A NOTE ON SOME INEQUALITIES FOR THE b-NUMERICAL RADIUS AND b-NORM IN 2-HILBERT SPACE OPERATORS

Akram Babri Bajmaeh and Mohsen Erfanian Omidvar

Abstract

In this paper, the definition b-numerical radius and b norm is introduced and we present several b-numerical radius inequalities. Some applications of these inequalities are considered as well.

1. Introduction and preliminaries

Let $\mathcal{B}(\mathcal{H})$ denote the C^{*}-algebra of all bounded linear operators on \mathcal{H} with inner product $\langle\cdot, \cdot\rangle$. The numerical radius of $T \in \mathcal{B}(\mathcal{H})$, denoted by $\omega(T)$, is given by

$$
\omega(T)=\sup _{\|x\|=1}|\langle T x, x\rangle|
$$

It is well-known that $\omega(\cdot)$ defines a norm on $\mathcal{B}(\mathcal{H})$ which is equivalent to the usual operator norm $\|T\|=\sup _{\|x\|=1}\|T x\|$. In fact for $T \in \mathcal{B}(\mathcal{H})$ we have

$$
\frac{1}{2}\|T\| \leq \omega(T) \leq\|T\|
$$

Several numerical radius inequalities that provide alternative lower and upper bounds for $\omega(T)$ have received much attention from many authors. We refer the readers to [3] for the history and significance, and [4] for

Received October 14, 2018. Revised March 6, 2019. Accepted Marcch 18, 2019. 2010 Mathematics Subject Classification: 47A12, 47A30, 47A63.
Key words and phrases: numerical radius, usual operator norm, b-numerical radius, b-norm.
(c) The Kangwon-Kyungki Mathematical Society, 2019.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.
recent developments in this area. Kittaneh in [6] proved that for $T \in$ $\mathcal{B}(\mathcal{H})$,

$$
\frac{1}{4}\left\|T^{*} T+T T^{*}\right\| \leq \omega^{2}(T) \leq \frac{1}{2}\left\|T^{*} T+T T^{*}\right\| .
$$

Let \mathcal{X} be a linear space of dimension greater than 1 over the field $\mathbb{K}=\mathbb{R}$ of real numbers or the field $\mathbb{K}=\mathbb{C}$ of complex numbers. Suppose that $\langle\cdot, \cdot \mid \cdot\rangle$ is a \mathbb{K}-valued function defined on $\mathcal{X} \times \mathcal{X} \times \mathcal{X}$ satisfying the following condition:
$\left(2 I_{1}\right)\langle x, x \mid z\rangle \geqslant 0$ and $\langle x, x \mid z\rangle=0$ if and only if x, z are linearly dependent,
$\left(2 I_{2}\right)\langle x, x \mid z\rangle=\langle z, z \mid x\rangle$,
$\left(2 I_{3}\right)\langle x, y \mid z\rangle=\overline{\langle y, x \mid z\rangle}$,
(2I $\left.4_{4}\right)\langle\alpha x, y \mid z\rangle=\alpha\langle x, y \mid z\rangle$ for any scaler $\alpha \in \mathbb{K}$,
$\left(2 I_{5}\right)\langle x+\dot{x}, y \mid z\rangle=\langle x, y \mid z\rangle+\langle\dot{x}, y \mid z\rangle$.
$\langle\cdot, \cdot \mid \cdot\rangle$ is called a 2 -inner product on \mathcal{X} and $(\mathcal{X},\langle\cdot, \cdot \mid \cdot\rangle)$ is called a 2 inner product space (or 2-pre-Hilbert space). Some basic properties of 2-inner product spaces can be immediately obtained as follows [1]:
(i) If $\mathbb{K}=\mathbb{R}$, then $\left(2 I_{3}\right)$ reduces to

$$
\langle y, x \mid z\rangle=\langle x, y \mid z\rangle,
$$

(ii) From $\left(2 I_{3}\right)$ and $\left(2 I_{4}\right)$, we have

$$
\langle 0, y \mid z\rangle=0, \quad\langle x, 0 \mid z\rangle=0
$$

and also

$$
\begin{equation*}
\langle x, \alpha \mid z\rangle=\bar{\alpha} y\langle x, y \mid z\rangle . \tag{1.1}
\end{equation*}
$$

(iii) Using $\left(2 I_{2}\right)-\left(2 I_{5}\right)$, we have

$$
\langle z, z \mid x \pm y\rangle=\langle x \pm y, x \pm y \mid z\rangle=\langle x, x \mid z\rangle+\langle y, y \mid z\rangle \pm 2 \operatorname{Re}\langle x, y \mid z\rangle
$$

and

$$
\begin{equation*}
\operatorname{Re}\langle x, y \mid z\rangle=\frac{1}{4}[\langle z, z \mid x+y\rangle-\langle z, z \mid x-y\rangle] . \tag{1.2}
\end{equation*}
$$

In the real case $\mathbb{K}=\mathbb{R}$, we have

$$
\begin{equation*}
\langle x, y \mid z\rangle=\frac{1}{4}[\langle z, z \mid x+y\rangle-\langle z, z \mid x-y\rangle] \tag{1.3}
\end{equation*}
$$

and, using this formula, it is easy to see that, for any $\alpha \in \mathbb{R}$

$$
\begin{equation*}
\langle x, y \mid \alpha z\rangle=\alpha^{2}\langle x, y \mid z\rangle . \tag{1.4}
\end{equation*}
$$

In the complex case, using (1.1) and (1.2), we have

$$
\operatorname{Im}\langle x, y \mid z\rangle=\frac{1}{4}[\langle z, z \mid x+i y\rangle-\langle z, z \mid x-i y\rangle],
$$

which, in combination with (1.2), yields

$$
\begin{equation*}
\langle x, y \mid z\rangle=\frac{1}{4}[\langle z, z \mid x+y\rangle-\langle z, z \mid x-y\rangle]+\frac{i}{4}[\langle z, z \mid x+i y\rangle-\langle z, z \mid x-i y\rangle] . \tag{1.5}
\end{equation*}
$$

Using the above formula and (1.1), we have, for any $\alpha \in \mathbb{C}$,

$$
\begin{equation*}
\langle x, y \mid \alpha z\rangle=|\alpha|^{2}\langle x, y \mid z\rangle . \tag{1.6}
\end{equation*}
$$

However, for $\alpha \in \mathbb{R}$ (1.6) reduces to (1.4). Also, from (1.6) it follows that

$$
\langle x, y \mid 0\rangle=0 .
$$

(iv) For any three given vectors $x, y, z \in \mathcal{X}$, consider the vector $u=$ $\langle y, y \mid z\rangle x-\langle x, y \mid z\rangle y$. By $\left(2 I_{1}\right)$, we know that $\langle u, u \mid z\rangle \geq 0$ with the equality if and only if u and z are linearly dependent. The inequality $\langle u, u \mid z\rangle \geq 0$ can be rewritten as,

$$
\begin{equation*}
\langle y, y \mid z\rangle\left[\langle x, x \mid z\rangle\langle y, y \mid z\rangle-|\langle x, y \mid z\rangle|^{2}\right] \geq 0 \tag{1.7}
\end{equation*}
$$

For $x=z$, (1.7) becomes

$$
-\langle y, y \mid z\rangle|\langle z, y \mid z\rangle|^{2} \geq 0
$$

which implies that

$$
\begin{equation*}
\langle z, y \mid z\rangle=\langle y, z \mid z\rangle=0 \tag{1.8}
\end{equation*}
$$

provided y and z are linearly independent. Obviously, when y and z are linearly dependent, (1.8) holds too. Thus (1.8) is true for any two vectors $y, z \in X$. Now, if y and z are linearly independent, then $\langle y, y \mid z\rangle>0$ and, from (1.7), it follows that

$$
\begin{equation*}
|\langle x, y \mid z\rangle|^{2} \leq\langle x, x \mid z\rangle\langle y, y \mid z\rangle . \tag{1.9}
\end{equation*}
$$

In any given 2 -inner product space $(\mathcal{X},\langle\cdot, \cdot \mid \cdot\rangle)$ we can define a function $\|\cdot \mid \cdot\|$ on $\mathcal{X} \times \mathcal{X}$

$$
\begin{equation*}
\|x \mid z\|=\sqrt{\langle x, x \mid z\rangle} \tag{1.10}
\end{equation*}
$$

for all $x, z \in \mathcal{X}$. It is easy to see that this function satisfies the following condition:
$\left(2 N_{1}\right)\|x \mid z\| \geq 0$ and $\|x \mid z\|=0$ if and only if x and z are linearly dependent,
$\left(2 N_{2}\right)\|x|z\|=\| z| x\|$,
$\left(2 N_{3}\right)\|\alpha x|z\|=|\alpha|\| z| x\|$, for any scaler $\alpha \in \mathbb{C}$,
$\left(2 N_{4}\right)\|x+\dot{x}|z\|\leq\| x| z\|+\|\dot{x} \mid z\|$.
Any function $\|\cdot \mid \cdot\|$ defined on $X \times \mathcal{X}$ and satisfying the conditions $\left(2 N_{1}\right)-\left(2 N_{4}\right)$ is called a 2 -norm on \mathcal{X} and $(\mathcal{X},\|\cdot \mid \cdot\|)$ is called a linear 2 -normed space $[2]$. Whenever a 2 -inner product space $(\mathcal{X},\langle\cdot, \cdot \mid \cdot\rangle)$ is given, we consider it as an inner 2 -normed space $(\mathcal{X},\|\cdot \mid \cdot\|)$ with the 2 -norm defined by (1.10).

2. Main results

Let $(\mathcal{X},\langle\cdot, \cdot \mid \cdot\rangle)$ be a 2 -inner product space and $b \in \mathcal{X}$, then the operator $T: \mathcal{X} \longrightarrow \mathcal{X}$ is said to be b-bounded if there exists $M \geq 0$ such that for all $x \in \mathcal{X}$

$$
\|T x|b\|\leq M\| x| b\| .
$$

Definition 2.1. Let $b \in \mathcal{X}$. Then b, T are called linearly dependent if for all $x \in \mathcal{X}$, there exists $\lambda_{x} \in \mathbb{C}$ such that

$$
T x=\lambda_{x} b .
$$

Definition 2.2. Let $\mathcal{B}_{b}(\mathcal{X})$ be the set of all b-bounded linear operators on space \mathcal{X} and $b \in \mathcal{X}$, then the map $\|\cdot \mid b\|: \mathcal{B}_{b}(\mathcal{X}) \longrightarrow \mathbb{R}^{+}$is called b-norm, if
(i) $\|T \mid b\|=0$ if and only if T and b are linearly dependent,
(ii) $\|\lambda T|b\|=|\lambda|\| T| b\|$,
(iii) $\left\|T_{1}+T_{2}\left|b\|\leq\| T_{1}\right| b\right\|+\left\|T_{2} \mid b\right\|$.

Remark 2.3. Let $b \in \mathcal{X}$, then the map

$$
\left\|\cdot\left|b\left\|: \mathcal{B}_{b}(\mathcal{X}) \longrightarrow \mathbb{R}^{+}, \quad\right\| T\right| b\right\|=\sup _{\|x \mid b\|=1}\|T x \mid b\|
$$

is a b-norm.
Theorem 2.4. Let $T \in \mathcal{B}_{b}(\mathcal{X})$, then

$$
\left\|T\left|b \|=\sup _{\|x|b\|=\| y| b\|=1}\right|\langle T x, y \mid b\rangle \mid .\right.
$$

Proof. For $x, y \in \mathcal{X}$, by (1.9), we have

$$
|\langle T x, y \mid b\rangle| \leq\|T x|b\| \| y| b\| .
$$

Thus

$$
\sup _{\|x|b\|=\| y| b\|=1}|\langle T x, y \mid b\rangle| \leq\|T \mid b\| .
$$

On the other hand, we have

$$
\sup _{\|x|b\|=\| y| b\|=1}|\langle T x, y \mid b\rangle| \geq \sup _{\|x \mid b\|=1}\left|\left\langle T x, \left.\frac{T x}{\|T x \mid b\|} \right\rvert\, b\right\rangle\right|,
$$

therefore

$$
\sup _{\|x|b\|=\| y| b\|=1}|\langle T x, y \mid b\rangle| \geq\|T \mid b\| .
$$

Let T be a b-bounded linear operator on the 2 -inner product space \mathcal{X}. According to Riesz theorem in 2-inner product spaces which was proved in [5], for constant $y \in \mathcal{X}$, there exists a unique b-bounded operator T^{*} such that for all $x, y \in \mathcal{X}$ we have $\langle T x, y \mid b\rangle=\left\langle x, T^{*} y \mid b\right\rangle$.

Definition 2.5. Let $T \in \mathcal{B}_{b}(\mathcal{X})$, the operator $T^{*}: \mathcal{X} \longrightarrow \mathcal{X}$ defined by

$$
\langle T x, y \mid b\rangle=\left\langle x, T^{*} y \mid b\right\rangle,
$$

is called the adjoint operator of T. And T is called self-adjoint if

$$
\langle T x, y \mid b\rangle=\langle x, T y \mid b\rangle .
$$

Definition 2.6. An operator T in 2-inner product space is called positive if it is self-adjoint and $\langle T x, x \mid b\rangle \geq 0$ for all $x \in \mathcal{X}$.

Theorem 2.7. Let $T, S \in \mathcal{B}_{b}(\mathcal{X})$ and $b \in \mathcal{X}$, then
(i) $\left\|T\left|b\|=\| T^{*}\right| b\right\|$,
(ii) $\left\|T^{*} T|b\|=\| T| b\right\|^{2}$,
(iii) If T is self-adjoint, then $\left\|T\left|b\left\|^{n}=\right\| T^{n}\right| b\right\|$,
(iv) $\|T S|b\|\leq\| T| b\|\|S \mid b\|$.

Proof. These properties can be easily deduced by using the definition of $\|T \mid b\|$.

Definition 2.8. Let $T \in \mathcal{B}_{b}(\mathcal{X})$ and $b \in \mathcal{X}$, then b-numerical radius is defined by

$$
\omega(T \mid b)=\sup _{\|x \mid b\|=1}|\langle T x, x \mid b\rangle| .
$$

The next results represent some of the basic properties and sharp lower bound for the b-numerical radius. The following general result for the product of two operators holds:

Theorem 2.9. For any $T, S \in \mathcal{B}_{b}(\mathcal{X})$, the b-numerical radius $\omega(\cdot \mid b)$: $\mathcal{B}_{b}(\mathcal{X}) \longrightarrow \mathbb{R}^{+}$satisfies the following properties:
(i) If $\omega(T \mid b)=0$, then T and b are linearly depended,
(ii) $\omega(\lambda T \mid b)=|\lambda| \omega(T \mid b)$,
(iii) $\frac{1}{2}\|T|b\|\leq \omega(T \mid b) \leq\| T| b\|$,
(iv) $\omega(T S \mid b) \leq 4 \omega(T \mid b) \omega(S \mid b)$.

Proof. (i) If $\omega(T \mid b)=0$ for all $x \in \mathcal{X}$, then $\langle T x, x \mid b\rangle=0$, and by choosing

$$
\left\{\begin{aligned}
x=x+y & \Rightarrow\langle T x, x \mid b\rangle+\langle T x, y \mid b\rangle+\langle T y, x \mid b\rangle+\langle T y, y \mid b\rangle=0 \\
x=x+i y & \Rightarrow\langle T x, x \mid b\rangle-i\langle T x, y \mid b\rangle+i\langle T y, x \mid b\rangle+\langle T y, y \mid b\rangle=0
\end{aligned}\right.
$$

Therefore

$$
\left\{\begin{array}{l}
\langle T x, y \mid b\rangle+\langle T y, x \mid b\rangle=0 \\
\langle T x, y \mid b\rangle-\langle T y, x \mid b\rangle=0
\end{array}\right.
$$

Thus

$$
\langle T x, y \mid b\rangle=0 .
$$

By choosing $y=T x$, we have

$$
\langle T x, T x \mid b\rangle=0 \Longrightarrow T x=\lambda_{x} b .
$$

(ii) This property can be easily deduced using the definition of $\omega(T \mid b)$.
(iii) For the first inequality, for any $x \in \mathcal{X}$, we have

$$
|\langle T x, x \mid b\rangle| \leq \omega(T \mid b)\|x \mid b\|^{2},
$$

and by (1.5), we have

$$
\begin{aligned}
4\langle T x, y \mid b\rangle= & \langle T(x+y),(x+y) \mid b\rangle-\langle T(x-y),(x-y) \mid b\rangle \\
& +i\langle T(x+i y),(x+i y) \mid b\rangle-i\langle T(x-i y),(x-i y) \mid b\rangle,
\end{aligned}
$$

for all $x, y \in \mathcal{X}$. Hence

$$
\begin{aligned}
4\langle T x, y \mid b\rangle \leq & \omega(T \mid b)(\|(x+y)|b\|+\|(x-y)| b\| \\
& +\|(x+i y)|b\|+\|(x-i y)| b\|) .
\end{aligned}
$$

Choosing $\|x|b\|=\| y| b\|=1$, we have

$$
4|\langle T x, y \mid b\rangle| \leq 8 \omega(T \mid b),
$$

which implies

$$
\|T \mid b\| \leq 2 \omega(T \mid b) .
$$

The second inequality can be easily deduced by using the definition of $\omega(T \mid b)$ and the inequality (1.9).
(iv) It follows from Theorem 2.7 (iv) that

$$
\omega(T S \mid b) \leq\|T S|b\|\leq\| T| b\|\|S \mid b\| \leq 4 \omega(T \mid b) \omega(S \mid b) .
$$

Theorem 2.10. If $T \in \mathcal{B}_{b}(\mathcal{X})$, then

$$
\begin{equation*}
\frac{1}{4}\left\|T^{*} T+T T^{*}\left|b\left\|\leq \omega^{2}(T \mid b) \leq \frac{1}{2}\right\| T^{*} T+T T^{*}\right| b\right\| . \tag{2.1}
\end{equation*}
$$

Proof. Let $T=C+i D$ be the Cartesian decomposition of T. Then C and D are self-adjoint, and $T^{*} T+T T^{*}=2\left(C^{2}+D^{2}\right)$. Let x be any vector in \mathcal{X}. Then by the convexity of the function $f(t)=t^{2}$, we have

$$
\begin{aligned}
|\langle T x, x \mid b\rangle|^{2} & =\langle C x, x \mid b\rangle^{2}+\langle D x, x \mid b\rangle^{2} \\
& \geq \frac{1}{2}(|\langle C x, x \mid b\rangle|+|\langle D x, x \mid b\rangle|)^{2} \\
& \geq \frac{1}{2}|\langle(C \pm D) x, x \mid b\rangle|^{2},
\end{aligned}
$$

and so we have

$$
\begin{aligned}
\omega^{2}(T \mid b) & =\sup _{\|x \mid b\|=1}|\langle T x, x \mid b\rangle|^{2} \\
& \geq \frac{1}{2} \sup _{\|x \mid b\|=1}|\langle(C \pm D) x, x \mid b\rangle|^{2} \\
& =\frac{1}{2}\left\|C \pm D\left|b\left\|^{2}=\frac{1}{2}\right\|(C \pm D)^{2}\right| b\right\| .
\end{aligned}
$$

Thus

$$
2 \omega^{2}(T \mid b) \geq \frac{1}{2}\left\|T^{*} T+T T^{*} \mid b\right\| .
$$

This proves the first inequality.
To prove the second inequality, note that for every unit vector $x \in \mathcal{X}$, by (1.9), we have

$$
\begin{aligned}
|\langle T x, x \mid b\rangle|^{2} & =\langle C x, x \mid b\rangle^{2}+\langle D x, x \mid b\rangle^{2} \\
& \leq\left\|C x\left|b\left\|^{2}+\right\| D x\right| b\right\|^{2}=\left\langle C^{2} x, x \mid b\right\rangle+\left\langle D^{2} x, x \mid b\right\rangle \\
& =\left\langle\left(C^{2}+D^{2}\right) x, x \mid b\right\rangle .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\omega^{2}(T \mid b) & =\sup _{\|x \mid b\|=1}|\langle T x, x \mid b\rangle|^{2} \\
& \leq \sup _{\|x|b|\|=1}\left\langle\left(C^{2}+D^{2}\right) x, x \mid b\right\rangle \\
& =\left\|C^{2}+D^{2}\left|b\left\|=\frac{1}{2}\right\| T^{*} T+T T^{*}\right| b\right\| .
\end{aligned}
$$

This proves the second inequality, and completes the proof of the theorem.

Theorem 2.11. Let $T, S: \mathcal{X} \longrightarrow \mathcal{X}$ be two b-bounded linear operators on the 2-inner product space $(\mathcal{X},\langle\cdot, \cdot \mid b\rangle)$, if $r \geq 0$ and

$$
\begin{equation*}
\|T-S \mid b\| \leq r \tag{2.2}
\end{equation*}
$$

then

$$
\begin{equation*}
\left\|\left.\frac{T^{*} T+S^{*} S}{2} \right\rvert\, b\right\| \leq \omega\left(S^{*} T \mid b\right)+\frac{1}{2} r^{2} . \tag{2.3}
\end{equation*}
$$

Proof. For any $x \in \mathcal{X},\|x \mid b\|=1$, we have from (2.2) that

$$
\begin{equation*}
\left\|T x\left|b\left\|^{2}+\right\| S x\right| b\right\|^{2} \leq 2 \operatorname{Re}\langle T x, S x \mid b\rangle+r^{2}, \tag{2.4}
\end{equation*}
$$

however

$$
\left\|T x\left|b\left\|^{2}+\right\| S x\right| b\right\|^{2}=\left\langle\left(T^{*} T+S^{*} S\right) x, x \mid b\right\rangle,
$$

and by (2.4) we obtain

$$
\left\langle\left(T^{*} T+S^{*} S\right) x, x \mid b\right\rangle \leq 2\left|\left\langle S^{*} T x, x \mid b\right\rangle\right|+r^{2} .
$$

By taking the supremum we get

$$
\begin{equation*}
\omega\left(T^{*} T+S^{*} S \mid b\right) \leq 2 \omega\left(S^{*} T \mid b\right)+r^{2} \tag{2.5}
\end{equation*}
$$

and since the operator $T^{*} T+S^{*} S$ is self-adjoint, hence $\omega\left(T^{*} T+S^{*} S \mid b\right)=$ $\left\|T^{*} T+S^{*} S \mid b\right\|$ and by (2.5) we deduce the desired inequality (2.3).

References

[1] Y.J. Cho, M. Matić and J.E. Pečarić, On Gram's determinant in 2-inner product spaces, J. Korean Math. Soc. 38 (2001), 1125-1156.
[2] R.W. Freese and Y.J. Cho, Geometry of Linear 2-Normed Spaces, Nova Science Publishers, Inc, New York, 2001.
[3] K.E. Gustafson and D. K. M. Rao, Numerical Range, Springer, New York, 1997.
[4] M.EL. Hadad and F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math. 182 (2007), 133-140.
[5] P.K. Harikrishnan, P. Riyas and K.T. Ravindran, Riesz theorems in 2-inner product spaces, Novi Sad J. Math. 41 (2011), 57-61.
[6] F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math. 168 (2005), 73-80.

Akram Babri Bajmaeh
Department of Mathematics
Mashhad Branch, Islamic Azad University
Mashhad, Iran
E-mail: babri6387@yahoo.com

Mohsen Erfanian Omidvar
Department of Mathematics
Mashhad Branch, Islamic Azad University
Mashhad, Iran
E-mail: erfanian@mshdiau.ac.ir

