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A NEW ALGORITHM FOR SOLVING MIXED

EQUILIBRIUM PROBLEM AND FINDING COMMON

FIXED POINTS OF BREGMAN STRONGLY

NONEXPANSIVE MAPPINGS

Nader Biranvand and Vahid Darvish

Abstract. In this paper, we study a new iterative method for solv-
ing mixed equilibrium problem and a common fixed point of a finite
family of Bregman strongly nonexpansive mappings in the frame-
work of reflexive real Banach spaces. Moreover, we prove a strong
convergence theorem for finding common fixed points which also are
solutions of a mixed equilibrium problem.

1. Introduction

Let E be a real reflexive Banach space and C a nonempty, closed
and convex subset of E and E∗ be the dual space of E and f : E →
(−∞,+∞] be a proper, lower semi-continuous and convex function. We
denote by domf , the domain of f , that is, the set {x ∈ E : f(x) < +∞}.
Let x ∈ int(domf), the subdifferential of f at x is the convex set defined
by

∂f(x) = {x∗ ∈ E∗ : f(x) + 〈x∗, y − x〉 ≤ f(y), ∀y ∈ E},
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where the Fenchel conjugate of f is the function f ∗ : E∗ → (−∞,+∞]
defined by

f ∗(x∗) = sup{〈x∗, x〉 − f(x) : x ∈ E}.

Equilibrium problems which were introduced by Blum and Oettli [4]
and Noor and Oettli [3] in 1994 have had a great impact and influence in
the development of several branches of pure and applied sciences. It has
been shown that the equilibrium problem theory provides a novel and
unified treatment of a wide class of problems which arise in economics, fi-
nance, image reconstruction, ecology, transportation, network, elasticity
and optimization. It has been shown ( [3,4]) that equilibrium problems
include variational inequalities, fixed point, Nash equilibrium and game
theory as special cases. Hence collectively, equilibrium problems cover a
vast range of applications. Due to the nature of the equilibrium prob-
lems, it is not possible to extend the projection and its variant forms for
solving equilibrium problems. To overcome this drawback, one usually
uses the auxiliary principle technique. The main and basic idea in this
technique is to consider an auxiliary equilibrium problem related to the
original problem and then show that the solution of the auxiliary prob-
lems is a solution of the original problem. This technique has been used
to suggest and analyze a number of iterative methods for solving various
classes of equilibrium problems and variational inequalities, see [2, 10]
and the references therein. Related to the equilibrium problems, we also
have the problem of finding the fixed points of nonexpansive mappings,
which is the subject of current interest in functional analysis. It is natu-
ral to construct a unified approach for these problems. In this direction,
several authors have introduced some iterative schemes for finding a
common element of the set of solutions of the equilibrium problems and
the set of fixed points of finitely many nonexpansive mappings, see [30]
and the references therein.

Let ϕ : C → R be a real-valued function and Θ : C × C → R be
an equilibrium bifunction. The mixed equilibrium problem (for short,
MEP) is to find x∗ ∈ C such that

MEP : Θ(x∗, y) + ϕ(y) ≥ ϕ(x∗), ∀y ∈ C.

In particular, if ϕ ≡ 0, this problem reduces to the equilibrium problem
(for short, EP), which is to find x∗ ∈ C such that

EP : Θ(x∗, y) ≥ 0, ∀y ∈ C.
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The mixed equilibrium problems include fixed point problems, opti-
mization problems, variational inequality problems, Nash equilibrium
problems and the equilibrium problems as special cases; see for exam-
ple [4, 12,13,18].

In [26], Reich and Sabach proposed two algorithms for finding a com-
mon fixed point of finitely many Bregman strongly nonexpansive map-
pings Ti : C → C(i = 1, 2, . . . , N) satisfying ∩Ni=1F (Ti) 6= ∅ in a reflexive
Banach space E as follows:

x0 ∈ E, chosen arbitrarily,

yin = Ti(xn + ein),

Ci
n = {z ∈ E : Df (z, y

i
n) ≤ Df (z, xn + ein)},

Cn = ∩Ni=1C
i
n,

Qi
n = {z ∈ E : 〈∇f(x0)−∇f(xn), z − xn〉 ≤ 0},

xn+1 = projfCn∩Qn
(x0), ∀n ≥ 0,

and

x0 ∈ E,

Ci
0 = E, i = 1, 2, . . . , N,

yin = Ti(νn + ein),

Ci
n+1 = {z ∈ Ci

n : Df (z, y
i
n) ≤ Df (z, xn + ein)},

Cn+1 = ∩Ni=1C
i
n+1,

xn+1 = projfCn+1
(x0), ∀n ≥ 0,

where projfC is the Bregman projection with respect to f from E onto a
closed and convex subset C of E. They proved that the sequence {xn}
converges strongly to a common fixed point of {Ti}Ni=1.

In [28], Suantai et al. used the following Halpern-type iterative scheme
for Bregman strongly nonexpansive self mapping T on E; for x1 ∈ E let
{xn} be a sequence defined by

xn+1 = ∇f ∗(αn∇f(u) + (1− αn)∇f(Txn)), ∀n ≥ 1,

where {αn} satisfies limn→∞ αn = 0 and
∑∞

n=1 αn = ∞. They proved
that the above sequence converges strongly to a fixed point of T .

In [32], Zegeye presented the following iterative scheme:

xn+1 = projfC∇f
∗(αn∇f(u) + (1− αn)∇f(Txn),
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where T = TN ◦TN−1 ◦ . . .◦T1. He proved that above sequence converges
strongly to a common fixed point of a finite family of Bregman strongly
nonexpansive mappings on a nonempty, closed and convex subset C of
E.

Kumam et al. [17] introduced the following algorithm:

x1 = x ∈ C chosen arbitrarily,

zn = ResfH(xn),

yn = ∇f ∗(βn∇f(xn) + (1− βn)∇f(Tn(zn)))

xn+1 = ∇f ∗(αn∇f(xn) + (1− αn)∇f(Tn(yn))), (1.1)

where H is an equilibrium bifunction and Tn is a Bregman strongly
nonexpansive mapping for any n ∈ N. They proved the sequence (1.1)

converges strongly to the point projfF (T )∩EP (H)x.

In this paper, motivated by above algorithms, we study the following
iterative scheme:

x1 = x ∈ C chosen arbitrarily,

zn = ResfΘ,ϕ(xn),

yn = projfC∇f
∗(βn∇f(xn) + (1− βn)∇f(T (zn)))

xn+1 = projfC∇f
∗(αn∇f(xn) + (1− αn)∇f(T (yn))), (1.2)

where ϕ : C → R is a real-valued function, Θ : C × C → R is an
equilibrium bifunction and T = TN ◦TN−1◦. . .◦T1 where Ti is a Bregman
strongly nonexpansive mapping for each i ∈ {1, 2, . . . , N}. We will prove
that the sequence {xn} defined in (1.2) converges strongly to the point

projf
(∩Ni=1F (Ti))∩MEP (Θ)

x.

2. Preliminaries

For any x ∈ int(domf), the right-hand derivative of f at x in the
derivation y ∈ E is defined by

f
′
(x, y) := lim

t↘0

f(x+ ty)− f(x)

t
.

The function f is called Gâteaux differentiable at x if limt↘0
f(x+ty)−f(x)

t

exists for all y ∈ E. In this case, f
′
(x, y) coincides with ∇f(x), the

value of the gradient (∇f) of f at x. The function f is called Gâteaux
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differentiable if it is Gâteaux differentiable for any x ∈ int(domf) and
f is called Fréchet differentiable at x if this limit is attain uniformly
for all y which satisfies ‖y‖ = 1. The function f is uniformly Fréchet
differentiable on a subset C of E if the limit is attained uniformly for
any x ∈ C and ‖y‖ = 1. It is known that if f is Gâteaux differentiable
(resp. Fréchet differentiable) on int(domf), then f is continuous and its
Gâteaux derivative ∇f is norm-to-weak∗ continuous (resp. continuous)
on int(domf) (see [6]).

Let f : E → (−∞,+∞] be a Gâteaux differentiable function. The
function Df : domf × int(domf)→ [0,+∞) defined as follows:

Df (x, y) := f(x)− f(y)− 〈∇f(y), x− y〉 (2.1)

is called the Bregman distance with respect to f , [11].
The Legendre function f : E → (−∞,+∞] is defined in [5]. It is well

known that in reflexive spaces, f is Legendre function if and only if it
satisfies the following conditions:

(L1) The interior of the domain of f , int(domf), is nonempty, f is
Gâteaux differentiable on int(domf) and domf = int(domf);

(L2) The interior of the domain of f ∗, int(domf ∗), is nonempty, f ∗ is
Gâteaux differentiable on int(domf ∗) and domf ∗ = int(domf ∗).
Since E is reflexive, we know that (∂f)−1 = ∂f ∗ (see [6]). This, with
(L1) and (L2), imply the following equalities:

∇f = (∇f ∗)−1, ran∇f = dom∇f ∗ = int(domf ∗)

and

ran∇f ∗ = dom(∇f) = int(domf),

where ran∇f denotes the range of ∇f .
When the subdifferential of f is single-valued, it coincides with the

gradient ∂f = ∇f , [22]. By Bauschke et al. [5] the conditions (L1) and
(L2) also yields that the function f and f ∗ are strictly convex on the
interior of their respective domains.
If E is a smooth and strictly convex Banach space, then an important
and interesting Legendre function is f(x) := 1

p
‖x‖p(1 < p <∞). In this

case the gradient∇f of f coincides with the generalized duality mapping
of E, i.e., ∇f = Jp(1 < p < ∞). In particular, ∇f = I, the identity
mapping in Hilbert spaces. From now on we assume that the convex
function f : E → (−∞,∞] is Legendre.
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Definition 2.1. Let f : E → (−∞,+∞] be a convex and Gâteaux
differentiable function. The Bregman projection of x ∈ int(domf) onto
the nonempty, closed and convex subset C ⊂ domf is the necessarily
unique vector projfC(x) ∈ C satisfying

Df (proj
f
C(x), x) = inf{Df (y, x) : y ∈ C}.

Definition 2.2. [9] Let f : E → (−∞,+∞] be a convex and Gâteaux
differentiable function. f is called:

1. totally convex at x ∈ int(domf) if its modulus of total convexity
at x, that is, the function νf : int(domf) × [0,+∞) → [0,+∞)
defined by

νf (x, t) := inf{Df (y, x) : y ∈ domf, ‖y − x‖ = t},
is positive whenever t > 0;

2. totally convex if it is totally convex at every point x ∈ int(domf);
3. totally convex on bounded sets if νf (B, t) is positive for any nonempty

bounded subset B of E and t > 0, where the modulus of to-
tal convexity of the function f on the set B is the function νf :
int(domf)× [0,+∞)→ [0,+∞) defined by

νf (B, t) := inf{νf (x, t) : x ∈ B ∩ domf}.

The set levf≤(r) = {x ∈ E : f(x) ≤ r} for some r ∈ R is called a
sublevel of f .

Definition 2.3. [9, 26] The function f : E → (−∞,+∞] is called;

1. cofinite if domf ∗ = E∗;
2. coercive [14] if the sublevel set of f is bounded; equivalently,

lim
‖x‖→+∞

f(x) = +∞;

3. strongly coercive if lim‖x‖→+∞
f(x)
‖x‖ = +∞;

4. sequentially consistent if for any two sequences {xn} and {yn} in
E such that {xn} is bounded,

lim
n→∞

Df (yn, xn) = 0⇒ lim
n→∞

‖yn − xn‖ = 0.

Lemma 2.4. [8] The function f is totally convex on bounded subsets
if and only if it is sequentially consistent.

Lemma 2.5. [26, Proposition 2.3] If f : E → (−∞,+∞] is Fréchet
differentiable and totally convex, then f is cofinite.
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Lemma 2.6. [8] Let f : E → (−∞,+∞] be a convex function whose
domain contains at least two points.Then the following statements hold:

1. f is sequentially consistent if and only if it is totally convex on
bounded sets;

2. If f is lower semicontinuous, then f is sequentially consistent if
and only if it is uniformly convex on bounded sets;

3. If f is uniformly strictly convex on bounded sets, then it is sequen-
tially consistent and the converse implication holds when f is lower
semicontinuous, Fréchet differentiable on its domain and Fréchet
derivative ∇f is uniformly continuous on bounded sets.

Lemma 2.7. [24, Proposition 2.1] Let f : E → R be uniformly Fréchet
differentiable and bounded on bounded subsets of E. Then ∇f is uni-
formly continuous on bounded subsets of E from the strong topology of
E to the strong topology of E∗.

Lemma 2.8. [26, Lemma 3.1] Let f : E → R be a Gâteaux dif-
ferentiable and totally convex function. If x0 ∈ E and the sequence
{Df (xn, x0)} is bounded, then the sequence {xn} is also bounded.

Let T : C → C be a nonlinear mapping. The fixed points set of T
is denoted by F (T ), that is F (T ) = {x ∈ C : Tx = x}. A mapping T
is said to be nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C. T
is said to be quasi-nonexpansive if F (T ) 6= ∅ and ‖Tx − p‖ ≤ ‖x − p‖,
for all x ∈ C and p ∈ F (T ). A point p ∈ C is called an asymptotic
fixed point of T (see [23]) if C contains a sequence {xn} which converges

weakly to p such that limn→∞ ‖xn − Txn‖ = 0. We denote by F̂ (T ) the
set of asymptotic fixed points of T .

A mapping T : C → int(domf) with F (T ) 6= ∅ is called:

1. quasi-Bregman nonexpansive [26] with respect to f if

Df (p, Tx) ≤ Df (p, x),∀x ∈ C, p ∈ F (T ).

2. Bregman relatively nonexpansive [26] with respect to f if,

Df (p, Tx) ≤ Df (p, x), ∀x ∈ C, p ∈ F (T ), and F̂ (T ) = F (T ).

3. Bregman strongly nonexpansive (see [7,26]) with respect to f and

F̂ (T ) if,

Df (p, Tx) ≤ Df (p, x), ∀x ∈ C, p ∈ F̂ (T )
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and, if whenever {xn} ⊂ C is bounded, p ∈ F̂ (T ), and

lim
z→∞

(Df (p, xn)−Df (p, Txn)) = 0,

it follows that
lim
n→∞

Df (xn, Txn) = 0.

4. Bregman firmly nonexpansive (for short BFNE) with respect to f
if, for all x, y ∈ C,

〈∇f(Tx)−∇f(Ty), Tx− Ty〉 ≤ 〈∇f(x)−∇f(y), Tx− Ty〉
equivalently,

Df (Tx, Ty) +Df (Ty, Tx) +Df (Tx, x) +Df (Ty, y) ≤ Df (Tx, y) +Df (Ty, x).
(2.2)

The existence and approximation of Bregman firmly nonexpansive map-
pings was studied in [23]. It is also known that if T is Bregman firmly
nonexpansive and f is Legendre function which is bounded, uniformly
Fréchet differentiable and totally convex on bounded subsets of E, then

F (T ) = F̂ (T ) and F (T ) is closed and convex. It also follows that every
Bregman firmly nonexpansive mapping is Bregman strongly nonexpan-

sive with respect to F (T ) = F̂ (T ).

Lemma 2.9. [8] Let C be a nonempty, closed and convex subset of E.
Let f : E → R be a Gâteaux differentiable and totally convex function.
Let x ∈ E, then
1) z = projfC(x) if and only if

〈∇f(x)−∇f(z), y − z〉 ≤ 0, ∀y ∈ C.

2) Df (y, proj
f
C(x)) +Df (proj

f
C(x), x) ≤ Df (y, x), ∀x ∈ E, y ∈ C.

Let f : E → R be a convex, Legendre and Gâteaux differentiable
function. Following [1] and [11], we make use of the function Vf : E ×
E∗ → [0,∞) associated with f , which is defined by

Vf (x, x
∗) = f(x)− 〈x∗, x〉+ f ∗(x∗), ∀x ∈ E, x∗ ∈ E∗.

Then Vf is nonexpansive and Vf (x, x
∗) = Df (x,∇f ∗(x∗)) for all x ∈ E

and x∗ ∈ E∗. Moreover, by the subdifferential inequality,

Vf (x, x
∗) + 〈y∗,∇f ∗(x∗)− x〉 ≤ Vf (x, x

∗ + y∗) (2.3)

for all x ∈ E and x∗, y∗ ∈ E∗ [16]. In addition, if f : E → (−∞,+∞]
is a proper lower semicontinuous function, then f ∗ : E∗ → (−∞,+∞]
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is a proper weak∗ lower semicontinuous and convex function (see [19]).
Hence, Vf is convex in the second variable. Thus, for all z ∈ E,

Df

(
z,∇f ∗

(
N∑
i=1

ti∇f(xi)

))
≤

N∑
i=1

tiDf (z, xi),

where {xi}Ni=1 ⊂ E and {ti}Ni=1 ⊂ (0, 1) with
∑N

i=1 ti = 1.

Lemma 2.10. [19] Let f : E → (−∞,+∞] be a bounded, uniformly
Fréchet differentiable and totally convex function on bounded subsets of
E. Assume that∇f ∗ is bounded on bounded subsets of domf ∗ = E∗ and
let C be a nonempty subset of int(domf). Let {Ti : i = 1, 2, . . . , N} be
N Bregman strongly nonexpansive mappings from C into itself satisfying

∩Ni=1F̂ (Ti) 6= ∅. Let T = TN ◦TN−1 ◦ . . .◦T1, then T is Bregman strongly

nonexpansive mapping and F̂ (T ) = ∩Ni=1F̂ (Ti).

Lemma 2.11. [25] Let C be a nonempty, closed and convex subset of
int(domf) and T : C → C be a quasi-Bregman nonexpansive mappings
with respect to f . Then F (T ) is closed and convex.

For solving the mixed equilibrium problem, let us give the following
assumptions for the bifunction Θ on the set C:

(A1) Θ(x, x) = 0 for all x ∈ C;
(A2) Θ is monotone, i.e., Θ(x, y) + Θ(y, x) ≤ 0 for any x, y ∈ C;
(A3) for each y ∈ C, x 7→ Θ(x, y) is weakly upper semicontinuous;
(A4) for each x ∈ C, y 7→ Θ(x, y) is convex;
(A5) for each x ∈ C, y 7→ Θ(x, y) is lower semicontinuous (see [21]).

Definition 2.12. Let C be a nonempty, closed and convex subsets
of a real reflexive Banach space and let ϕ be a lower semicontinuous and
convex functional from C to R. Let Θ : C × C → R be a bifunctional
satisfying (A1)-(A5). The mixed resolvent of Θ is the operator ResfΘ,ϕ :

E → 2C

ResfΘ,ϕ(x) = {z ∈ C : Θ(z, y)+ϕ(y)+〈∇f(z)−∇f(x), y−z〉 ≥ ϕ(z), ∀y ∈ C}.
(2.4)

In the following two lemmas the idea of proofs is the same as in [26],
but for the reader’s convenience we provide their proofs.

Lemma 2.13. Let f : E → (−∞,+∞] be a coercive and Gâteaux
differentiable function. Let C be a closed and convex subset of E. As-
sume that ϕ : C → R be a lower semicontinuous and convex functional
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and the bifunctional Θ : C ×C → R satisfies conditions (A1)-(A5), then

dom(ResfΘ,ϕ) = E.

Proof. Since f is a coercive function, the function h : E × E →
(−∞,+∞] defined by

h(x, y) = f(y)− f(x)− 〈x∗, y − x〉,
satisfies the following for all x∗ ∈ E∗ and y ∈ C

lim
‖x−y‖→+∞

h(x, y)

‖x− y‖
= +∞.

Then from [4, Theorem 1], there exists x̂ ∈ C such that

Θ(x̂, y) + ϕ(y)− ϕ(x̂) + f(y)− f(x̂)− 〈x∗, y − x̂〉 ≥ 0,

for any y ∈ C. So, we have

Θ(x̂, y) + ϕ(y) + f(y)− f(x̂)− 〈x∗, y − x̂〉 ≥ ϕ(x̂). (2.5)

We know that inequality (2.5) holds for y = tx̂ + (1 − t)ŷ where ŷ ∈ C
and t ∈ (0, 1). Therefore,

Θ(x̂, tx̂+ (1− t)ŷ) + ϕ(tx̂+ (1− t)ŷ) + f(tx̂+ (1− t)ŷ)− f(x̂)

−〈x∗, tx̂+ (1− t)ŷ − x̂〉
≥ ϕ(x̂)

for all ŷ ∈ C. By convexity of ϕ we have

Θ(x̂, tx̂+ (1− t)ŷ) + (1− t)ϕ(ŷ) + f(tx̂+ (1− t)ŷ)− f(x̂)

−〈x∗, tx̂+ (1− t)ŷ − x̂〉
≥ (1− t)ϕ(x̂). (2.6)

Since

f(tx̂+ (1− t)ŷ)− f(x̂) ≤ 〈∇f(tx̂+ (1− t)ŷ), tx̂+ (1− t)ŷ − x̂〉,
we have from (2.6) and (A5) that

tΘ(x̂, x̂) + (1− t)Θ(x̂, ŷ) + (1− t)ϕ(ŷ)

+〈∇f(tx̂+ (1− t)ŷ), tx̂+ (1− t)ŷ − x̂〉
−〈x∗, tx̂+ (1− t)ŷ − x̂〉 ≥ (1− t)ϕ(x̂)

for all ŷ ∈ C. From (A1) we have

(1− t)Θ(x̂, ŷ) + (1− t)ϕ(ŷ) + 〈∇f(tx̂+ (1− t)ŷ), (1− t)(ŷ − x̂)〉
−〈x∗, (1− t)(ŷ − x̂)〉 ≥ (1− t)ϕ(x̂).
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Equivalently

(1− t)[Θ(x̂, ŷ) + ϕ(ŷ) + 〈∇f(tx̂+ (1− t)ŷ), ŷ − x̂〉
−〈x∗, ŷ − x̂〉] ≥ (1− t)ϕ(x̂).

So, we have

Θ(x̂, ŷ) + ϕ(ŷ) + 〈∇f(tx̂+ (1− t)ŷ), ŷ − x̂〉 − 〈x∗, ŷ − x̂〉 ≥ ϕ(x̂),

for all ŷ ∈ C. Since f is Gâteaux differentiable function, it follows
that ∇f is norm-to-weak∗ continuous (see [22, Proposition 2.8]. Hence,
letting t→ 1−1 we get

Θ(x̂, ŷ) + ϕ(ŷ) + 〈∇f(x̂), ŷ − x̂〉 − 〈x∗, ŷ − x̂〉 ≥ ϕ(x̂).

By taking x∗ = ∇f(x) we obtain x̂ ∈ C such that

Θ(x̂, ŷ) + ϕ(ŷ) + 〈∇f(x̂)−∇f(x), ŷ − x̂〉 ≥ ϕ(x̂),

for all ŷ ∈ C, i.e., x̂ ∈ ResfΘ,ϕ(x). So, dom(ResfΘ,ϕ) = E.

Lemma 2.14. Let f : E → (−∞,+∞] be a Legendre function. Let
C be a closed and convex subset of E. If the bifunction Θ : C ×C → R
satisfies conditions (A1)-(A5), then

1. ResfΘ,ϕ is single-valued;

2. ResfΘ,ϕ is a BFNE operator;

3. F
(
ResfΘ,ϕ

)
= MEP (Θ);

4. MEP (Θ) is closed and convex;

5. Df

(
p,ResfΘ,ϕ(x)

)
+Df

(
ResfΘ,ϕ(x), x

)
≤ Df (p, x), ∀p ∈ F

(
ResfΘ,ϕ

)
,

x ∈ E.

Proof. (1) Let z1, z2 ∈ ResfΘ,ϕ(x) then by definition of the resolvent
we have

Θ(z1, z2) + ϕ(z2) + 〈∇f(z1)−∇f(x), z2 − z1〉 ≥ ϕ(z1)

and
Θ(z2, z1) + ϕ(z1) + 〈∇f(z2 −∇f(x), z1 − z2〉 ≥ ϕ(z2).

Adding these two inequalities, we obtain

Θ(z1, z2)+Θ(z2, z1)+ϕ(z1)+ϕ(z2)+〈∇f(z2)−∇f(z1), z1−z2〉 ≥ ϕ(z1)+ϕ(z2).

So,
Θ(z1, z2) + Θ(z2, z1) + 〈∇f(z2)−∇f(z1), z1 − z2〉 ≥ 0.
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By (A2), we have

〈∇f(z2)−∇f(z1), z1 − z2〉 ≥ 0.

Since f is Legendre it is strictly convex. So, ∇f is strictly monotone
and hence z1 = z2. It follows that ResfΘ,ϕ is single-valued.

(2) Let x, y ∈ E, then we have

Θ(ResfΘ,ϕ(x), ResfΘ,ϕ(y)) + ϕ(ResfΘ,ϕ(y))

+〈∇f(ResfΘ,ϕ(x))−∇f(x), ResfΘ,ϕ(y)−ResfΘ,ϕ(x)〉

≥ ϕ(ResfΘ,ϕ(x)) (2.7)

and

Θ(ResfΘ,ϕ(y), ResfΘ,ϕ(x)) + ϕ(ResfΘ,ϕ(x))

+〈∇f(ResfΘ,ϕ(y)−∇f(y), ResfΘ,ϕ(x)−ResfΘ,ϕ(y)〉

≥ ϕ(ResfΘ,ϕ(y)). (2.8)

Adding the inequalities (2.7) and (2.8), we have

Θ(ResfΘ,ϕ(x), ResfΘ,ϕ(y)) + Θ(ResfΘ,ϕ(y), ResfΘ,ϕ(x))

+〈∇f(ResfΘ,ϕ(x))−∇f(x) +∇f(y)−∇f(ResfΘ,ϕ(y)), ResfΘ,ϕ(y)

−ResfΘ,ϕ(x)〉 ≥ 0.

By (A2), we obtain

〈∇f(ResfΘ,ϕ(x))−∇f(ResfΘ,ϕ(y)), ResfΘ,ϕ(x)−ResfΘ,ϕ(y)〉

≤ 〈∇f(x)−∇f(y), ResfΘ,ϕ(x)−ResfΘ,ϕ(y)〉.

It means ResfΘ,ϕ is BFNE operator.

(3)

x ∈ F (ResfΘ,ϕ)

⇔ x = ResfΘ,ϕ(x)

⇔ Θ(x, y) + ϕ(y) + 〈∇f(x)−∇f(x), y − x〉 ≥ ϕ(x), ∀y ∈ C
⇔ Θ(x, y) + ϕ(y) ≥ ϕ(x), ∀y ∈ C
⇔ x ∈MEP (Θ).
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(4) Since ResfΘ,ϕ is a BFNE operator, it follows from [25, Lemma 1.3.1]

that F (ResfΘ,ϕ) is a closed and convex subset of C. So, from (3) we have

MEP (Θ) = F (ResfΘ,ϕ) is a closed and convex subset of C.

(5) Since ResfΘ,ϕ is a BFNE operator, we have from (2.2) that for all
x, y ∈ E

Df (Res
f
Θ,ϕ(x), ResfΘ,ϕ(y)) +Df (Res

f
Θ,ϕ(y), ResfΘ,ϕ(x))

≤ Df (Res
f
Θ,ϕ(x), y)−Df (Res

f
Θ,ϕ(x), x) +Df (Res

f
Θ,ϕ(y), x)

−Df (Res
f
Θ,ϕ(y), y).

Let y = p ∈ F (ResfΘ,ϕ), then we get

Df (Res
f
Θ,ϕ(x), p) +Df (p,Res

f
Θ,ϕ(x))

≤ Df (Res
f
Θ,ϕ(x), p)−Df (Res

f
Θ,ϕ(x), x) +Df (p, x)−Df (p, p).

Hence,

Df (p,Res
f
Θ,ϕ(x)) +Df (Res

f
Θ,ϕ(x), x) ≤ Df (p, x).

Lemma 2.15. [29] Assume that {xn} is a sequence of nonnegative real
numbers such that

xn+1 ≤ (1− αn)xn + βn, ∀n ≥ 1,

where {αn} is a sequence in (0, 1) and {βn} is a sequence such that

1.
∑∞

n=1 αn = +∞;

2. lim supn→∞
βn
xn
≤ 0 or

∑∞
n=1 |βn| < +∞.

Then limn→∞ xn = 0.

3. Main result

Theorem 3.1. Let E be a real reflexive Banach space, C be a nonempty,
closed and convex subset of E. Let f : E → R be a coercive Legendre
function which is bounded, uniformly Fréchet differentiable and totally
convex on bounded subsets of E. Let Ti : C → C, for i = 1, 2, . . . , N,
be a finite family of Bregman strongly nonexpansive mappings with
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respect to f such that F (Ti) = F̂ (Ti) and each Ti is uniformly con-
tinuous. Let Θ : C × C → R satisfying conditions (A1)-(A5) and(
∩Ni=1F (Ti)

)
∩MEP (Θ) is nonempty and bounded. Let {xn} be a se-

quence generated by

x1 = x ∈ C chosen arbitrarily,

zn = ResfΘ,ϕ(xn),

yn = projfC∇f
∗(βn∇f(xn) + (1− βn)∇f(T (zn)))

xn+1 = projfC∇f
∗(αn∇f(xn) + (1− αn)∇f(T (yn))), (3.1)

where T = TN◦TN−1◦. . .◦T1, {αn}, {βn} ⊂ (0, 1) satisfying limn→∞ αn =

0 and
∑∞

n=1 αn =∞. Then {xn} converges strongly to projf
(∩Ni=1F (Ti))∩MEP (Θ)

x.

Proof. We note from Lemma 2.11 that F (Ti), for each i ∈ {1, 2, . . . , N}
is closed and convex and hence ∩Ni=1F (Ti) is closed and convex.
Let p = proj(∩Ni=1F (Ti))∩GMEP (Θ)x ∈ (∩Ni=1F (Ti)) ∩ GMEP (Θ). Then

p ∈ (∩Ni=1F (Ti)) and p ∈ GMEP (Θ). Now, by using (3.1) and Lemma

2.14, we have Df (p, zn) = Df (p,Res
f
Θ,ϕ,Ψ(xn)) ≤ Df (p, xn), so

Df (p, yn) = Df (p, proj
f
C∇f

∗(βn∇f(xn) + (1− βn)∇f(T (zn))))

≤ Df (p,∇f ∗(βn∇f(xn) + (1− βn)∇f(T (zn))))

≤ βnDf (p, xn) + (1− βn)Df (p, T (zn))

≤ βnDf (p, xn) + (1− βn)Df (p, zn)

≤ βnDf (p, xn) + (1− βn)Df (p, xn)

≤ Df (p, xn). (3.2)

By (3.1) and (3.2), we have

Df (p, xn+1) = Df (p, proj
f
C∇f

∗(αn∇f(xn) + (1− αn)∇f(T (yn))))

≤ Df (p,∇f ∗(αn∇f(xn) + (1− αn)∇f(T (yn))))

≤ αnDf (p, xn) + (1− αn)Df (p, T (yn))

≤ αnDf (p, xn) + (1− αn)Df (p, yn)

≤ αnDf (p, xn) + (1− αn)Df (p, xn)

≤ Df (p, xn).

Hence {Df (p, xn)} and Df (p, Tyn) are bounded. Moreover, by Lemma
2.8 we get that the sequences {xn} and {T (yn)} are bounded.
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From the fact that αn → 0 as n→∞, Lemma 2.9 we get that

Df (T (yn), xn+1) ≤ Df (T (yn), projfC∇f
∗(αn∇f(xn) + (1− αn)∇f(T (yn)))

≤ Df (T (yn),∇f∗(αn∇f(xn) + (1− αn)∇f(T (yn)))

≤ αnDf (T (yn), xn) + (1− αn)Df (T (yn), T (yn))

= αnDf (T (yn), xn)

= 0.

Therefore, by Lemma 2.4, we have

‖xn+1 − T (yn)‖ → 0, as n→∞. (3.3)

On the other hand, by Lemma 2.9, we have

lim
n→∞

Df (xn, zn) = lim
n→∞

Df (xn, Res
f
Θ,ϕ(xn)

≤ lim
n→∞

(Df (p,Res
f
Θ,ϕ(xn))−Df (p, xn))

≤ lim
n→∞

(Df (p, xn)−Df (p, xn))

= 0.

By Lemma 2.4, we obtain

lim
n→∞

‖xn − zn‖ = 0. (3.4)

Since f is uniformly Fréchet differentiable on bounded subsets of E,
by Lemma 2.7, ∇f is norm-to-norm uniformly continuous on bounded
subsets of E. So,

lim
n→∞

‖∇f(xn)−∇f(zn)‖∗ = 0. (3.5)

Since f is uniformly Fréchet differentiable, it is also uniformly continu-
ous, we get

lim
n→∞

‖f(xn)− f(zn)‖ = 0. (3.6)

By Bregman distance we have

Df (p, xn)−Df (p, zn)

= f(p)− f(xn)− 〈∇f(xn), p− xn〉 − f(p) + f(zn) + 〈∇f(zn), p− zn〉
= f(zn)− f(xn) + 〈∇f(zn), p− zn〉 − 〈∇f(xn), p− xn〉
= f(zn)− f(xn) + 〈∇f(zn), xn − zn〉 − 〈∇f(zn)−∇f(xn), p− xn〉,

for each p ∈ ∩Ni=1F (Ti). By (3.4)-(3.6), we obtain

lim
n→∞

(Df (p, xn)−Df (p, zn)) = 0. (3.7)
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By above equation, we have

Df (zn, yn) = Df (p, yn)−Df (p, zn)

= Df (p, projfC∇f
∗(αn∇f(xn) + (1− αn)∇f(T (zn))−Df (p, zn))

≤ Df (p,∇f∗(αn∇f(xn) + (1− αn)∇f(T (zn))−Df (p, zn))

≤ αnDf (p, xn) + (1− αn)Df (p, T (zn)−Df (p, zn)

≤ αnDf (p, xn) + (1− αn)Df (p, zn)−Df (p, zn)

= αn(Df (p, xn)−Df (p, zn))

= 0.

By (3.7), we have
lim
n→∞

‖zn − yn‖ = 0. (3.8)

Note that
‖xn − yn‖ ≤ ‖xn − zn‖+ ‖zn − yn‖.

By applying (3.4) and (3.8), we can write

lim
n→∞

‖xn − yn‖ = 0. (3.9)

Now, we claim that
lim
n→∞

‖xn − Txn‖ = 0. (3.10)

Since f is uniformly Fréchet differentiable on bounded subsets of E,
by Lemma 2.7, ∇f is norm-to-norm uniformly continuous on bounded
subsets of E. So,

lim
n→∞

‖∇f(xn)−∇f(yn)‖∗ = 0. (3.11)

Since f is uniformly Fréchet differentiable, it is also uniformly con-
tinuous, we get

lim
n→∞

‖f(xn)− f(yn)‖ = 0. (3.12)

By Bregman distance we have

Df (p, xn)−Df (p, yn)

= f(p)− f(xn)− 〈∇f(xn), p− xn〉 − f(p) + f(yn) + 〈∇f(yn), p− yn〉
= f(yn)− f(xn) + 〈∇f(yn), p− yn〉 − 〈∇f(xn), p− xn〉
= f(yn)− f(xn) + 〈∇f(yn), xn − yn〉 − 〈∇f(yn)−∇f(xn), p− xn〉,

for each p ∈ ∩Ni=1F (Ti). By (3.9)-(3.12), we obtain

lim
n→∞

(Df (p, xn)−Df (p, yn)) = 0. (3.13)
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By above equation, we have

Df (yn, xn+1) = Df (p, xn+1)−Df (p, yn)

= Df (p, projfC∇f
∗(αn∇f(xn) + (1− αn)∇f(T (xn))−Df (p, yn))

≤ Df (p,∇f∗(αn∇f(xn) + (1− αn)∇f(T (xn))−Df (p, yn))

≤ αnDf (p, xn) + (1− αn)Df (p, T (yn)−Df (p, yn)

≤ αnDf (p, xn) + (1− αn)Df (p, yn)−Df (p, yn)

= αn(Df (p, xn)−Df (p, yn))

= 0.

By Lemma 2.4, we have

lim
n→∞

‖yn − xn+1‖ = 0.

From above equation and (3.3), we can write

‖yn − T (yn)‖ ≤ ‖yn − xn+1‖+ ‖xn+1 − T (yn)‖
= 0 (3.14)

when n→∞. By applying the triangle inequality, we get

‖xn − T (xn)‖ ≤ ‖xn − yn‖+ ‖yn − T (yn)‖+ ‖T (yn)− T (xn)‖.

By (3.9), (3.14) and since Ti is uniformly continuous for each i ∈ {1, 2, . . . , N}
we have

lim
n→∞

‖xn − T (xn)‖ = 0.

As claimed in (3.10).
Since ‖xnk

− T (xnk
)‖ → 0 as k →∞, we have q ∈ ∩Ni=1F (Ti).

From (3.4) we can write

lim
n→∞

‖Jzn − Jxn‖ = 0.

Here, we prove that q ∈ MEP (Θ). For this reason, consider that zn =

ResfΘ,ϕ(xn), so we have

Θ(zn, z) + ϕ(z) + 〈Jzn − Jxn, z − zn〉 ≥ ϕ(zn), ∀z ∈ C.

From (A2), we have

Θ(z, zn) ≤ −Θ(zn, z) ≤ ϕ(z)− ϕ(zn) + 〈Jzn − Jxn, z − zn〉, ∀z ∈ C.

Hence,

Θ(z, zni
) ≤ ϕ(z)− ϕ(zni

) + 〈Jzni
− Jxni

, z − zni
〉, ∀z ∈ C.
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Since zni
⇀ q and from the weak lower semicontinuity of ϕ and Θ(x, y)

in the second variable y, we also have

Θ(z, q) + ϕ(q)− ϕ(z) ≤ 0, ∀z ∈ C.

For t with 0 ≤ t ≤ 1 and z ∈ C, let zt = tz + (1 − t)q. Since z ∈ C
and q ∈ C we have zt ∈ C and hence Θ(zt, q) + ϕ(q) − ϕ(zt) ≤ 0. So,
from the continuity of the equilibrium bifunction Θ(x, y) in the second
variable y, we have

0 = Θ(zt, zt) + ϕ(zt)− ϕ(zt)

≤ tΘ(zt, z) + (1− t)Θ(zt, q) + tϕ(z) + (1− t)ϕ(q)− ϕ(zt)

≤ t[Θ(zt, z) + ϕ(z)− ϕ(zt)].

Therefore, Θ(zt, z) + ϕ(z)− ϕ(zt) ≥ 0. Then, we have

Θ(q, z) + ϕ(z)− ϕ(q) ≥ 0, ∀y ∈ C.

Hence we have q ∈ MEP (Θ). We showed that q ∈ (∩Ni=1F (Ti)) ∩
MEP (Θ).
Since E is reflexive and {xn} is bounded, there exists a subsequence
{xnk
} of {xn} such that {xnk

}⇀ q ∈ C and

lim sup
n→∞

〈∇f(xn)−∇f(p), xn − p〉 = 〈∇f(xn)−∇f(p), q − p〉.

On the other hand, since ‖xnk
− Txnk

‖ → 0 as k → ∞, we have q ∈
∩Ni=1F (Ti). It follows from the definition of the Bregman projection that

lim sup
n→∞

〈∇f(xn)−∇f(p), xn−p〉 = 〈∇f(xn)−∇f(p), q−p〉 ≤ 0. (3.15)
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From (2.3), we obtain

Df (p, xn+1) = Df (p, projfC∇f
∗(αn∇f(xn) + (1− αn)∇f(T (xn))))

≤ Df (p,∇f∗(αn∇f(xn) + (1− αn)∇f(T (xn))))

= Vf (p, αn∇f(xn) + (1− αn)∇f(T (yn)))

≤ Vf (p, αn∇f(xn) + (1− αn)∇f(T (yn))− αn(∇f(xn)−∇f(p)))

+〈αn(∇f(xn)−∇f(p)), xn+1 − p〉
= Vf (p, αn∇f(p) + (1− αn)∇f(T (yn)

+αn〈∇f(xn)−∇f(p), xn+1 − p〉
≤ αnVf (p,∇f(p)) + (1− αn)Vf (p,∇f(T (yn)))

+αn〈∇f(xn)−∇f(p), xn+1 − p〉
= (1− αn)Df (p, T (yn) + αn〈∇f(xn)−∇f(p), xn+1 − p〉
≤ (1− αn)Df (p, xn) + αn〈∇f(xn)−∇f(p), xn+1 − p〉.

By Lemma 2.15 and (3.15), we can conclude that limn→∞Df (p, xn) = 0.
Therefore, by Lemma 2.4, xn → p. This completes the proof.

Let βn = 0, ∀n ∈ N in Theorem 3.1. Then we have a generalization of
H. Zegeye’s result given in [32].

If in Theorem 3.1, we consider a single Bregman strongly nonexpan-
sive mapping, we have the following corollary.

Corollary 3.2. Let E be a real reflexive Banach space, C be a
nonempty, closed and convex subset of E. Let f : E → R be a
coercive Legendre function which is bounded, uniformly Fréchet dif-
ferentiable and totally convex on bounded subsets of E. Let T be a
Bregman strongly nonexpansive mappings with respect to f such that

F (T ) = F̂ (T ) and T is uniformly continuous. Let Θ : C × C → R
satisfy conditions (A1)-(A5) and let F (T )∩MEP (Θ) be nonempty and
bounded. Let {xn} be a sequence generated by

x1 = x ∈ C chosen arbitrarily,

zn = ResfΘ,ϕ(xn),

yn = projfC∇f
∗(βn∇f(xn) + (1− βn)∇f(T (zn)))

xn+1 = projfC∇f
∗(αn∇f(xn) + (1− αn)∇f(T (yn))),

where {αn}, {βn} ⊂ (0, 1) satisfy limn→∞ αn = 0 and
∑∞

n=1 αn = ∞.

Then {xn} converges strongly to projfF (T )∩MEP (Θ)x.
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If in Theorem 3.1, we assume that E is a uniformly smooth and
uniformly convex Banach space and f(x) := 1

p
‖x‖p (1 < p < ∞), we

have that ∇f = Jp, where Jp is the generalized duality mapping from E
onto E∗. Thus, we get the following corollary.

Corollary 3.3. Let E be a uniformly smooth and uniformly con-
vex Banach space and f(x) := 1

p
‖x‖p (1 < p < ∞). Let C be a

nonempty, closed and convex subset of int(domf) and Ti : C → C, for
i = 1, 2, . . . , N, be a finite family of Bregman strongly nonexpansive

mappings with respect to f such that F (Ti) = F̂ (Ti) and each Ti is uni-
formly continuous. Let Θ : C × C → R satisfying conditions (A1)-(A5)
and

(
∩Ni=1F (Ti)

)
∩MEP (Θ) is nonempty and bounded. Let {xn} be a

sequence generated by

x1 = x ∈ C chosen arbitrarily,

zn = ResfΘ,ϕ(xn),

yn = projfCJ
−1
p (βnJpf(xn) + (1− βn)Jp(T (zn)))

xn+1 = projfCJ
−1
p (αnJp(xn) + (1− αn)Jp(T (yn))),

where T = TN ◦TN−1◦ . . .◦T1, {αn}, {βn} ⊂ (0, 1) satisfy limn→∞ αn = 0

and
∑∞

n=1 αn =∞. Then {xn} converges strongly to projf
(∩Ni=1F (Ti))∩MEP (Θ)

x.
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