IHARA ZETA FUNCTION OF DUMBBELL GRAPHS

SANGHOON KWON AND JUNG-HYEON PARK

ABSTRACT. We study the Ihara zeta function of the dumbbell graph $D_{1,1,n}$ of type (1,1,n) and $D_{1,2,n}$ of type (1,2,n). Explicit formulas of the zeta functions of the graphs, their radius of convergence, and the connection with the number of closed cycles are given.

1. Introduction

Let G be a finite connected undirected graph with no degree 1 vertices. Let VG and EG be the set of vertices and the set of edges of G, respectively. In addition, we denote by $E^{\pm}G$ the set of all oriented edges of G. Thus, we have $|E^{\pm}G| = 2|EG|$.

Let $P = (e_1, e_2, \dots, e_{l(P)-1}, e_{l(P)})$ be a primitive closed cycle without backtracking. That is, $o(e_1) = t(e_{l(P)})$, $e_{i+1} \neq e_i^{-1} \pmod{l(P)}$ for all i and $P \neq D^m$ for any integer $m \geq 2$ and a path D in A. If a closed cycle Q is obtained by changing the cyclic order of P, then we say P and Q are euqivalent. A prime [P] in G is an equivalence class of primitive closed cycle without backtracking.

The *Ihara zeta function* of G is defined at $u \in \mathbb{C}$, for which |u| is sufficiently small, by

$$Z_G(u) = \prod_{[P]} (1 - u^{l(P)})^{-1}$$

Received October 29, 2018. Revised December 11, 2018. Accepted December 13, 2018.

²⁰¹⁰ Mathematics Subject Classification: 28A33, 37C85, 22E40.

Key words and phrases: Ihara zeta function, dumbbell graphs, prime geodesic theorem.

[©] The Kangwon-Kyungki Mathematical Society, 2018.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

where [P] runs over the primes of G.

The Ihara determinant formula [1] gives that $Z_G(u)$ is a rational function, given by

$$Z_G(u) = \frac{1}{(1 - u^2)^{\chi(X) - 1} \det(I - A(u) + Bu^2)}$$

where $\chi = |EG| - |VG| + 1$, A is the vertex adjacency matrix of G and B is diagonal matrix whose j-th diagonal entry is $\deg(v_j) - 1$. Let R_G be the radius of convergence of $Z_G(u)$.

We denote by $D_{a,b,n}$ the dumbbell graph of type (a,b,n) defined as a graph consisting of two vertex-disjoint cycles C_a , C_b and a path P_n $(a,b \ge 1, n \ge 2)$ joining them having only its end-vertices in common with the two cycles. It has a+b+n-2 number of vertices and a+b+n-1 number of edges. Below is the figure of the graph $D_{a,b,n}$.

FIGURE 1. Dumbbell graph $D_{a,b,n}$

In this article, we study the Ihara-zeta function of the graph $D_{1,1,n}$ and $D_{1,2,n}$. If $G = D_{1,1,n}$, then we have |VG| = n and |EG| = n + 1. If $G = D_{1,2,n}$, then we have |VG| = n + 1 and |EG| = n + 2.

The following two theorems are main results of the paper.

THEOREM 1.1. Let G be the dumbbell graph $D_{1,1,n}$ of type (1,1,n). If n is odd, then

$$Z_G(u) = \frac{1}{(1-u^2)(u-1)(2u^{n-1}-2u^{n-2}+\cdots-2u+1)(2u^n+u-1)}$$

and if n is even, then

$$Z_G(u) = \frac{1}{(1-u^2)(u-1)(2u^{n-1}-2u^{n-2}+\cdots+2u-1)(2u^n-u+1)}.$$

FIGURE 2. Dumbbell graph $D_{1,1,n}$

THEOREM 1.2. Let G be the dumbbell graph $D_{1,2,n}$ of type (1,2,n). Then, we have

$$Z_G(u) = \frac{1}{(1-u^2)(u-1)(4u^{2n-1}-u^3+u^2+u-1)}.$$

FIGURE 3. Dumbbell graph $D_{1,2,n}$

From the formula of the zeta function $Z_G(u)$ and the Perron-Frobenius theory, we get the irreducible polynomial of the radius of convergence of $Z_G(u)$.

COROLLARY 1.3. Let G be the dumbbell graph $D_{1,1,n}$. The radius R_G of convergence of the rational function $Z_G(u)$ the unique real root of P(u) where P(u) is given by

$$P(u) = \begin{cases} 2u^n + u - 1, & n \text{ is odd} \\ 2u^{n-1} - 2u^{n-2} + \dots - 2u^2 + 2u - 1, & n \text{ is even.} \end{cases}$$

Finally, the prime geodesic theorem gives the following.

COROLLARY 1.4. Let G be the dumbbell graph $D_{1,1,n}$. If we denote by $\pi(m)$ the number of prime cycles of length m, then we have

$$\lim_{m \to \infty} \frac{m\pi(m)}{\lambda_G^m} = 1.$$

Here, λ_G is the unique real root of Q(u) where Q(u) is given by

$$Q(u) = \begin{cases} u^n - u^{n-1} - 2, & n \text{ is odd} \\ u^{n-1} - 2u^{n-2} + \dots - 2u^2 + 2u - 2, & n \text{ is even.} \end{cases}$$

The analogous results for $D_{1,2,n}$ hold.

2. Proof of the results

In this section, we prove Theorem 1.1 and Theorem 1.2. First, we consider the case when the graph G is $D_{1,1,n}$.

Proof of Theorem 1.1. By the Ihara determinant formula, we have

$$Z_G(u)^{-1} = (1 - u^2) \det(B)$$

where B is an $n \times n$ tri-diagonal matrix given by

$$B = \begin{pmatrix} 1 - 2u + 2u^2 & -u \\ -u & 1 + u^2 & -u \\ & -u & \cdots & -u \\ & & -u & 1 + u^2 & -u \\ & & & -u & 1 - 2u + 2u^2 \end{pmatrix}.$$

Let us denote by f(k) the determinant of the $k \times k$ matrix given by

$$\begin{pmatrix} 1+u^2 & -u & & & \\ -u & 1+u^2 & -u & & \\ & -u & \cdots & -u \\ & & -u & 1+u^2 \end{pmatrix}.$$

Then $f(k) = (1 + u^2)f(k - 1) - u^2f(k - 2)$. Since $f(1) = 1 + u^2$ and $f(2) = 1 + u^2 + u^4$, it follows that $f(k) = 1 + u^2 + \dots + u^{2k}$. Hence, this yields

$$\det(B) = (1 - 2u + 2u^{2})[(1 - 2u + 2u^{2})f(n - 2) - u^{2}f(n - 3)]$$

$$- u^{2}[(1 - 2u + 2u^{2})f(n - 3) - u^{2}f(n - 4)]$$

$$= (1 - 2u + 2u^{2})^{2}f(n - 2) - 2(1 - 2u + 2u^{2})u^{2}f(n - 3) + u^{4}f(n - 4)$$

$$= 4u^{2n} - 8u^{2n-1} + 8u^{2n-2} - + \dots - 8u^{3} + 7u^{2} - 4u + 1$$

$$= (u - 1)(2u^{n-1} - 2u^{n-2} + 2u^{n-3} - + \dots \pm 1)(2u^{n} \pm u \mp 1).$$

Therefore, we have

$$Z_G(u)^{-1} = (1 - u^2)(u - 1)(2u^{n-1} - 2u^{n-2} + \dots \pm 1)(2u^n \pm u \mp 1)$$

which completes the proof of the Theorem 1.1.

Proof of Theorem 1.2. Similarly, if G is the graph $D_{1,2,n}$, then the Ihara determinant formula implies that

$$Z_G(u)^{-1} = (1 - u^2) \det(C)$$

where

$$C = \begin{pmatrix} 1 - 2u + 2u^2 & -u & & & \\ -u & 1 + u^2 & -u & & & \\ & -u & \cdots & -u & & \\ & & -u & 1 + 2u^2 & -2u \\ & & & -2u & 1 + u^2 \end{pmatrix}.$$

Let us denote by g(k) the determinant of the $k \times k$ matrix given by

$$\begin{pmatrix} 1+u^2 & -u & & & \\ -u & 1+u^2 & -u & & \\ & -u & \cdots & -u \\ & & -u & 1+2u^2 \end{pmatrix}.$$

Then $g(k) = (1 + u^2)g(k - 1) - u^2g(k - 2)$. Since $g(1) = 1 + 2u^2$ and $g(2) = 1 + 2u^2 + 2u^4$, it follows that $g(k) = 1 + 2u^2 + \cdots + 2u^{2k}$. This yields

$$\det(C) = (1 - 2u + 2u^{2})[(1 + u^{2})g(n - 2) - 4u^{2}f(n - 3)]$$

$$- u^{2}[(1 + u^{2})g(n - 3) - 4u^{2}f(n - 4)]$$

$$= 4u^{2n} - 4u^{2n-1} - u^{4} + 2u^{3} - 2u + 1$$

$$= (u - 1)(4u^{2n-1} - u^{3} + u^{2} + u - 1).$$

Thus, we have

$$Z_G(u)^{-1} = (1 - u^2)(u - 1)(4u^{2n-1} - u^3 + u^2 + u - 1)$$

which completes the proof of the Theorem 1.2.

Let us now prove Corollary 1.3 and 1.4. Let L(G) be the vertex adjacency matrix of the oriented line graph of G (see Section 3 of [4]). According to the determinant formula for the edge zeta function (Theorem 3.3 of [2]), we also have

$$Z_G(u) = \frac{1}{\det(I - uL(G))}.$$

Since G is connected, it follows that L(G) is a non-negative irreducible matrix. The Perron-Frobenius theorem of the non-negative matrices

(Section 4 of [4]) implies that the Perron-Frobenius eigenvalue λ_G of L(G) is simple and real. It follows that $0 < R_G < 1$ and $\lambda_G = R_G^{-1}$ is an algebraic integer. This gives us that R_G is the unique real root of P(u) where

$$P(u) = \begin{cases} 2u^n + u - 1, & n \text{ is odd} \\ 2u^{n-1} - 2u^{n-2} + \dots - 2u^2 + 2u - 1, & n \text{ is even.} \end{cases}$$

Corollary 1.4 directly follows from the prime geodesic theorem in graphs (Theorem 2.10 of [2]) since $\Delta_G = 1$.

References

- [1] H. Bass, The Ihara-Selberg zeta function of a tree lattice, International. J. Math. 3 (1992), 717–797.
- [2] M. D. Horton, H. M. Stark, and A. Terras, What are zeta functions of graphs and what are they good for ?, Contemporary Mathematics 415 (2006), Quantum Graphs and Their Applications; Edited by Gregory Berkolaiko, Robert Carlson, Stephen A. Fulling, and Peter Kuchment, 173–190.
- [3] Y. Ihara, On discrete subgroups of the two by two projective linear group over p-adic fields, J. Math. Soc. Japan 18 (1966), 219–235.
- [4] M. Kotani and T. Sunada, Zeta function of finite graphs, J. Math. Sci. Univ. Tokyo 7 (2000), 7–25.
- [5] A. Terras, Zeta functions of graphs: a stroll through the garden, CambridgeX Studies in Advanced Mathematics, Vol. 128, Cambridge University Press, Cambridge, 2011, xii+239 pp

Sanghoon Kwon

Department of Mathematical Education Catholic Kwandong University Gangneung, Korea

E-mail: skwon@cku.ac.kr

Jung-Hyeon Park

Department of Mathematical Education Catholic Kwandong University Gangneung, Korea

E-mail: jhpark@cku.ac.kr