THE STABILITY OF GENERALIZED RECIPROCAL-NEGATIVE FERMAT'S EQUATIONS IN QUASI- β-NORMED SPACES

DongSeung Kang and Hoewoon Kim*

Abstract

We introduce a reciprocal-negative Fermat's equation generalized with constants coefficients and investigate its stability in a quasi- β-normed space.

1. Introduction

In many mathematical fields we would be interested in dealing with the following question suggested first in 1940 by Ulam [32]: Let G_{1} be a group and let G_{2} be a metric group with the metric $d(\cdot, \cdot)$. Given $\varepsilon>0$, does there exist a $\delta>0$ such that if a function $h: G_{1} \rightarrow G_{2}$ satisfies the inequality $d(h(x y), h(x) h(y))<\delta$ for all $x, y \in G_{1}$ then there is a homomorphism $H: G_{1} \rightarrow G_{2}$ with $d(h(x), H(x))<\varepsilon$ for all $x \in G_{1}$? In other words, we consider the conditions under which a mathematical object satisfying certain properties approximately should be close to the one satisfying the properties exactly. In 1941, Hyers [8] consider the case of linear or additive functional equation in a complete metric space, Banach space, and gave the affirmative but partial solution to Ulam's question above. This Hyers' stability result was first generalized in the

[^0]stability involving a sum of powers of norms by T. Aoki [1], not only constants later. In 1978, Th.M. Rassias [21] provided another generalization of Hyers Theorem which allows the Cauchy difference to be unbounded. For the following sections where we show our results of stability let us define a quasi- β-normed spaces.

Let β be a real number with $0<\beta \leq 1$ and \mathbb{K} be either \mathbb{R} or \mathbb{C}. We will consider the definition and some preliminary results of a quasi- β norm on a linear space.

Definition 1.1. Let X be a linear space over a field \mathbb{K}. A quasi- β norm $\|\cdot\|$ is a real-valued function on X satisfying the followings:
(1) $\|x\| \geq 0$ for all $x \in X$ and $\|x\|=0$ if and only if $x=0$.
(2) $\|\lambda x\|=|\lambda|^{\beta} \cdot\|x\|$ for all $\lambda \in \mathbb{K}$ and all $x \in X$.
(3) There is a constant $K \geq 1$ such that $\|x+y\| \leq K(\|x\|+\|y\|)$ for all $x, y \in X$.

The pair $(X,\|\cdot\|)$ is called a quasi- β-normed space if $\|\cdot\|$ is a quasi- β norm on X. The smallest possible K is called the modulus of concavity of $\|\cdot\|$. A quasi-Banach space is a complete quasi- β-normed space.

A quasi- β-norm $\|\cdot\|$ is called a (β, p)-norm $(0<p \leq 1)$ if $\|x+y\|^{p} \leq$ $\|x\|^{p}+\|y\|^{p}$, for all $x, y \in X$. In this case, a quasi- β-Banach space is called a (β, p)-Banach space; see [3] and [29].

In number theory, Fermat's Last Theorem states that no three positive integers a, b, and c satisfy the equation $c^{n}=a^{n}+b^{n}$ for any integer value of $n \geq 2$. Taking the reciprocal of each term in the Fermat's equation we arrive at the equation $\frac{1}{c^{n}}=\frac{1}{a^{n}}+\frac{1}{b^{n}}$ that is called the reciprocalnegative Fermat's equation. Solving the reciprocal equation $\frac{1}{c^{n}}=\frac{a^{n}+b^{n}}{a^{n} b^{n}}$, for c^{n}, we have

$$
c^{n}=\frac{a^{n} b^{n}}{a^{n}+b^{n}}
$$

for any integer value of $n \geq 2$. In particular, in the case of $n=1$ the above equation should be the harmonic mean of a and b from the wellknown three Pythagorean means; arithmetic mean, geometric mean, and harmonic mean in geometry.
In 2010, Ravi and Kumar [28] investigated a generalized Hyers-Ulam stability of the reciprocal functional equation $f(x+y)=\frac{f(x) f(y)}{f(x)+f(y)}$. Also see [11] for a fixed point approach. With the motivation of the Pythagorean means Narasimman, Ravi, and Pinelas [20] in 2015 introduced the Pythagorean mean functional equation $f\left(\sqrt{x^{2}+y^{2}}\right)=$
$\frac{f(x) f(y)}{f(x)+f(y)}$ for all positive numbers x and y and studied the generalized Hyers-Ulam stability of the equation providing counter-examples for singular cases. Recently Kang and Kim in [18] introduced the generalized Pythagorean mean functional equation

$$
\begin{equation*}
f\left(\sqrt[n]{x^{n}+y^{n}}\right)=\frac{f(x) f(y)}{f(x)+f(y)} \tag{1}
\end{equation*}
$$

for a positive integer n and investigated the stabilities of the functional equation in a quasi- β-normed space.

In this paper, we consider the following weighted reciprocal-negative Fermat's functional equation:

$$
\begin{equation*}
f\left(\sqrt[n]{a x^{n}+b y^{n}}\right)=\frac{f(x) f(y)}{b f(x)+a f(y)} \tag{2}
\end{equation*}
$$

for fixed positive integers n and for all $x, y \in X$ with weights a and b. We are able to see definitely that the generalized Pythagorean mean functional equation (1) given by Kang and Kim above is the special case when $a=b=1$. Due to the reciprocal-negative Fermat's equation, we still call the mapping f the reciprocal-negative Fermat's function. In Section 2 we establish the general solution of the reciprocal-negative Fermat's equation (2) in the simplest case and give the differential solution to the equation (2). In Section 3 we prove the generalized Hyers-Ulam stability of the reciprocal-negative Fermat's equation (2) in a quasi- β-normed space.

2. General Solution of the Reciprocal-negative Fermat's functional equation

In this section we establish both the general and differential solution of the weighted reciprocal-negative Fermat's equation (2) following the work by Ger [10] and Kang [18]

Theorem 2.1 (General Solution). Let $n \in \mathbb{N}$ be an odd integer (or even integer). The only nonzero solution $f: \mathbb{R} \backslash\{0\} \longrightarrow \mathbb{R}$ (or f : $(0, \infty) \longrightarrow \mathbb{R})$ with a finite limit of the quotient $\frac{f(x)}{1 / x^{n}}$ at zero, of the equation (2) is of the form $\frac{c}{x^{n}}$ for a non-zero constant $c \in \mathbb{R}$.

Proof. Letting $y=x$ in (2) we just have $f(\sqrt[n]{a+b} x)=\left(\frac{1}{a+b}\right) f(x)$ for all $x \in \mathbb{R} \backslash\{0\}($ or $x \in(0, \infty))$).
Let us define $g(x)=\frac{f(x)}{1 / x}$ for all $x \in \mathbb{R} \backslash\{0\}$ (or $x \in(0, \infty)$). Then the limit

$$
\lim _{x \rightarrow 0} \frac{g(x)}{\frac{1}{x^{n-1}}}=c
$$

exists for some nonzero $c \in \mathbb{R}$ and using the definition of $f(x)$ we obtain

$$
g(\sqrt[n]{a+b} x)=\frac{1}{\sqrt[n]{(a+b)^{n-1}}} g(x)
$$

for all $x \in \mathbb{R} \backslash\{0\}$ (or $x \in(0, \infty)$). By the mathematical induction for every positive integer k, we also have

$$
\begin{equation*}
g\left(\frac{x}{(\sqrt[n]{a+b})^{k}}\right)=\left(\sqrt[n]{(a+b)^{n-1}}\right)^{k} g(x) \tag{3}
\end{equation*}
$$

for all $x \in \mathbb{R} \backslash\{0\}($ or $x \in(0, \infty)$). Therefore we conclude from the equality (3) that

$$
\begin{equation*}
\frac{g(x)}{\frac{1}{x^{n-1}}}=\frac{\left(\sqrt[n]{(a+b)^{n-1}}\right)^{k} g(x)}{\left(\sqrt[n]{(a+b)^{n-1}}\right)^{k} \frac{1}{x^{n-1}}}=\frac{g\left(\frac{x}{(\sqrt[n]{(a+b)})^{k}}\right)}{\left(\frac{(\sqrt[n]{(a+b)})^{k}}{x}\right)^{n-1}} \longrightarrow c \tag{4}
\end{equation*}
$$

as $n \rightarrow \infty$. By the definition of $g(x)$ we get the general solution

$$
f(x)=\frac{1}{x} g(x)=\frac{1}{x}\left(\frac{c}{x^{n-1}}\right)=\frac{c}{x^{n}}
$$

for all $x \in \mathbb{R} \backslash\{0\}$ (or $x \in(0, \infty)$), which completes the proof.
Now we consider the differentiable solution of the reciprocal-negative Fermat's functional equation (2) as we suggested. For simplicity we will assume the case of an odd integer $n \in \mathbb{N}$ (we can prove the even case similarly).

Theorem 2.2 (Differential Solution). Let $f:(0, \infty) \longrightarrow \mathbb{R}$ be continuously differentiable function with the derivative $f^{\prime}(x) \neq 0$ for all $x \in(0, \infty)$. Then f is a solution to the reciprocal-negative Fermat's
equation (2) if and only if there exists a nonzero constant $c \in \mathbb{R}$ such that $f(x)=\frac{c}{x^{n}}$ for all $x \in(0, \infty)$.

Proof. A simple computation of differentiation of the equation (2) with respect to x on both sides gives

$$
\begin{equation*}
f^{\prime}\left(\sqrt[n]{a x^{n}+b y^{n}}\right)\left(\frac{x}{\sqrt[n]{a x^{n}+b y^{n}}}\right)^{n-1}=\frac{f^{\prime}(x)(f(y))^{2}}{(b f(x)+a f(y))^{2}} \tag{5}
\end{equation*}
$$

for all $x, y \in(0, \infty)$. Substituting $y=x$ in the equation (2) and the equation (5) above, respectively, we have

$$
\begin{equation*}
f(\sqrt[n]{a+b} x)=\left(\frac{1}{a+b}\right) f(x) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{\prime}(\sqrt[n]{a+b} x)=\frac{1}{(a+b)^{\frac{n+1}{n}}} f^{\prime}(x) \tag{7}
\end{equation*}
$$

for all $x \in(0, \infty)$. Letting $y=\sqrt[n]{\frac{b+1}{b}} x$ in (5) again and applying (6) and (7) we can have

$$
\begin{equation*}
f^{\prime}(\sqrt[n]{a+b+1} x)=\frac{1}{(a+b+1)^{\frac{n+1}{n}}} f^{\prime}(x) \tag{8}
\end{equation*}
$$

for all $x \in(0, \infty)$. Both equations (7) and (8) gives

$$
\begin{equation*}
f^{\prime}\left((\sqrt[n]{a+b})^{l}(\sqrt[n]{a+b+1})^{m} x\right)=\frac{1}{\left((a+b)^{\frac{n+1}{n}}\right)^{l}\left((a+b+1)^{\frac{n+1}{n}}\right)^{m}} f^{\prime}(x) \tag{9}
\end{equation*}
$$

for all integers l and m. It can be easily proved that the set $\{((a+$ $\left.\left.b)^{\frac{n+1}{n}}\right)^{l}\left((a+b+1)^{\frac{n+1}{n}}\right)^{m}: l, m \in \mathbb{Z}\right\}$ is dense in $(0, \infty)$ for fixed constants a and b. Since we assume that the function f^{\prime} is continuous we derive the following first order ordinary differential equation

$$
\begin{equation*}
f^{\prime}(\lambda)=f^{\prime}(1) \frac{1}{\lambda^{n+1}} \tag{10}
\end{equation*}
$$

for $\lambda \in(0, \infty)$. Therefore, the solution of the equation should be $f(x)=$ $\frac{c}{x^{n}}+d$ for some constants c and d for $x \in(0, \infty)$. It is also obvious that the constant d should be zero since $f(\sqrt[n]{a+b} x)=\left(\frac{1}{a+b}\right) f(x)$ and it completes the proof.

3. Stability of a Reciprocal-negative Fermat's functional equation

We assume that in this entire section X is a linear space and Y a quasi- β-Banach space with a quasi- β-norm $\|\cdot\|_{Y}$. Let also K be the modulus of concavity of $\|\cdot\|_{Y}$. In this section we will investigate the generalized Hyers-Ulam stability problem for the functional equation (2) as we suggested. For a given mapping $f: X \rightarrow Y$ and a fixed positive integer n, we denote

$$
D_{n} f(x, y):=f\left(\sqrt[n]{a x^{n}+b y^{n}}\right)-\frac{f(x) f(y)}{b f(x)+a f(y)}
$$

for all $x, y \in X$ and $\mathbb{R}^{+}:=[0, \infty)$, i.e., the set of all nonnegative real numbers where the constants a and b are nonzero real numbers.

Theorem 3.1. Assume that there exists a function $\phi: X \times X \rightarrow \mathbb{R}^{+}$ for which a function $f: X \rightarrow Y$ satisfies

$$
\begin{equation*}
\left\|D_{n} f(x, y)\right\|_{Y} \leq \phi(x, y) \tag{11}
\end{equation*}
$$

and also suppose that the series $\sum_{j=0}^{\infty}\left((a+b)^{\beta} K\right)^{j} \phi\left((\sqrt[n]{a+b})^{j} x,(\sqrt[n]{a+b})^{j} y\right)$ converges for all $x, y \in X$. Then there will be a unique reciprocalnegative Fermat's function $R: X \rightarrow Y$ which satisfies the equation (2) and the following inequality

$$
\begin{equation*}
\|f(x)-R(x)\|_{Y} \leq \sum_{j=0}^{\infty}\left((a+b)^{\beta} K\right)^{j+1} \phi\left((\sqrt[n]{a+b})^{j} x,(\sqrt[n]{a+b})^{j} x\right) \tag{12}
\end{equation*}
$$

for all $x \in X$.
Proof. On letting $x=y$ in the equation (11), we have

$$
\left\|D_{n} f(x, x)\right\|_{Y}=\left\|\frac{f(x)}{a+b}-f(\sqrt[n]{a+b} x)\right\|_{Y} \leq \phi(x, x)
$$

or,

$$
\begin{equation*}
\|f(x)-(a+b) f(\sqrt[n]{a+b} x)\|_{Y} \leq(a+b)^{\beta} \phi(x, x) \tag{13}
\end{equation*}
$$

for all $x \in X$. Letting m be a fixed positive integer we note that putting $x=(\sqrt[n]{a+b})^{m} x$ and multiplying by $(a+b)^{m \beta}$ in the inequality (13), we
can obtain

$$
\begin{align*}
& \left\|(a+b)^{m} f\left((\sqrt[n]{a+b})^{m} x\right)-(a+b)^{m+1} f\left((\sqrt[n]{a+b})^{m+1} x\right)\right\|_{Y} \\
& \leq(a+b)^{(m+1) \beta} \phi\left((\sqrt[n]{a+b})^{m} x,(\sqrt[n]{a+b})^{m} x\right) \tag{14}
\end{align*}
$$

for all $x \in X$. By the mathematical induction, we conclude the following inequality:

$$
\begin{align*}
& \left\|f(x)-(a+b)^{m} f\left((\sqrt[n]{a+b})^{m} x\right)\right\|_{Y} \\
& \leq \sum_{j=0}^{m-1}\left((a+b)^{\beta} K\right)^{j+1} \phi\left((\sqrt[n]{a+b})^{j} x,(\sqrt[n]{a+b})^{j} x\right) \tag{15}
\end{align*}
$$

for any positive integer m and for all $x \in X$. In addition, for all positive integers s and t with $s>t$, we have

$$
\begin{align*}
& \left\|(a+b)^{t} f\left((\sqrt[n]{a+b})^{t} x\right)-(a+b)^{s} f\left((\sqrt[n]{a+b})^{s} x\right)\right\|_{Y} \\
& \leq \sum_{j=t}^{s-1}\left((a+b)^{\beta} K\right)^{j+1} \phi\left((\sqrt[n]{a+b})^{j} x,(\sqrt[n]{a+b})^{j} x\right) \tag{16}
\end{align*}
$$

for all $x \in X$. Since we assume that $\sum_{j=0}^{\infty}\left((a+b)^{\beta} K\right)^{j} \phi\left((\sqrt[n]{a+b})^{j} x,(\sqrt[n]{a+b})^{j} y\right)$ converges, the right-hand side of the inequality (16) tends to 0 as $t \rightarrow \infty$. Thus we just say that $\left\{(a+b)^{m} f\left((\sqrt[n]{a+b})^{m} x\right)\right\}$ is a Cauchy sequence in the quasi- β-Banach space Y. Thus we are able to let

$$
R(x)=\lim _{m \rightarrow \infty}(a+b)^{m} f\left((\sqrt[n]{a+b})^{m} x\right)
$$

for each $x \in X$. Now, we will show that $R(x)$ is the solution to the reciprocal-negative Fermat's equation (2). For a positive integer m letting $x=(\sqrt[n]{a+b})^{m} x$ and $y=(\sqrt[n]{a+b})^{m} y$ and multiplying by $(a+b)^{m \beta}$ in the inequality (11), we get

$$
\begin{aligned}
& (a+b)^{m \beta}\left\|D_{n} f\left((\sqrt[n]{a+b})^{m} x,(\sqrt[n]{a+b})^{m} y\right)\right\|_{Y} \\
= & (a+b)^{m \beta}\left\|f\left((\sqrt[n]{a+b})^{m} \sqrt[n]{a x^{n}+b y^{n}}\right)-\frac{f\left((\sqrt[n]{a+b})^{m} x\right) f\left((\sqrt[n]{a+b})^{m} y\right)}{b f\left((\sqrt[n]{a+b})^{m} x\right)+a f\left((\sqrt[n]{a+b})^{m} y\right)}\right\|_{Y} \\
\leq & \left((a+b)^{\beta} K\right)^{m} \phi\left((\sqrt[n]{a+b})^{m} x,(\sqrt[n]{a+b})^{m} y\right)
\end{aligned}
$$

for all $x, y \in X$. Letting m tend to the infinity, $m \rightarrow \infty, R(x)$ satisfies (2) for all $x, y \in X$, that is, $R(x)$ is the reciprocal-negative Fermat's function as the solution to it. Also, the inequality (15) implies the inequality (12).
Now, we finally have to show the uniqueness of the reciprocal-negative

Fermat's function $R(x)$. In order to do that we assume that there exists $r: X \rightarrow Y$ satisfying (2) and (12). Then we can estimate

$$
\begin{aligned}
\|R(x)-r(x)\|_{Y}= & (a+b)^{m \beta}\left\|R\left((\sqrt[n]{a+b})^{m} x\right)-r\left((\sqrt[n]{a+b})^{m} x\right)\right\|_{Y} \\
\leq & K(a+b)^{m \beta}\left(\| R\left((\sqrt[n]{a+b})^{m} x\right)-f(\sqrt[n]{a+b})^{m} x\right) \|_{Y} \\
& \left.\left.+\| r\left((\sqrt[n]{a+b})^{m} x\right)-f(\sqrt[n]{a+b})^{m} x\right) \|_{Y}\right) \\
\leq & 2 K^{1-m} \sum_{j=0}^{\infty}\left((a+b)^{\beta} K\right)^{j+m+1} \phi\left((\sqrt[n]{a+b})^{j+m} x,(\sqrt[n]{a+b})^{j+m} x\right)
\end{aligned}
$$

for all $x \in X$. By letting $m \rightarrow \infty$, we just have the uniqueness of the reciprocal-negative Fermat's function $R(x)$ that completes the proof.

Now let us present a counterpart of Theorem 3.1 by correcting the approximate $f(x)$ in (11) by scaling-down:

Theorem 3.2. Suppose that there exists a mapping $\phi: X \times X \rightarrow \mathbb{R}^{+}$ for which a mapping $f: X \rightarrow Y$ satisfies

$$
\begin{equation*}
\left\|D_{n} f(x, y)\right\|_{Y} \leq \phi(x, y) \tag{17}
\end{equation*}
$$

and the series $\sum_{j=0}^{\infty}\left(\frac{K}{(a+b)^{\beta}}\right)^{j} \phi\left((\sqrt[n]{a+b})^{-j} x,(\sqrt[n]{a+b})^{-j} y\right)$ converges for all $x, y \in X$. Then there exists a unique reciprocal-negative Fermat's function $R: X \rightarrow Y$ which satisfies the equation (2) and the inequality (18)

$$
\|f(x)-R(x)\|_{Y} \leq \sum_{j=1}^{\infty}\left(\frac{1}{a+b}\right)^{j-1} K^{j} \phi\left((\sqrt[n]{a+b})^{-j} x,(\sqrt[n]{a+b})^{-j} x\right)
$$

for all $x \in X$.
Proof. The proof can easily obtained by starting with the replacement $x=y=\frac{x}{\sqrt[n]{a+b}}$ in (17) as we did in Theorem 3.1.

Now we have the following Hyers-Ulam-Rassias type stability of the functional equation (2).

Corollary 3.3. Let X be a quasi- β normed space with a norm $\|\cdot\|$ and take a constant $p>\left(\frac{n}{\beta}\right)\left(\frac{\ln K}{\ln (a+b)}-n\right)$. Suppose that
$f: X \rightarrow Y$ satisfies

$$
\begin{equation*}
\left\|D_{n} f(x, y)\right\|_{Y} \leq c\left(\|x\|^{p}+\|y\|^{p}\right) \tag{19}
\end{equation*}
$$

for all $x, y \in X$ with a nonnegative constant c. Then there exists a unique function $R: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-R(x)\|_{Y} \leq\left(\frac{2 c(a+b)^{(\beta p / n)+\beta} K}{(a+b)^{(\beta p / n)+\beta}-K}\right)\|x\|^{p} \tag{20}
\end{equation*}
$$

for each $x \in X$.
Proof. Just replacing $\phi(x, y)=c\left(\|x\|^{p}+\|y\|^{p}\right)$ in Theorem 3.2 completes the proof.

REMARK 3.4. By the property of stability of the reciprocal-negative Fermat's equation (2) from Theorem 3.1 and 3.2 we also get the corresponding result to Corollary 3.3 as a consequence of Theorem 3.1, i.e.,

$$
\begin{equation*}
\|f(x)-R(x)\|_{Y} \leq\left(\frac{2 c(a+b)^{-(\beta p / n)-\beta} K}{(a+b)^{-(\beta p / n)-\beta}-K}\right)\|x\|^{p} \tag{21}
\end{equation*}
$$

for $p>\left(\frac{n}{\beta}\right)\left(\frac{-\ln K}{\ln 2}-n\right)$.
Remark 3.5. In physics a weighted parallel circuit with two resistors would be an application of the reciprocal-negative Fermat's equation (2). The following law is well-know from physics: The inverse of total resistance r of the circuit is sum of the inverses of the individual resistances r_{1} and r_{2},

$$
\frac{1}{r}=\frac{1}{r_{1}}+\frac{1}{r_{2}}
$$

or

$$
r=\frac{r_{1} r_{2}}{r_{1}+r_{2}}
$$

Take $r_{1}=\frac{b}{x^{n}}$ and $r_{2}=\frac{a}{y^{n}}$ for a weighted parallel circuit with weights a and b for two resistors r_{1} and r_{2}, respectively, leads us to have

$$
\begin{equation*}
r=\frac{\frac{b}{x^{n}} \frac{a}{y^{n}}}{\frac{b}{x^{n}}+\frac{a}{y^{n}}} . \tag{22}
\end{equation*}
$$

It is well-known that the electric conductance is reciprocal to the resistance and we, thus, have the total conductance g of the circuit as $g=\frac{x^{n}}{b}+\frac{y^{n}}{a}$. From the equation (22) we can have

$$
\begin{equation*}
\frac{1}{g}=\frac{\frac{b}{x^{n}} \frac{a}{y^{n}}}{\frac{b}{x^{n}}+\frac{a}{y^{n}}}, \tag{23}
\end{equation*}
$$

that is,

$$
\begin{equation*}
1 / g=\frac{1}{x^{n} / b+y^{n} / a}=\frac{\frac{b}{x^{n}} \frac{a}{y^{n}}}{\frac{b}{x^{n}}+\frac{a}{y^{n}}}, \tag{24}
\end{equation*}
$$

which is exactly the reciprocal-negative Fermat's equation (2) if $f(x)=$ $\frac{c}{x^{n}}$ for some constant c and the stability of this circuit problem can play an important role in physics as we showed earlier.

References

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950) 64-66.
[2] J.-H. Bae and W.-G. Park, On the generalized Hyers-Ulam-Rassias stability in Banach modules over a C^{*}-algebra, J. Math. Anal. Appl. 294 (2004), 196-205.
[3] Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis, vol. 1, Colloq. Publ., vol. 48, Amer. Math. Soc., Providence, (2000).
[4] P. W. Cholewa, Remarks on the stability of functional equations, Aequationes. Math. 27 (1984), 76-86.
[5] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64.
[6] Z. Gajda, On the stability of additive mappings, Internat. J. Math. Math. Sci., 14 (1991), 431-434.
[7] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
[8] D. H. Hyers, On the stability of the linear equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
[9] J. K. Chung and P. K. Sahoo, On the general solution of a quartic functional equation, Bulletin of the Korean Mathematical Society, 40 (4) (2003), 565-576.
[10] R. Ger, Tatra Mt. Math. Publ. 55 (2013), 67-75.
[11] S.M. Jung, A Fixed Point Approach to the Stability of the Equation $f(x+y)=$ $\frac{f(x) f(y)}{f(x)+f(y)}$, The Australian Journal of Math. Anal. and Appl. Vol. 6 (1) (2009), 1-6
[12] Y.-S. Jung and I.-S. Chang, The stability of a cubic type functional equation with the fixed point alternative, J. Math. Anal. Appl. (2005), 264-284.
[13] K.-W. Jun and H.-M. Kim, On the stability of Euler-Lagrange type cubic functional equations in quasi-Banach spaces, J. Math. Anal. Appl. 332 (2007), 13351350.
[14] K. Jun and H. Kim, Solution of Ulam stability problem for approximately biquadratic mappings and functional inequalities, J. Inequal. Appl. 10 (4) (2007), 895-908
[15] Y.-S. Lee and S.-Y. Chung, Stability of quartic functional equations in the spaces of generalized functions, Adv. Diff. Equa. (2009), 2009: 838347
[16] R. Kadisona and G. Pedersen, Means and convex combinations of unitary operators, Math. Scand. 57 (1985), 249-266.
[17] H.-M. Kim, On the stability problem for a mixed type of quartic and quadratic functional equation, J. Math. Anal. Appl. 324 (2006), 358-372.
[18] D. Kang and H.B. Kim, On the stability of reciprocal-negative Fermat's Equations in quasi- β-normed spaces, preprint
[19] B. Margolis and J.B. Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 126, 74 (1968), 305-309.
[20] P. Narasimman, K. Ravi and Sandra Pinelas, Stability of Pythagorean Mean Functional Equation, Global Journal of Mathematics 4 (1) (2015), 398-411
[21] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[22] Th. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), 264-284.
[23] Th. M. Rassias, P. Šemrl On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl. 173 (1993), 325-338.
[24] Th. M. Rassias, K. Shibata, Variational problem of some quadratic functions in complex analysis, J. Math. Anal. Appl. 228 (1998), 234-253.
[25] J. M. Rassias, Solution of the Ulam stability problem for quartic mappings, Glasnik Matematicki Series III, 34 (2) (1999) 243-252.
[26] J. M. Rassias, On the stability of the Euler-Lagrange functional equation, Chinese J. Math. 20 (1992) 185-190.
[27] J. M. Rassias, H.-M. Kim Generalized Hyers.Ulam stability for general additive functional equations in quasi- β-normed spaces, J. Math. Anal. Appl. 356 (2009), 302-309.
[28] K. Ravi and B.V. Senthil Kumar Ulam-Gavruta-Rassias stability of Rassias Reciprocal functional equation, Global Journal of App. Math. and Math. Sci. 3(12), Jan-Dec 2010, 57-79.
[29] S. Rolewicz, Metric Linear Spaces, Reidel/PWN-Polish Sci. Publ., Dordrecht, (1984).
[30] I.A. Rus, Principles and Appications of Fixed Point Theory, Ed. Dacia, ClujNapoca, 1979 (in Romanian).
[31] F. Skof, Proprietà locali e approssimazione di operatori,Rend. Semin. Mat. Fis. Milano 53 (1983) 113-129.
[32] S. M. Ulam, Problems in Morden Mathematics, Wiley, New York (1960).

DongSeung Kang
Mathematics Education,
Dankook University,
Yongin 16890, Republic of Korea
E-mail: dskang@dankook.ac.kr

Hoewoon Kim

Department of Mathematics,
Oregon State University,
Corvallis, Oregon 97331, United States
E-mail: kimho@math.oregonstate.edu

[^0]: Received September 12, 2018. Revised December 26, 2018. Accepted December 31, 2018.

 2010 Mathematics Subject Classification: 39B52, 39B82.
 Key words and phrases: Stability, Functional equations, Reciprocal-negative Fermat's Equation, Quasi- β-normed spaces.

 * Corresponding author.
 (c) The Kangwon-Kyungki Mathematical Society, 2019.

 This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

