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ON CORSINI HYPERGROUPS AND THEIR

PRODUCTIONAL HYPERGROUPS

M. Al Tahan and B. Davvaz∗

Abstract. In this paper, we consider a special hypergroup defined
by Corsini and we name it Corsini hypergroup. First, we investigate
some of its properties and find a necessary and sufficient condition for
the productional hypergroup of Corsini hypergroups to be a Corsini
hypergroup. Next, we study its regular relations, fundamental group
and complete parts. Finally, we characterize all Corsini hypergroups
of orders two and three up to isomorphism.

1. Introduction

Hyperstructure theory was introduced in 1934, at the eighth Con-
gress of Scandinavian Mathematicians, when F. Marty [16] defined hy-
pergroups as natural generalization of the concept of group based on the
notion of hyperoperation, analyzed their properties and applied them to
groups, algebraic functions and rational fractions. Where in a group,
the composition of two elements is an element, while in a hypergroup,
the composition of two elements is a set. In the following decades and
nowadays, a number of different hyperstructures are widely studied from
the theoretical point of view and for their applications to many subjects
of pure and applied mathematics like geometry, topology, cryptography
and code theory, graphs and hypergraphs, probability theory, binary re-
lations, theory of fuzzy and rough sets, automata theory, economy, etc.
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(see [7, 8]). New applications to groups were also presented by other
researchers: Eaton, Ore, Krasner, Utumi, Drbohlav, Harrison, Roth,
Mockor, Davvaz, Freni, Sureau and Haddad [7]. Surveys of the hyper-
structure theory can be found in the books of Corsini [5], Davvaz [8, 9],
Corsini and Leoreanu [7] and Vougiouklis [19]. Cyclic semihypergroups
have been studied by Desalvo and Freni [11], Vougiouklis [20], Leore-
anu [15]. Cyclic semihypergroups are important not only in the sphere
of finitely generated semihypergroups but also for interesting combina-
torial implications. Mousavi et al. [18] introduced a strongly regular
equivalence relation on a hypergroup such that in a particular case the
quotient, the set of equivalence classes, is a cyclic group. Many re-
searchers worked on cyclic hypergroups and regular relations (see [1,2]).

Our paper discusses a special type of hypergroups that is defined by
Corsini in [6] and it is organized as follows: After an introduction, Sec-
tion 2 presents some basic definitions concerning hyperstructures that
are used throughout this paper. Section 3 presents Corsini hypergroups
and studies it properties. Section 4 defines hyperrings using Corsini hy-
pergroups and finds a necessary and sufficient condition for the produc-
tional hypergroup to be a Cosini hypergroup. Section 5 proves that every
Corsini hypergroup has trivial fundamental group and presents some in-
teresting results regarding its regular relations and complete parts. Sec-
tion 6 characterizes all Corsini hypergroups of orders two and three up
to isomorphism.

2. Basic definitions

In this section, we present some definitions related to hyperstruc-
tures from [3,8, 9, 11, 17,19,20] that are used throughout this paper.

Let H be a non-empty set. Then, a mapping ◦ : H × H → P∗(H)
is called a hyperoperation on H, where P∗(H) is the family of all non-
empty subsets of H. The couple (H, ◦) is called a hypergroupoid. In the
above definition, if A and B are two non-empty subsets of H and x ∈ H,
then we define:

A ◦B =
⋃
a∈A
b∈B

a ◦ b, x ◦ A = {x} ◦ A and A ◦ x = A ◦ {x}.

An element e ∈ H is called an identity of (H, ◦) if x ∈ x◦ e∩ e◦x, for all
x ∈ H and it is called a scalar identity of (H, ◦) if x ◦ e = e ◦ x = {x},
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for all x ∈ H. If e is a scalar identity of (H, ◦), then e is the unique
identity of (H, ◦). An element x ∈ H is called idempotent if x ◦ x = x.
The hypergroupoid (H, ◦) is said to be commutative if x ◦ y = y ◦ x, for
all x, y ∈ H. A hypergroupoid (H, ◦) is called a semihypergroup if it is
associative, i.e., if for every x, y, z ∈ H, we have x ◦ (y ◦ z) = (x ◦ y) ◦ z
and is called a quasihypergroup if for every x ∈ H, x ◦H = H = H ◦ x.
This condition is called the reproduction axiom. The couple (H, ◦) is
called a hypergroup if it is a semihypergroup and a quasihypergroup. A
subset K of a hypergroup (H, ◦) is called a subhypergroup of H if (K, ◦)
is a hypergroup. A subhypergroup K of a hypergroup (H, ◦) is normal
if a ◦K = K ◦ a for all a ∈ H. A canonical hypergroup is a non-empty
set H endowed with a hyperoperation ◦ : H × H → P∗(H), satisfying
the following properties: (1) for any x, y, z ∈ H, x ◦ (y ◦ z) = (x ◦ y) ◦ z,
(2) for any x, y ∈ H, x ◦ y = y ◦ x, (3) there exists ı ∈ H such that
ı◦x = x◦ ı = x, for any x ∈ H,(4) for every x ∈ H, there exists a unique
element x′ and we call it the opposite of x), (5) z ∈ x ◦ y implies that
y ∈ x′ ◦ z and x ∈ z ◦ y′, that is (H, ◦) is reversible. A hypergroup (H, ◦)
is called total hypergroup if a ◦ b = H for all a, b ∈ H.
A subset I of H is called a hyperideal of H if IH ⊆ H. A hypergroup
H is said to be simple if H has no proper hyperideal [9].

Let i ∈ N. A hypergroup (H, ◦) is cyclic if there exist h ∈ H such
that

H = h ∪ h2 ∪ · · · ∪ hi ∪ · · · .

If H = h∪h2∪ · · · ∪hs then H is a cyclic hypergroup with finite period.
Otherwise, H is called a cyclic hypergroup with infinite period. Here,
hi = h ◦ h ◦ . . . ◦ h︸ ︷︷ ︸

i times

. It is a single-power cyclic hypergroup if there exist

h ∈ H and s ∈ N such that

H = h ∪ h2 ∪ · · · ∪ hi ∪ · · · and h ∪ h2 ∪ · · · ∪ hi−1 ⊂ hi, for all i ∈ N.

Let (H, ?) and (H ′, ?′) be two hypergroups. A function f : (H, ?) →
(H ′, ?′) is said to be a homomorphism if f(x1 ? x2) ⊆ f(x1) ?

′ f(x2) for
all x1, x2 ∈ H. And it is called a good homomorphism if f(x1 ? x2) =
f(x1) ?

′ f(x2) for all x1, x2 ∈ H.
Two hypergroups are said to be isomorphic is there exists a bijective

good homomorphism between them. If the isomorphism is from the
hypergroup to itself, then we call it automorphism and the set of all
automorphisms of the hypergroup (H, ◦) is denoted by Aut(H, ◦).
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3. Properties of Corsini hypergroups

Corsini in [6] defined a hypergroupoid on a hypergraph, called it
hypergraph hypergroupoid and proved that it satisfies some conditions.
Moreover, he found a necessary and sufficient condition for the hyper-
graph hypergroupoid to be a hypergroup. In this section, we present these
hypergroups and call them Corsini hypergroups, prove some results re-
garding their properties including cyclicity and automorphism groups
that are not found in Corsini’s paper.

Definition 3.1. Let H be a non empty set. Then (H, ◦) is called a
Corsini hypergroupoid if for all (x, y) ∈ H2, the following conditions are
satisfied:

1. x ◦ y = x ◦ x ∪ y ◦ y,
2. x ∈ x ◦ x,
3. y ∈ x ◦ x⇐⇒ x ∈ y ◦ y.

Corsini proved the following theorem in [6].

Theorem 3.2. A hypergroupoid (H, ◦) satisfying Definition 3.1 is a
hypergroup if and only if the the following condition is valid:

∀(a, c) ∈ H2, c ◦ c ◦ c− c ◦ c ⊆ a ◦ a ◦ a.

Proposition 3.3. A Corsini hypergroupoid is commutative.

Proof. Let (H, ◦) be a Corsini hypergroup and (x, y) ∈ H2. Then,
Definition 3.1 asserts that x ◦ y = x ◦x∪ y ◦ y = y ◦ y∪x ◦x = y ◦x.

Proposition 3.4. A Corsini hypergroupoid is regular.

Proof. Let (H, ◦) be a Corsini hypergroupoid and (x, y) ∈ H2. Then,
Definition 3.1 asserts that x ∈ x ◦ y = x ◦ x ∪ y ◦ y. Thus, each element
in H is an identity. Consequently, the set of all inverses I(x) of x ∈ H
is equal to H.

Definition 3.5. A non empty subset M of a hypergroup (H, ?) is
linear if a ? b ⊆M and a/b ⊆M , for all a, b ∈M . Here, a/b = {x ∈ H |
a ∈ x ? b}.

Proposition 3.6. A Corsini hypergroup has no proper linear subsets.
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Proof. Let M be a linear subset of the Corsini hypergroup (H, ◦) and
a ∈ M . Having M a linear subset of (H, ◦) implies that a/a ⊆ M . We
have that

a/a = {x ∈ H : a ∈ x ◦ a}.
The latter and Definition 3.1 imply that a/a = H ⊆M .

Proposition 3.7. A Corsini hypergroup has no proper normal sub-
hypergroups.

Proof. Let N be a proper normal subhypergroup of the Corsini hy-
pergroup (H, ◦). Then there exists an element x ∈ H that is not an
element in N . By Definition 3.1 and having N a normal subhypergroup
of H we conclude that x ∈ x ◦N = N .

Proposition 3.8. A Corsini hypergroup is simple.

Proof. Let I be a hyperideal of the Corsini hypergroup (H, ◦) and
let x ∈ H. Definition 3.1 and having I a hyperideal of H imply that
x ∈ IH ⊆ I.

Proposition 3.9. Let (H, ◦) be a cyclic Corsini hypergroup and
x ∈ H a generator of H. If y ∈ x ◦ x then y is a generator of H.

Proof. Having that y ∈ x ◦ x implies that x ∈ y ◦ y by Definition 3.1.
It is easy to see that xk ⊆ y2k. Thus, H = x∪x2∪ . . . ⊆ y∪ y2∪ . . ..

Corollary 3.10. Let (H, ◦) be a cyclic Corsini hypergroup of period
two. Then every element in H is a generator.

Proof. Since (H, ◦) is a cyclic Corsini hypergroup of period two, it
follows that there exist x ∈ H such that H = x ∪ x2. Then, Definition
3.1 implies that H = x2. The latter implies that y ∈ x ◦ x for all y ∈ H.
Proposition 3.9 implies that y is a generator of H.

Proposition 3.11. Every cyclic Corsini hypergroup is a single power
cyclic hypergroup.

Proof. Let (H, ◦) be a cyclic Corsini hypergroup. Then there exist
x ∈ H such that H = x ∪ x2 ∪ . . .. Definition 3.1 implies that x ∈ x2.
We need to show that xk ⊆ xk+1 for all k ≥ 1. Our statement is true
for the case k = 1. We assume now by Mathematical induction that
xk−1 ⊆ xk. Having that

xk+1 = xk ◦ x =
⋃

y∈xk

y ◦ x and that xk−1 ⊆ xk
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by our assumption imply that

xk+1 ⊇
⋃

y∈xk−1

y ◦ x = xk.

Therefore, (H, ◦) is a single power cyclic hypergroup.

Proposition 3.12. Let (H, ◦) be a Corsini hypergroup and (K, ?)
be any hypergroup. If there exist an isomorphism function f : H −→ K
then (K, ?) is a Corsini hypergroup.

Proof. Since f is a bijective function, it follows that for all (y1, y2) ∈
K2 there exist (x1, x2) ∈ H2 such that f(x1) = y1 and f(x2) = y2.
Moreover, for all A,B ⊆ H we have f(A ∪B) = f(A) ∪ f(B). We need
to show that the conditions of Definition 3.1 are satisfied for (K, ?):

1. y1 ? y2 = f(x1) ? f(x2) = f(x1 ◦ x2) = f(x1 ◦ x1 ∪ x2 ◦ x2) =
f(x1 ◦ x1) ∪ f(x2 ◦ x2). Having f a good homomorphism implies
that

f(x1 ◦ x1)∪ f(x2 ◦ x2) = f(x1) ? f(x1)∪ f(x2) ? f(x2) = y1 ? y1 ∪ y2 ? y2.

2. y1 ? y1 = f(x1) ? f(x1) = f(x1 ◦ x1). And having (H, ◦) a Corsini
hypergroup imples that x1 ∈ x1◦x1. Thus, y1 = f(x1) ∈ f(x1◦x1).

3. y1 ∈ y2 ?y2 ⇐⇒ f(x1) ∈ f(x2)?f(x2)⇐⇒ f(x1) ∈ f(x2 ◦x2). The
latter is equivalent to x1 ∈ x2 ◦ x2 as f is a bijective function. We
get now:

y1 ∈ y2 ? y2 ⇐⇒ x2 ∈ x1 ◦ x1
⇐⇒ f(x2) ∈ f(x1 ◦ x1)
⇐⇒ f(x2) ∈ f(x1) ? f(x1).

Proposition 3.13. Let (H, ◦) be a Corsini hypergroup and f : H −→
H be a bijective function. Then f ∈ Aut(H, ◦) if and only if f(x ◦ x) =
f(x) ◦ f(x) for all x ∈ H.

Proof. If f ∈ Aut(H, ◦) then f(x ◦ y) = f(x) ◦ f(y) for all x, y ∈ H.
Thus, f(x ◦ x) = f(x) ◦ f(x) for all x ∈ H.

Let f be a bijective function satisfying the condition f(x◦x) = f(x)◦
f(x) for all x ∈ H and let y ∈ H. Having f a bijective function implies
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that for any sets A,B ⊆ H, f(A ∪B) = f(A) ∪ f(B). Thus, we get:

f(x ◦ y) = f(x ◦ x ∪ y ◦ y)
= f(x ◦ x) ∪ f(y ◦ y)
= f(x) ◦ f(x) ∪ f(y) ◦ f(y)
= f(x) ◦ f(y).

Thus, f ∈ Aut(H, ◦).

Example 3.14. Let (H, ◦) be a Corsini hypergroup with at least
one idempotent element. Set H = {a1, . . . , ak} ∪ {ak+1, . . .} where
{a1, . . . , ak}, {ak+1, . . .} are sets of idempotent and non idempotent ele-
ments in H respectively. Define f : H −→ H as follows:

f(x) =

 x, if x is not an idempotent element in H;
ai+1, if x = ai and 1 ≤ i < k;
a1, if x = ak.

It is clear that f ∈ Aut(H, ◦) as it satisfies conditions of Proposition
3.13.

4. Hyperrings and productional hypergroups using Corsini
hypergroups

In this section, we use the definition of Corsini hypergroups to
define a special Corsini hypergroup and present hyperrings using Corsini
hypergroups. Also, we find a necessary and sufficient condition for the
productional hypergroup to be a Cosini hypergroup.

4.1. Hyperrings using Corsini hypergroups.

Definition 4.1. Let H be any non empty set, (x, y) ∈ H2 and define
? as follows:

x ? y = {x, y}.

Proposition 4.2. (H, ?) is a Corsini hypergroup.

Proof. It is easy to see that (H, ?) satisfies Definition 3.1 and Theorem
3.2.

Definition 4.3. [19] Let (H, ◦) and (H, ?) be two hypergroups. We
say that ◦ ≤ ? if there is f ∈ Aut(H, ?) such that a ◦ b ⊆ f(a) ? f(b) for
all a, b ∈ H.
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Proposition 4.4. Let (H, ◦) be any Corsini hypergroup. Then ? ≤
◦.

Proof. Let (x, y) ∈ H2 and i : (H, ◦) −→ (H, ◦) be the identity
function. Definition 3.1 implies that x ? y = {x, y} ⊆ x ◦ y = i(x) ◦
i(y).

Definition 4.5. Let R be a non empty set with two hyperoperations
(+ and ·). We say that (R,+, ·) is a hyperring if (R,+) is a commu-
tative hypergroup, (R, ·) is a semihypergroup and the hyperoperation ·
is distributive with respect to +, i.e., x · (y + z) = x · y + x · z for all
x, y, z ∈ R.

If the hyperoperation · is weak distributive with respect to +, i.e.,
x · (y+ z) ⊆ x · y+x · z for all x, y, z ∈ R, we say that (R,+, ·) is a weak
hyperring.

Proposition 4.6. Let (H, ◦) be a Corsini hypergroup. Then (H, ◦, ?)
is a commutative weak hyperring.

Proof. Since (H, ◦) and (H, ?) are Corsini hypergroups, it follows, by
Proposition 3.3, that they are commutative. Let (x, y, z) ∈ H3. We have
that:

x ? (y ◦ z) =
⋃

a∈y◦z
x ? a =

⋃
a∈y◦y∪z◦z

{x, a}

= x ∪
⋃

a∈y◦y∪z◦z
a = x ∪ y ◦ y ∪ z ◦ z

and

(x?y)◦(x?z) = {x, y}◦{x, z} = x◦x∪x◦z∪y◦z∪x◦y = x◦x∪y◦y∪z◦z.
Since x ∈ x ◦ x, it follows that x ? (y ◦ z) ⊆ (x ? y) ◦ (x ? z).

Proposition 4.7. If (H, ◦) is any Corsini hypergroup, then (H, ?, ◦)
is a commutative hyperring.

Proof. Since (H, ◦) and (H, ?) are Corsini hypergroups, it follows, by
Proposition 3.3, that they are commutative. Let (x, y, z) ∈ H3. We have
that:

x ◦ (y ? z) = x ◦ {y, z} = x ◦ y ∪ x ◦ z = x ◦ x ∪ y ◦ y ∪ z ◦ z.
and

(x ◦ y) ? (x ◦ z) = (x ◦ x ∪ y ◦ y) ? (x ◦ x ∪ z ◦ z)
=

⋃
a∈x◦x∪y◦y,b∈x◦x∪z◦z

{a, b}.

It is clear that x ◦ (y ? z) = (x ◦ y) ? (x ◦ z).
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4.2. Productional hypergroups using Corsini hypergroups. Let
(H1, ◦1) and (H2, ◦2) be hypergroups. We define (H1 × H2, ◦1 × ◦2) as
follows: For any (h1, k1), (h2, k2) ∈ H1 ×H2, we have

(h1, k1) ◦1 × ◦2 (h2, k2) = (h1 ◦1 h2, k1 ◦2 k2).

(H1 ×H2, ◦1 × ◦2) is called productional hypergroup.
The aim of this subsection is to investigate the following question:
For a given two Corsini hypergroups (H1, ◦1) and (H2, ◦2), is their

productional hypergroup (H1 ×H2, ◦1 × ◦2) a Corsini hypergroup?
We first show that this question has a negative solution by presenting

our next example.

Example 4.8. Let H = {x, y} and (H, ?) be the Corsini hypergroup
defined in Definition 4.1. Then the productional hypergroup (H×H, ?×
?) is not a Corsini hypergroup.

This can be deduced from Condition 1 of Definition 3.1:
We have that:

(x, x) ?× ? (y, y) = (x ? y, x ? y) = (H,H) = {(x, x), (x, y), (y, x), (y, y)},

whereas

(x, x)?×?(x, x)∪(y, y)?×?(y, y) = (x?x, x?x)∪(y?y, y?y) = {(x, x), (y, y)}.

Lemma 4.9. Let (H1, ◦1) be a total hypergroup and (H2, ◦2) be a
Corsini hypergroup. Then the productional hypergroup (H1×H2, ◦1×◦2)
is a Corsini hypergroup.

Proof. Let (h1, k1), (h2, k2) ∈ H1×H2. It is easy to show that Condi-
tion 2 and Condition 3 of Definition 3.1 are satisfied. We need to show
that both Condition 1. of Definition 3.1 and Theorem 3.2 are satisfied.
We have that

(h1, k1) ◦1 × ◦2 (h2, k2) = (h1 ◦1 h2, k1 ◦2 k2) =
⋃

a∈H,b∈k1◦2k2
(a, b)

and that

(h1, k1) ◦1 × ◦2 (h1, k1) ∪ (h2, k2) ◦1 × ◦2 (h2, k2)
=

⋃
x∈H1,y∈k1◦2k1

(x, y) ∪
⋃

x′∈H1,y
′∈k2◦2k2

(x
′
, y
′
).
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Having (H2, ◦2) a Corsini hypergroup implies that k1 ◦2 k1 ∪ k2 ◦2 k2 =
k1 ◦2 k2. The latter implies that

(h1, k1) ◦1 × ◦2 (h1, k1) ∪ (h2, k2) ◦1 × ◦2 (h2, k2)
=

⋃
x∈H1,y∈k1◦2k1∪k2◦2k2

(x, y).

Thus, Condition 1 of Definition 3.1 is satisfied.

Let (x, y) belong to

(h1, k1) ◦1 × ◦2 (h1, k1) ◦1 × ◦2 (h1, k1)− (h1, k1) ◦1 × ◦2 (h1, k1)
= (H, k1 ◦2 k1 ◦2 k1)− (H, k1 ◦2 k1).

It is clear that y ∈ k1 ◦2 k1 ◦2 k1−k1 ◦2 k1. And since (H2, ◦2) is a Corsini
hypergroup, it follows by Theorem 3.2 that y ∈ k1 ◦2 k1 ◦2 k1−k1 ◦2 k1 ⊆
k
′
1 ◦2 k

′
1 ◦2 k

′
1 for all k

′
1 ∈ H2. Therefore,

(x, y) ∈ (h
′

1, k
′

1) ◦1×◦2 (h
′

1, k
′

1) ◦1×◦2 (h
′

1, k
′

1) for all (h
′

1, k
′

1) ∈ H1×H2.

Therefore, (H1 ×H2, ◦1 × ◦2) is a Corsini hypergroup.

Corollary 4.10. Let (H1, ◦1) be a Corsini hypergroup and (H2, ◦2)
be a total hypergroup. Then the productional hypergroup (H1×H2, ◦1×
◦2) is a Corsini hypergroup.

Proof. Since (H1, ◦1) is a Corsini hypergroup and (H2, ◦2) is a total
hypergroup, it follows by Lemma 4.9 that (H2×H1, ◦2×◦1) is a Corsini
hypergroup. Having that (H1 × H2, ◦1 × ◦2) and (H2 × H1, ◦2 × ◦1)
isomorphic and using Proposition 3.12, we get that (H1×H2, ◦1×◦2) is
a Corsini hypergroup.

Lemma 4.11. Let (H1, ◦1) and (H2, ◦2) be Corsini hypergroups that
are not total hypergroups. Then the productional hypergroup (H1 ×
H2, ◦1 × ◦2) is not a Corsini hypergroup.

Proof. Since (H1, ◦1) and (H2, ◦2) are not total hypergroups, it follows
that there exist h1, h2 ∈ H1 and k1, k2 ∈ H2 such that h1 ◦1 h1 6= h2 ◦1 h2
and k1 ◦2 k1 6= k2 ◦2 k2. If such elements do not exist then (H1, ◦1) or
(H2, ◦2) are total hypergroups. Thus, there exists a ∈ h1 ◦1 h1 that is
not in h2 ◦1 h2 and b ∈ k2 ◦2 k2 that is not in k1 ◦2 k1. We have that:

(a, b) ∈ (h1, k1) ◦1 × ◦2 (h2, k2)
= (h1 ◦1 h2, k1 ◦2 k2)
= (h1 ◦1 h1 ∪ h2 ◦1 h2, k1 ◦2 k1 ∪ k2 ◦2 k2).
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And that

(h1, k1) ◦1 × ◦2 (h1, k1) ∪ (h2, k2) ◦1 × ◦2 (h2, k2)
= (h1 ◦1 h1, k1 ◦2 k1) ∪ (h2 ◦1 h2, k2 ◦2 k2).

It is clear that (a, b) is not an element in (h1, k1)◦1×◦2(h1, k1)∪(h2, k2)◦1
× ◦2 (h2, k2). Thus, Condition 1. of Definition 3.1 is not satisfied.

Theorem 4.12. Let (H1, ◦1) and (H2, ◦2) be Corsini hypergroups.
Then the productional hypergroup (H1×H2, ◦1×◦2) is a Corsini hyper-
group if and only if (H1, ◦1) or (H2, ◦2) (or both) is a total hypergroup.

Proof. The proof follows from Lemma 4.9 and Lemma 4.11.

Corollary 4.13. There are infinite Corsini hypergroups, up to iso-
morphism, that are not total hypergroups.

Proof. Proposition 4.9 asserts that starting from a Corsini hypergroup
(H1, ◦1) and a total hypergroup (H2, ◦2), we can get infinite Corsini
hypergroups that are of the form (H1 ×H2, ◦1 × ◦2).

Let (H1, ◦1) be the Corsini hypergroup defined in Definition 4.1. It
is clear that (H1 × H2, ◦1 × ◦2) is not a total hypergroup. The latter
and the existence of infinite total hypergroups result in the existence of
infinite Corsini hypergroups that are not total hypergroups.

Next, we generalize our work on the productional hypergroup of two
Corsini hypergroups to k number of Corsini hypergroups.
Let (Hi, ◦i) be an Hv− group for i ∈ {1, . . . , k}, ◦ = ◦1 × ◦2 × . . . × ◦k
and define (H1 ×H2 × . . .×Hk, ◦) as follows:

(h1, . . . , hk) ◦ (h
′

1, . . . , h
′

k) = (h1 ◦1 h
′

1, . . . , hk ◦k h
′

k).

We present our next theorem which generalizes our results of Theorem
4.12.

Theorem 4.14. Let (Hi, ◦i) be Corsini hypergroups for i ∈ {1, . . . , k}.
Then (H1 ×H2 × . . .×Hk, ◦) is a Corsini hypergroup if and only if the
number of total hypergroups (Hi, ◦i) is at least k − 1.

Proof. Suppose that the number of total hypergroups (Hi, ◦i) is at
least k − 1. Without loss of generality, we can consider (Hi, ◦i) as
total hypergroups for i ∈ {1, . . . , k − 1}. It is clear that (H, ?) =
(H1× . . .×Hk, ◦1× . . .×◦k−1) is a total hypergroup. Lemma 4.9 implies
that (H1 ×H2 × . . .×Hk, ◦) is a Corsini hypergroup.

Suppose, for contradiction, that there exist more than one non total
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hypergroup. Without loss of generality, we can set the non total hyper-
groups as (H1, ◦1) and (H2, ◦2). Using the same argument as that in the
proof of Lemma 4.11, we get our result.

5. Fundamental group and regular relations of Corsini hy-
pergroups

In this section, we study equivalence relations on Corsini hyper-
groups, find the fundamental group of these hypergroups and determine
their complete parts.

Definition 5.1. Let (H, ◦) be a semihypergroup and R be an equiv-
alence relation on H. If A and B are non-empty subsets of H, then

1. ARB means that for every a ∈ A there exists b ∈ B such that aRb
and for every b′ ∈ B there exists a′ ∈ A such that a′Rb′;

2. ARB means that for every a ∈ A and b ∈ B, we have aRb.

The equivalence relation R is called:

1. regular on the right (on the left) if for all x ∈ H, from aRb, it
follows that (a ◦ x)R(b ◦ x) ((x ◦ a)R(x ◦ b) respectively);

2. strongly regular on the right (on the left) if for all x ∈ H, from

aRb, it follows that (a ◦ x)R(b ◦ x) ((x ◦ a)R(x ◦ b) respectively);
3. regular (strongly regular) if it is regular (strongly regular) on the

right and on the left.

Theorem 5.2. [5,8] Let (H, ◦) be a hypergroup and R an equivalence
relation on H. Then R is strongly regular if and only if (H/R,⊗), the
set of all equivalence classes, is a group.

The main tools connecting the class of hyperstructures with the classi-
cal algebraic structures are the fundamental relations. The fundamental
relation has an important role in the study of semihypergroups and es-
pecially of hypergroups.

Definition 5.3. For all n > 1, we define the relation βn on a semi-
hypergroup (H, ◦) as follows:

xβny if there exist a1, . . . , an in H such that{x, y} ⊆
n∏

i=1

ai

and we set β =
⋃
n≥1

βn, where β1 = {(x, x) | x ∈ H} is the diagonal

relation on H.



On Corsini Hypergroups And Their Productional Hypergroups 75

This relation was introduced by Koskas [14] and studied mainly by
Corsini [5], Davvaz [8], Davvaz and Leoreanu-Fotea [10], Freni [12], Vou-
giouklis [19], and many others. Clearly, the relation β is reflexive and
symmetric. Denote by β∗ the transitive closure of β.

The β? is called the fundamental equivalence relation on H. The β?

is the smallest strongly regular relation on H and if H is a hypergroup
then β = β? [12]. In this case, H/β∗ is called the fundamental group.

Proposition 5.4. A Corsini hypergroup has a trivial fundamental
group.

Proof. Let (H, ◦) be a Corsini hypergroup and (x, y) ∈ H2. Definition
3.1 asserts that {x, y} ⊂ x ◦ y. The latter implies that xβ2y. We get
now that xβy. Since (H, ◦) is a hypergroup, it follows that β = β?.
Consequently, H/β? has only one equivalence class.

Definition 5.5. Let (H, ◦) be an Hv- group and A be a non empty
subset of H. A is a complete part of H if for any natural number n and
for all hyperproducts P ∈ HH(n), the following implication holds:

A ∩ P 6= ∅ =⇒ P ⊆ A.

Proposition 5.6. A Corsini hypergroup has no proper complete
parts.

Proof. Let A be a complete part of the Corsini hypergroup (H, ◦) and
a ∈ A. Definition 3.1 asserts that for all b ∈ H, a ∈ A ∩ (a ◦ b) 6= ∅.
Having A a complete part of H implies that b ∈ a ◦ b ⊆ A.

Proposition 5.7. Let (H, ◦) be a Corsini hypergroup and R an
equivalence relation on it. Then R is a strongly regular relation on
H if and only if H/R is the trivial group.

Proof. Theorem 5.2 asserts that if H/R is the trivial group and H is
a hypergroup then R is strongly regular relation on H.
Let R be a strongly regular relation on H. For all x ∈ H, if aRb then

(a ◦ x)R(b ◦ x). Since R is an equivalence relation, it follows that aRa

and thus (a ◦ x)R(a ◦ x) for all x ∈ H. The latter and having x ∈ a ◦ x,
a ∈ a ◦ x imply that aRx. Thus, H/R contains only one equivalence
class.

Proposition 5.8. Let (H, ◦) be a Corsini hypergroup with the prop-
erty that all its elements are idempotents. Then every equivalence rela-
tion on H is a regular relation.
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Proof. Let (a, b, x) ∈ H3, R an equivalence relation on H and aRb.
Definition 3.1 implies that a ◦ x = a ◦ a ∪ x ◦ x. Since a, b and x are
idempotent elements in H, it follows that a◦x = {a, x} and b◦x = {b, x}.
Having aRb and xRx implies that a ◦ xRb ◦ x.

Remark 5.9. If (H, ◦) is a Corsini hypergroup with the property that
all its elements are idempotents then (H, ◦) = (H, ?) defined in Section
4, Definition 4.1.

6. Corsini hypergroups of orders two and three

In this section, we characterize all Corsini hypergroups of orders
two and three up to isomorphism.
Using some computations, we can show that we have nine hypergroups
of order two up to isomorphism. The following Theorem proves that
only two among them are Corsini hypergroups.

Theorem 6.1. There are only two Corsini hypergroups of order two
up to isomorphism in which one of them is cyclic.

Proof. Let H = {a, b}. Definition 3.1 asserts that H ⊆ a ◦ a ∪ b ◦ b =
a ◦ b = b ◦a. Moreover, we have that a ◦a = a or a ◦a = H. If a ◦a = H
then by Definition 3.1 we get that b ◦ b = H and thus, (H, ◦) is the total
hypergroup.
If a ◦ a = a then Definition 3.1 asserts that b ◦ b = b. Therefore, we get
the two following hypergroupoids:

◦1 a b

a H H

b H H

and

◦2 a b

a a H

b H b

Theorem 3.2 asserts that (H, ◦1) and (H, ◦2) are Corsini hypergroups.
Moreover, (H, ◦1) is a cyclic hypergroup whereas (H, ◦2) is not a cyclic
hypergroup.
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Using Lemma 4.9, we can construct the Corsini hypergroup (H×H, ◦1×
◦2) (of order four) as follows:

◦1 ×◦2 (a, a) (a, b) (b, a) (b, b)

(a, a) {(a, a), (b, a)} H ×H {(a, a), (b, a)} H ×H

(a, b) H ×H {(a, b), (b, b)} H ×H {(a, b), (b, b)}

(b, a) {(a, a), (b, a)} H ×H {(a, a), (b, a)} H ×H

(b, b) H ×H {(a, b), (b, b)} H ×H {(a, b), (b, b)}

.

Theorem 6.2. There are only four Corsini hypergroups of order three
up to isomorphism in which two of them are cyclic.

Proof. Let H = {a, b, c}. Definition 3.1 asserts that a ◦ a = H or
a ◦ a = {a, b} or a ◦ a = {a, c} or a ◦ a = a.

• Case a◦a = H. For all x ∈ H, we have that a◦x = a◦a∪x◦x = H.
Since b ∈ a◦a, it follows that there are two cases for b◦b: b◦b = H
or b◦b = {a, b}. If b◦b = H then Definition 3.1 and having c ∈ a◦a
imply that c ◦ c = H. Thus (H, ◦) is the total hypergroup given by
the following table:

◦1 a b c

a H H H

b H H H

c H H H

.

If b ◦ b = {a, b} then Definition 3.1 and having c ∈ a ◦ a imply that
c ◦ c = {a, c}. We get now that b ◦ c = c ◦ b = b ◦ b ∪ c ◦ c = H.
Thus (H, ◦) is given by the following table:

◦2 a b c

a H H H

b H {a, b} H

c H H {a, c}

.

Theorem 3.2 asserts that (H, ◦2) is a hypergroup.
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• Case a ◦ a = {a, b}. Definition 3.1 asserts that b ◦ b = H or
b ◦ b = {a, b}. If b ◦ b = H then c ◦ c = {b, c} and we get a
hypergroup isomorphic to (H, ◦2). If b ◦ b = {a, b} then Definition
3.1 asserts that c ◦ c = c. Simple computations imply that (H, ◦)
may be presented by the following table:

◦3 a b c

a {a, b} {a, b} H

b {a, b} {a, b} H

c H H c

.

Theorem 3.2 asserts that (H, ◦3) is a hypergroup.
• Case a ◦ a = {a, c}. Using Dedfinition 3.1, we get that c ◦ c = H

and b ◦ b = {b, c} or c ◦ c = {a, c} and b ◦ b = b. Thus we get
hypergroups isomorphic to (H, ◦2) and (H, ◦3) respectively.
• Case a ◦ a = a. Since b and c are not elements of a ◦ a then

Definition 3.1 implies that either b ◦ b = c ◦ c = {b, c} or b ◦ b = b
and c ◦ c = c. If b ◦ b = c ◦ c = {b, c} then (H, ◦) is isomorphic to
(H, ◦3). If b ◦ b = b and c ◦ c = c then simple computations imply
that (H, ◦) may be presented by the following table:

◦4 a b c

a a {a, b} {a, c}

b {a, b} b {b, c}

c {a, c} {b, c} c

.

Theorem 3.2 asserts that (H, ◦4) is a hypergroup.

It is clear that (H, ◦1) and (H, ◦2) are cyclic hypergroups whereas (H, ◦3)
and (H, ◦4) are not cyclic hypergroups.

7. Conclusion

After introducing the notion of hypergroups by Marty, many re-
search papers studiedthis important concept from different perspectives.
This paper studied a special type of hypergroups; Corsini hypergroups



On Corsini Hypergroups And Their Productional Hypergroups 79

in which we investigated some interesting properties about these hyper-
groups, studied their complete parts and fundamental groups. Several
interesting results were obtained such as characterizing all Corsini hy-
pergroups of orders two and three up to isomorphism.

For future research, it will be interesting to characterize infinite Corsini
hypergroups up to isomorphism.
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