particularly, we write z1 � z2 if z1 6= z2 and one of (C2), (C3) and (C4)
is satisfied and we write z1 ≺ z2 if only (C4) is satisfied. The following
statements hold:

(1) If a, b ∈ R with a ≤ b, then az ≺ bz for all z ∈ C.
(2) If 0 - z1 � z2, then |z1| < |z2|.
(3) If z1 - z2 and z2 ≺ z3, then z1 ≺ z3.
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3. Main Results

In this section, we introduce the notion of complex valued dislocated
metric space.

Definition 3.1. Let X be a nonempty set. Assume that a function
d : X ×X → C satisfies the following conditions:

(Cd1) d(x, y) = d(y, x);
(Cd2) d(x, y) = d(y, x) = 0 implies x = y;
(Cd3) d(x, y) - d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is said to be complex valued dislocated metric on X and (X, d)
is called a complex valued dislocated metric space.

Example 3.2. Let d : X ×X → C be defined by

d(x, y) = max{x, y},
where X = C. It is clear that d is a complex valued dislocated metric.

Definition 3.3. Let (X, d) be a complex valued d-metric space, {xn}
be a sequence in X and x ∈ X.

(a) The sequence {xn} is said to be complex valued d-convergent in
(X, d) and converges to x if for every ε > 0 there exists n0 ∈ N
such that d(xn, x) ≺ ε for all n > n0 and is denoted by xn → x as
n→∞.

(b) The sequence {xn} is called complex valued Cauchy sequence in
(X, d) if lim

n→∞
d(xn, xn+p) = 0 for all p > 0.

(c) (X, d) is said to be a complex valued complete d-metric space if
every complex valued Cauchy sequence in X converges to some
x ∈ X.

Definition 3.4. Let (X, d) be a complex valued d-metric space. A
mapping T : X → X is called contraction if there exists 0 ≤ c < 1 such
that

(1) d(Tx, Ty) - cd(x, y) for all x, y ∈ X.

Since the following two lemmas are the analogues of the lemmas in [2],
we state these for complex valued d-metric spaces without their proofs.

Lemma 3.5. Let (X, d) be a complex valued d-metric space and let
{xn} be a sequence in X. Then {xn} converges to x if and only if
|d(xn, x)| → 0 as n→∞.
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Lemma 3.6. Let (X, d) be a complex valued d-metric space and let
{xn} be a sequence in X. Then {xn} is a complex valued Cauchy se-
quence if and only if |d(xn, xn+m)| → 0 as n→∞.

We now prove the Banach contraction principle in complex valued
d-metric spaces.

Theorem 3.7. Let (X, d) be a complex valued complete d-metric
space and T : X → X be a contraction. Then T has a unique fixed
point.

Proof. We will seperate the proof into three parts.
(a) Let T satisfy the inequality in (1). For a point x0 ∈ X and the
sequence {xn} defined by xn = T nx0, from (1), we obtain

(2) d(xn, xn+1) - cd(xn−1, xn).

If we apply again (1), we get

d(xn−1, xn) - cd(xn−2, xn−1)

and from (2), we get

d(xn, xn+1) - c2d(xn−2, xn−1).

Continuing this process, we have

(3) d(xn, xn+1) - cnd(x0, x1).

Let’s use (Cd3) and (3) for all n,m ∈ N with n < m,

d(xn, xm) - d(xn, xn+1) + d(xn+1, xm)

- d(xn, xn+1) + d(xn+1, xn+2 + d(xn+2, xm)

...

- d(xn, xn+1) + d(xn+1, xn+2) + . . .+ d(xm−1, xm)

- (cn + cn+1 + . . .+ cm−1)d(x0, x1)

- cn[1 + c+ c2 + . . .+ cm−n−1]d(x0, x1)

-
cn − cm

1− c
d(x0, x1).

Therefore, we get

|d(xn, xm)| ≤ cn − cm

1− c
|d(x0, x1)|.
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Since c ∈ [0, 1), taking limits as n→∞, then

cn − cm

1− c
|d(x0, x1)| → 0,

i.e.,

|d(xn, xm)| → 0.

From Lemma 3.6, we conclude that {xn} is complex valued Cauchy
sequence. So there is an element w ∈ X such that {xn} is complex
valued d-convergent to w since (X, d) is complex valued complete d-
metric space.
(b) Let’s show that w is a fixed point of T . For any n ∈ N, using (Cd3)
and the inequality (1), we obtain

d(w, Tw) - d(w, xn) + d(xn, Tw)

= d(w, xn) + d(Txn, Tw)

- d(w, xn) + cd(xn, w).

As a result, we conclude that d(w, Tw) = 0 because xn is complex valued
d-convergent to w as n→∞. By (Cd2), we have Tw = w.
(c) In this part, we need to prove the uniqueness of fixed point. Suppose
that l 6= w be another fixed point of T . Using (1),

d(w, l) = d(Tw, T l) - cd(w, l).

and

|d(w, l)| ≤ c|d(w, l)| ⇒ (1− c)|d(w, l)| ≤ 0.

Since c ∈ [0, 1), we get |d(w, l)| = 0. This means w = l and so w is a
unique fixed point of T .

Now we give Kannan type fixed point theorem in complex valued
dislocated metric spaces.

Theorem 3.8. Let (X, d) be a complex valued complete d-metric
space and S : X → X be a map. If there exists a constant 0 ≤ α < 1

2
and

(4) d(Sx, Sy) - α[d(x, Sx) + d(y, Sy)]

for all x, y ∈ X, then S has a unique fixed point in X.
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Proof. Let x be a point in X and consider xn = Sn(x). Using (4), we
obtain the following:

d(xn, xn+1) = d(Sxn−1, Sxn) - α[d(xn−1, Sxn−1) + d(xn, Sxn)]

= α[d(xn−1, Sxn−1) + d(xn, xn+1)]

and

d(xn, xn+1) -
α

1− α
d(xn−1, xn).

If we continue in the same way, we get

d(xn, xn+1) - γd(xn−1, xn)

- γ2d(xn−2, xn−1)

...

- γnd(x, x1),

where γ = α
1−α . On the other hand, from the triangle inequality,

d(xn, xn+k) - d(xn, xn+1) + d(xn+1, xn+2) + . . .+ d(xn+k−1, xn+k)

- (γn + γn+1 + . . .+ γn+k−1)d(x, x1)

=
γn

1− γ
d(x, x1).

Thus, we have

|d(xn, xn+k)| ≤
γn

1− γ
|d(x, x1)|.

From the fact that 0 ≤ γ < 1, taking limits as n→∞, then |d(xn, xn+k)| →
0. By Lemma 3.6, (xn) is a complex valued Cauchy sequence. There is
a point w ∈ X such that

lim
n→∞

d(xn, w) = 0

because of the completeness of (X, d).
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We need to show that w is a fixed point of S. For this purpose, we
use (4) as follows:

d(w, Sw) - d(w, xn) + d(xn, Sw)

= d(w, xn) + d(Sxn−1, Sw)

- d(w, xn) + α[d(xn−1, xn) + d(w, Sw)]

- d(w, xn) + αd(w, Sw) + αγn−1d(x, x1)

-
1

1− α
d(w, xn) + γnd(x, x1).

We obtain d(w, Sw) = 0 for n→∞. On the other hand,

d(Sw,w) - d(Sw, xn) + d(xn, w)

= d(Sw, Sxn−1) + d(xn, w)

- α[d(w, Sw) + d(xn−1, xn)] + d(xn, w)

- αd(xn−1, xn) + d(xn, w)

since d(w, Sw) = 0. Taking limit as n → ∞, |d(Sw,w)| = 0, i.e.,
d(Sw,w) = 0. As a result,

d(w, Sw) = d(Sw,w) = 0 ⇒ Sw = w.

Now we show the uniqueness. Let z be a fixed point of S. From (4),

d(z, z) = d(Sz, Sz) - α[d(z, Sz) + d(z, Sz)]

= α[d(z, z) + d(z, z)]

= 2αd(z, z)

(1− 2α)d(z, z) - 0.

From the last inequality, we have (1 − 2α)|d(z, z)| = 0, i.e., d(z, z) = 0
because α ∈ [0, 1

2
).

If a1, a2 are fixed points of S, then

d(a1, a2) = d(Sa1, Sa2) - α[d(a1, Sa1) + d(a2, Sa2)]

= α[d(a1, a1) + d(a2, a2)]

= 0.

Thus, d(a1, a2) = d(a2, a1) = 0 implies that a1 = a2. This completes the
proof.
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Remark 3.9. In general, every continuous Kannan mapping S on a
complete metric space has a unique fixed point but in Theorem 3.8, the
assumption of continuity of S is neglected.

The next result is Chatterjea fixed point theorem in complex valued
dislocated metric spaces.

Theorem 3.10. If (X, d) is a complex valued complete d-metric space
and T : X → X is a continuous map satisfying

(5) d(Tx, Ty) - k[d(x, Ty) + d(y, Tx)]

where 0 ≤ k < 1
4

and for all x, y ∈ X, then T has a unique fixed point
in X.

Proof. Let x0 ∈ X. Consider a sequence (xn) in X defined by xn+1 =
Txn for all n ∈ N. Using (5) and the triangle inequality, we obtain

d(xn, xn+1) = d(Txn−1, Txn) -k[d(xn−1, Txn) + d(xn, Txn−1)]

=k[d(xn−1, xn+1) + d(xn, xn)]

-k[d(xn−1, xn) + d(xn, xn+1)

+ d(xn, xn−1) + d(xn−1, xn)]

=kd(xn, xn+1) + 3kd(xn−1, xn)

and so

d(xn, xn+1) -
3k

1− k
d(xn−1, xn).

Applying this procedure consecutively, we get

d(xn, xn+1) - θd(xn−1, xn)

- θ2d(xn−2, xn−1)

...

- θnd(x0, x1),

where θ = 3k
1−k . The triangle inequality implies that

d(xn, xn+k) - d(xn, xn+1) + d(xn+1, xn+2) + . . .+ d(xn+k−1, xn+k)

- (θn + θn+1 + . . .+ θn+k−1)d(x0, x1)

=
θn

1− θ
d(x0, x1).
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Thus, we have

|d(xn, xn+k)| ≤
θn

1− θ
|d(x0, x1)|.

Since θ ∈ [0, 1), |d(xn, xn+k)| → 0 when n → ∞, i.e., (xn) is a complex
valued Cauchy sequence. By the completeness of (X, d), there is a point
w ∈ X such that

lim
n→∞

xn = w.

Since T is a continuous map, we have

T ( lim
n→∞

xn) = lim
n→∞

Txn = lim
n→∞

xn+1 = w ⇒ w = Tw.

As a result, w is a fixed point of T .
Uniqueness: Let u,w be two different fixed points of T . From (5), we
get

d(u,w) = d(Tu, Tw) - k[d(u, Tw) + d(w, Tu)]

and

d(w, u) = d(Tw, Tu) - k[d(w, Tu) + d(u, Tw)].

Since

|d(u,w)−d(w, u)| ≤ |k−k|.|d(u,w)−d(w, u)| ⇒ |d(u,w)−d(w, u)| = 0,

we have d(u,w) = d(w, u). If d(u,w) = d(w, u) = 0, then u = w.
Therefore, u = w and T has a unique fixed point.

4. Applications to Differential Equations

In this section we first give an application of Theorem 3.7 to the
existence and uniqueness of the ordinary differential equation:

(6)
dy

dx
= f(x, y), y(x0) = y0

Theorem 4.1. Let f(x, y) be a continuous function on an area

A = {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d}

and satisfy the following condition:

(7) |f(a, b)− f(a, b′)| ≤ k|b− b′| for all b, b′ ∈ [c, d]

Then the differential equation (6) has a unique solution.
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Proof. If y = h(x) satisfies (6) and h(x0) = y0, then we get

(8) h(x) = y0 +

∫ x

x0

f(t, h(t))dt

Observe that a unique solution of (6) is equivalent to a unique solution
of (8). We use the Theorem 3.7 to obtain the solution of (8).

Let X be the set of all complex valued continuous functions y = h(x)
defined on [−p + x0, p + x0] such that d(h(x), y0) - kp. It is clear that
(X, d) is complex valued complete d-metric space where d is sup metric.

Assume that T : X → X is defined by

T (h) = g

where g(x) = y0 +
∫ x
x0
f(t, h(t))dt. We need to prove that the mapping

T is a contraction. For all h, h1 ∈ X, since

d(T (h), T (h1)) = d(g, g1) = sup

∥∥∥∥∫ x

x0

[f(t, h(t))− f(t, h1(t))]dt

∥∥∥∥
-
∫ x

x0

sup |f(t, h(t))− f(t, h1(t))|dt

- u.

∫ x

x0

|h(t)− h1(t)|dt

- u.pd(h, h1)

- kd(h, h1),

where 0 ≤ k = up < 1, we conclude that T is a contraction mapping.
By Theorem 3.7, T has a unique fixed point h∗ ∈ X. As a result, it is
the unique solution of the differential equation (6).

Let’s give another application of Theorem 3.7.

Theorem 4.2. Let (X, d) be a complex valued complete d-metric
space and f : X → X be a function. If f q satisfies the inequality (1) for
some q ∈ N, then f has a unique fixed point.

Proof. If f q satisfies (1), then we get that f q has a unique fixed point
x ∈ X, i.e., f q(x) = x by the Theorem 3.7. Since

f(x) = f(f q(x)) = f q(f(x)),

f(x) is a fixed point of f q. The uniqueness of fixed point of f q implies
that x = f(x).
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Now we prove the uniqueness. If we assume that y is another fixed
point of f , then we obtain

d(x, y) = d(f q(x), f q(y)) - cd(f q−1(x), f q−1(y))

- c2d(f q−2(x), f q−2(y))

...

- cq−1d(f(x), f(y))

= cq−1d(x, y)

using (1) consecutively where 0 ≤ c < 1. Thus, we have

(1− cq−1)d(x, y) - 0

and so (1 − cq−1)|d(x, y)| ≤ 0. Since 1 − cq−1 < 1, we conclude that
d(x, y) = 0 implies that x = y.
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