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A FIXED POINT APPROACH TO THE STABILITY OF

A QUADRATIC-CUBIC FUNCTIONAL EQUATION

Yang-Hi Lee

Abstract. In this paper, we investigate the stability of the func-
tional equation

f(x + ky)− kf(x + y) + kf(x− y)− f(x− ky)− f(ky)

+
k3 + k2 − 2k

2
f(−y)− k3 − k2 − 2k

2
f(y) = 0

by using the fixed point theory in the sense of L. Cădariu and V.
Radu.

1. Introduction

Throughout this paper, let V and W be real vector spaces, Y a real
Banach space, and k a fixed nonzero real number such that |k| 6= 1. In
1940, the stability problem for group homomorphisms was first raised
by S. M. Ulam [15]. In the next year, D. H. Hyers [10] gave a partial
solution to Ulam’s question for the case of additive mappings. His result
was generalized by T. Aoki [1], Th. M. Rassias [13], and P. Găvruta [9].
Găvruta’ result has greatly influenced the study of the stability problem
of the functional equation.

In 2003, L. Cădariu and V. Radu [3] proved the stability of the qua-
dratic functional equation:

f(x+ y) + f(x− y)− 2f(x)− 2f(y) = 0(1)
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by using the fixed point method [4]. We call a solution of (1) a quadratic
mapping. Notice that a mapping f : V → W is called a cubic mapping
if f is a solution of the cubic functional equation

f(x+ 2y)− 3f(x+ y) + 3f(x)− f(x− y)− 6f(y) = 0.(2)

A mapping f is called a quadratic and cubic mapping if f is represented
by sum of a quadratic mapping and a cubic mapping. A functional
equation is called a quadratic-cubic functional equation provided that
each solution of that equation is a quadratic-cubic mapping and ev-
ery quadratic and cubic mapping is a solution of that equation. Many
mathematicians investigated the stability of the quadratic-cubic func-
tional equations [5, 6, 11, 12, 14, 16]. Now we consider the functional
equation:

f(x+ ky)−kf(x+ y) + kf(x− y)− f(x− ky)− f(ky)

+
k3 + k2 − 2k

2
f(−y)− k3 − k2 − 2k

2
f(y) = 0.(3)

The function f : R→ R defined by f(x) = ax3 + bx2 is a solution of
this functional equation, where a and b are real constants.

Many mathematicians proved the stability of the quadratic-cubic func-
tional equations by handling the odd part and the even part of the given
function f , respectively. In this paper, instead of splitting the given
function f : V → Y into two parts, we will prove the stability of the
functional equation (3) at once by using the fixed point theory and we
will show that the functional equation (3) is a quadratic-cubic functional
equation when k is a rational number.

2. Main results

We recall the following Margolis and Diaz’s fixed point theorem to
prove the main theorem.

Theorem 2.1. ([8]) Suppose that a complete generalized metric space
(X, d), which means that the metric d may assume infinite values, and
a strictly contractive mapping J : X → X with the Lipschitz constant
0 < L < 1 are given. Then, for each given element x ∈ X, either

d(Jnx, Jn+1x) = +∞, ∀n ∈ N ∪ {0},
or there exists a nonnegative integer k such that:
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(1) d(Jnx, Jn+1x) < +∞ for all n ≥ k;
(2) the sequence {Jnx} is convergent to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in Y := {y ∈ X, d(Jkx, y) < +∞};
(4) d(y, y∗) ≤ (1/(1− L))d(y, Jy) for all y ∈ Y.

For a given mapping f : V → W , we use the following abbreviations

fe(x) :=
f(x) + f(−x)

2
, fe(x) :=

f(x)− f(−x)

2
,

Cf(x, y) :=f(x+ 2y)− 3f(x+ y) + 3f(x)− f(x− y)− 6f(y),

Qf(x, y) :=f(x+ y) + f(x− y)− 2f(x)− 2f(y),

Dkf(x, y) :=f(x+ ky)− kf(x+ y) + kf(x− y)− f(x− ky)− f(ky)

+
k3 + k2 − 2k

2
f(−y)− k3 − k2 − 2k

2
f(y)

for all x, y ∈ V .
We need the following particular case of Baker’s theorem [2] to prove

Corollary 2.3.

Theorem 2.2. (Theorem 1 in [2]) Suppose that V and W are vector
spaces over Q, R or C and α0, β0, . . . , αm, βm are scalar such that αjβl−
αlβj 6= 0 whenever 0 ≤ j < l ≤ m. If fl : V → W for 0 ≤ l ≤ m and

m∑
l=0

fl(αlx+ βly) = 0

for all x, y ∈ V , then each fl is a ”generalized” polynomial mapping of
”degree” at most m− 1.

We easily obtain the next result from Baker’s Theorem.

Corollary 2.3. If a mapping f : V → W satisfies the functional
equation Dkf(x, y) = 0 for all x, y ∈ X, then f is a generalized polyno-
mial mapping of degree at most 3.

As we stated in the previous section, solutions of Qf ≡ 0 and Cf ≡
0 are called a quadratic mapping and a cubic mapping, respectively.
Suppose that f, g : X → Y are generalized polynomial mapping of
degree at most 3. It is well known that if the equalities f(kx) = k2f(x)
and g(kx) = k3g(x) hold for all x ∈ X and a fixed k ∈ Q\{−1, 0, 1},
then f and g are a quadratic mapping and a cubic mapping, respectively.

Now I will show that the functional equation Dkf(x, y) = 0 is a
quadratic-cubic functional equation when k ∈ Q\{−1, 0, 1}.
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Theorem 2.4. Let k ∈ Q\{−1, 0, 1}. A mapping satisfies the func-
tional equation Dkf(x, y) = 0 for all x, y ∈ V if and only if fe is quadratic
and fo is cubic.

Proof. Assume that a mapping f : X → Y satisfies the functional
equation Dkf(x, y) = 0 for all x, y ∈ V . The equalities fo(kx) = k3fo(x)
and fe(kx) = k2fe(x) follow from the equalities

fo(kx)− k3fo(x) = Dkfo(0, x), fe(kx)− k2fe(x) = −Dkfe(0, x)

for all x ∈ V . Since fo and fe are generalized polynomial mappings of
degree at most 3, fo is a cubic mapping and fe is a quadratic mapping.

Conversely, assume that fo is a cubic mapping and fe is a quadratic
mapping, i.e., f is quadratic-cubic mapping. Notice that the equalities
fo(kx) = k3fo(x), fo(x) = −fo(−x), fe(kx) = k2fe(x), fe(x) = fe(−x),
and f(x) = fo(x) + fe(x) hold for all x ∈ V and k ∈ Q.

First the equalities D2f(x, y) = 0 and D3f(x, y) = 0 follow from the
equalities

D2fo(x, y) = Cfo(x, y) + Cfo(x− y, y),

D2fe(x, y) = Qfe(x+ y, y)−Qfe(x− y, y),

D3fo(x, y) = Cfo(x− y, 2y),

D3fe(x, y) = Qfe(x+ y, 2y)−Qfe(x− y, 2y)

for all x, y ∈ X. If the equalities Djf(x, y) = 0 hold for all j ∈ N
when 2 ≤ j ≤ n − 1, then the equality Dnf(x, y) = 0 follows from the
equalities

Dnfo(x, y) =Dn−1fo(x+ y, y) +Dn−1fo(x− y, y)

−Dn−2fo(x, y) + (n− 1)D2fo(x, y),

Dnfe(x, y) =Dn−1fe(x+ y, y) +Dn−1fe(x− y, y)

−Dn−2fe(x, y) + (n− 1)D2fe(x, y)

for all x, y ∈ X. Using mathematical induction, we obtain

Dnf(x, y) = 0

for all x, y ∈ X and n ∈ N. Using the equalities

Dkfo(x, y) =fo(x+ ky)− kfo(x+ y) + kfo(x− y)

− fo(x− ky)− 2(k3 − k)fo(y),

Dkfe(x, y) =fe(x+ ky)− kfe(x+ y) + kfe(x− y)− fe(x− ky)
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for all x, y ∈ X and k ∈ Q, we get the desired equalities D n
m
f(x, y) = 0

and D−n
m
f(x, y) = 0 from the equalities

D n
m
fe(x, y) =Dnfe(x,

y

m
)− n

m
Dmfe(x,

y

m
),

D n
m
fo(x, y) =Dnfo(x,

y

m
)− n

m
Dmfo(x,

y

m
),

D−n
m
fe(x, y) =Dnfe(x,

−y
m

)− n

m
Dmfe(x,

−y
m

),

D−n
m
fo(x, y) =Dnfo(x,

−y
m

)− n

m
Dmfo(x,

−y
m

)

for all x, y ∈ X and n,m ∈ N.

Now we can prove some stability results of the functional equation
(3) by using the fixed point theory.

Theorem 2.5. Let ϕ : V 2 → [0,∞) be a given function and |k| > 1.
Suppose that the mapping f : V → Y satisfies the inequality

(4) ‖Dkf(x, y)‖ ≤ ϕ(x, y)

for all x, y ∈ V and f(0) = 0. If there exists a constant 0 < L < 1 such
that ϕ has the property

(5) ϕ(kx, ky) ≤ k2Lϕ(x, y)

for all x, y ∈ V , then there exists a unique mapping F : V → Y such
that

(6) ‖f(x)− F (x)‖ ≤ (|k|+ 1)(ϕ(0,−x) + ϕ(0, x))

2 · |k|3(1− L)

for all x ∈ V and DkF (x, y) = 0 for all x, y ∈ V . In particular, F is
represented by

(7) F (x) = lim
n→∞

(
f(knx) + f(−knx)

2 · k2n
+
f(knx)− f(−knx)

2 · k3n

)
for all x ∈ V .

Proof. Let S be the set of all mappings g : V → Y with g(0) = 0 and
introduce a generalized metric on S by

d(g, h) = inf{K ∈ R+|‖g(x)− h(x)‖ ≤ K(ϕ(0,−x) + ϕ(0, x)) ∀x ∈ V }.
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It is easy to show that (S, d) is a generalized complete metric space. Now
we consider the mapping J : S → S, which is defined by

Jg(x) :=
g(kx)− g(−kx)

2 · k3
+
g(kx) + g(−kx)

2 · k2

for all x ∈ V. Let g, h ∈ S and let K ∈ [0,∞] be an arbitrary constant
with d(g, h) ≤ K. From the definition of d, we have

‖Jg(x)− Jh(x)‖ ≤ |k + 1|
2 · |k|3

‖g(kx)− h(kx)‖+
|k − 1|
2 · |k|3

‖g(−kx)− h(−kx)‖

≤ 1

k2
K (ϕ(0,−kx) + ϕ(0, kx))

≤ KL(ϕ(0,−x) + ϕ(0, x))

for all x ∈ V , which implies that

d(Jg, Jh) ≤ Ld(g, h)

for any g, h ∈ S. That is, J is a strictly contractive self-mapping of S
with the Lipschitz constant L. Moreover, by (4), we see that

‖f(x)− Jf(x)‖ =
1

2 · |k|3
‖(k + 1)Dkf(0,−x) + (k − 1)Dkf(0, x)‖

≤|k|+ 1

2 · |k|3
(ϕ(0,−x) + ϕ(0, x))

for all x ∈ V . It means that d(f, Jf) ≤ |k|+1
2·|k|3 <∞ by the definition of d.

Therefore according to Theorem 2.1, the sequence {Jnf} converges to
the unique fixed point F : V → Y of J in the set T = {g ∈ S|d(f, g) <
∞}, which is represented by (7) for all x ∈ V . Notice that

d(f, F ) ≤ 1

1− L
d(f, Jf) ≤ |k|+ 1

2 · |k|3(1− L)
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which implies (6). By the definitions of F , together with (4) and (5), we
have that

‖Dkf(x, y)‖ = lim
n→∞

∥∥∥Dk(k
nx, kny)−Dkf(−knx,−, kny)

2 · k3n

+
Dkf(knx, kny) +Dkf(−knx,−kny)

2 · k2n
∥∥∥

≤ lim
n→∞

|k|n + 1

2 · |k|3n
(ϕ(knx, kny) + ϕ(−knx,−kny))

≤ lim
n→∞

(|k|n + 1)Ln

2 · |k|n
(ϕ(x, y) + ϕ(−x,−y))

=0

for all x, y ∈ V . So F satisfies DkF (x, y) = 0 for all x, y ∈ V . Notice
that if F is a solution of the functional equation (3), then the equality

F (x)−JF (x) = (k+1)DkF (0,−x)+(k−1)DkF (0,x)
2·k3 implies that F is a fixed point

of J . Hence F is unique mapping satisfying (6).

Theorem 2.6. Let ϕ : V 2 → [0,∞) be a given function and |k| < 1.
Suppose that the mapping f : V → Y satisfies the inequality (4) for all
x, y ∈ V and f(0) = 0. If there exists a constant 0 < L < 1 such that ϕ
has the property

(8) ϕ(kx, ky) ≤ |k|3Lϕ(x, y)

for all x, y ∈ V , then there exists a unique mapping F : V → Y satisfying
(6) for all x ∈ V and DkF (x, y) = 0 for all x, y ∈ V . In particular, F is
represented by (7) for all x ∈ V .

Proof. Let the set (S, d) and the mapping J : S → S be as in the
proof of Theorem 2.5. Let g, h ∈ S and let K ∈ [0,∞] be an arbitrary
constant with d(g, h) ≤ K. From the definition of d, we have

‖Jg(x)− Jh(x)‖ ≤ 1

|k|3
K (ϕ(0,−kx) + ϕ(0, kx))

≤ KL(ϕ(0,−x) + ϕ(0, x))

for all x ∈ V , which implies that

d(Jg, Jh) ≤ Ld(g, h)
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for any g, h ∈ S. That is, J is a strictly contractive self-mapping of S
with the Lipschitz constant L. Moreover, by (4), we see that

‖f(x)− Jf(x)‖ =
1

2 · |k|3
‖(k + 1)Dkf(0,−x) + (k − 1)Dkf(0, x)‖

≤|k|+ 1

2 · |k|3
(ϕ(0,−x) + ϕ(0, x))

for all x ∈ V . It means that d(f, Jf) ≤ |k|+1
2·|k|3 <∞ by the definition of d.

Therefore according to Theorem 2.1, the sequence {Jnf} converges to
the unique fixed point F : V → Y of J in the set T = {g ∈ S|d(f, g) <
∞}, which is represented by (7) for all x ∈ V . Notice that

d(f, F ) ≤ 1

1− L
d(f, Jf) ≤ |k|+ 1

2 · |k|3(1− L)

which implies (6). By the definitions of F , together with (4) and (8), we
have that

‖Dkf(x, y)‖ ≤ lim
n→∞

|k|n + 1

2 · |k|3n
(ϕ(knx, kny) + ϕ(−knx,−kny))

≤ lim
n→∞

(|k|n + 1)Ln

2
(ϕ(x, y) + ϕ(−x,−y))

=0

for all x, y ∈ V . So F satisfies DkF (x, y) = 0 for all x, y ∈ V . Notice
that if F is a solution of the functional equation (3), then the equality

F (x)−JF (x) = (k+1)DkF (0,−x)+(k−1)DkF (0,x)
2·k3 implies that F is a fixed point

of J . Hence F is unique mapping satisfying (6).

We continue our investigation with the next result.

Theorem 2.7. Let ϕ : V 2 → [0,∞) and k be a real number such
that |k| > 1. Suppose that f : V → Y satisfies the inequality (4) for all
x, y ∈ V and f(0) = 0. If there exists 0 < L < 1 such that the mapping
ϕ has the property

(9) Lϕ(kx, ky) ≥ |k|3ϕ(x, y)

for all x, y ∈ V , then there exists a unique mapping F : V → Y such
that

(10) ‖f(x)− F (x)‖ ≤ L

|k|3(1− L)
(ϕ(0,−x) + ϕ(0, x))
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for all x ∈ V and DkF (x, y) = 0 for all x, y ∈ V . In particular, F is
represented by
(11)

F (x) = lim
n→∞

(
k3n

2

(
f
( x
kn

)
− f

(
− x

kn

))
+
k2n

2

(
f
( x
kn

)
+ f

(
− x

kn

)))
for all x ∈ V .

Proof. Let the set (S, d) be as in the proof of Theorem 2.5. Now we
consider the mapping J : S → S defined by

Jg(x) :=
k3

2

(
g
(x
k

)
− g

(
−x
k

))
+
k2

2

(
g
(x
k

)
+ g

(
−x
k

))
for all g ∈ S and x ∈ V . Let g, h ∈ S and let K ∈ [0,∞] be an arbitrary
constant with d(g, h) ≤ K. From the definition of d, we have

‖Jg(x)− Jh(x)‖

≤ |k
3 + k2|

2

∥∥∥g (x
k

)
− h

(x
k

)∥∥∥+
|k3 − k2|

2

∥∥∥g (−x
k

)
− h

(
−x
k

)∥∥∥
≤ |k|3K

(
ϕ
(

0,−x
k

)
+ ϕ

(
0,
x

k

))
≤ LK (ϕ(0,−x) + ϕ(0, x))

for all x ∈ V . So

d(Jg, Jh) ≤ Ld(g, h)

for any g, h ∈ S. That is, J is a strictly contractive self-mapping of S
with the Lipschitz constant L. Also we see that

‖f(x)− Jf(x)‖ =

∥∥∥∥−Dkf

(
0,
−x
k

)∥∥∥∥ ≤ ϕ
(

0,−x
k

)
≤ L

|k|3
ϕ(0,−x)

for all x ∈ V , which implies that d(f, Jf) ≤ L
|k|3 < ∞. Therefore

according to Theorem 2.1, the sequence {Jnf} converges to the unique
fixed point F of J in the set T := {g ∈ S|d(f, g) < ∞}, which is
represented by (11) for all x ∈ V .

Notice that

d(f, F ) ≤ 1

1− L
d(f, Jf) ≤ L

|k|3(1− L)



352 Yang-Hi Lee

which implies (10). From the definition of F (x), (4), and (9), we have

‖DkF (x, y)‖ = lim
n→∞

∥∥∥k3n
2

(
Dkf

( x
kn
,
y

kn

)
−Dkf

(
− x

kn
,− y

kn

))
+
k2n

2

(
Dkf

( x
kn
,
y

kn

)
+Dkf

(
− x

kn
,− y

kn

))∥∥∥
≤ lim

n→∞

|k|3n + |k|2n

2

(
ϕ
( x
kn
,
y

kn

)
+ ϕ

(
− x

kn
,− y

kn

))
≤ lim

n→∞

(|k|n + 1)Ln

2 · |k|n
(ϕ(x, y) + ϕ(−x,−y))

=0

for all x, y ∈ V . So F satisfies DkF (x, y) = 0 for all x, y ∈ V . Notice
that if F is a solution of the functional equation (3), then the equality

F (x)− JF (x) = −DkF

(
0,
−x
k

)
implies that F is a fixed point of J .

Theorem 2.8. Let ϕ : V 2 → [0,∞) and k be a real number such
that |k| < 1. Suppose that f : V → Y satisfies the inequality (4) for all
x, y ∈ V and f(0) = 0. If there exists 0 < L < 1 such that the mapping
ϕ has the property

(12) Lϕ(kx, ky) ≥ k2ϕ(x, y)

for all x, y ∈ V , then there exists a unique mapping F : V → Y such
that

(13) ‖f(x)− F (x)‖ ≤ L

|k|2(1− L)
(ϕ(0,−x) + ϕ(0, x))

for all x ∈ V and DkF (x, y) = 0 for all x, y ∈ V . In particular, F is
represented by (11) for all x ∈ V .

Proof. Let the set (S, d) and the mapping J : S → S be as in the
proof of Theorem 2.7. Let g, h ∈ S and let K ∈ [0,∞] be an arbitrary
constant with d(g, h) ≤ K. From the definition of d, we have

‖Jg(x)− Jh(x)‖ ≤ k2K
(
ϕ
(

0,−x
k

)
+ ϕ

(
0,
x

k

))
≤ LK (ϕ(0,−x) + ϕ(0, x))

for all x ∈ V . So
d(Jg, Jh) ≤ Ld(g, h)
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for any g, h ∈ S. That is, J is a strictly contractive self-mapping of S
with the Lipschitz constant L. Also we see that

‖f(x)− Jf(x)‖ =

∥∥∥∥−Dkf

(
0,
−x
k

)∥∥∥∥ ≤ ϕ
(

0,−x
k

)
≤ L

|k|2
ϕ(0,−x)

for all x ∈ V , which implies that d(f, Jf) ≤ L
|k|2 < ∞. Therefore

according to Theorem 2.1, the sequence {Jnf} converges to the unique
fixed point F of J in the set T := {g ∈ S|d(f, g) < ∞}, which is
represented by (11) for all x ∈ V .

Notice that

d(f, F ) ≤ 1

1− L
d(f, Jf) ≤ L

|k|2(1− L)

which implies (13). From the definition of F (x), (4), and (12), we have

‖DkF (x, y)‖ ≤ lim
n→∞

|k|3n + |k|2n

2

(
ϕ
( x
kn
,
y

kn

)
+ ϕ

(
− x

kn
,− y

kn

))
≤ lim

n→∞

(|k|n + 1)Ln

2
(ϕ(x, y) + ϕ(−x,−y))

=0

for all x, y ∈ V . So F satisfies DkF (x, y) = 0 for all x, y ∈ V . Notice
that if F is a solution of the functional equation (3), then the equality

F (x)− JF (x) = −DkF

(
0,
−x
k

)
implies that F is a fixed point of J .

Corollary 2.9. Let X be a normed space, Y a Banach space, and
|k| > 1. Suppose that the mapping f : X → Y satisfies the inequality

‖Dkf(x, y)‖ ≤ θ(‖x‖p + ‖y‖p)

for all x, y ∈ X, where θ > 0 and p ∈ [0, 2) ∪ (3,∞). Then there exists
a unique mapping F : X → Y such that

‖f(x)− F (x)‖ ≤


2θ‖x‖p
|k|p−|k|3 if p > 3,

θ(|k|+1)‖x‖p
|k|(|k|2−|k|p) if 0 ≤ p < 2

for all x ∈ X and DkF (x, y) = 0 for all x, y ∈ X.
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Proof. This corollary follows from Theorem 2.5 and Theorem 2.7, by
putting ϕ(x, y) := θ(‖x‖p + ‖y‖p), L := |k|2−p < 1 when p < 2, and
L := |k|p−3 < 1 when p > 3.

Corollary 2.10. Let X be a normed space, Y a Banach space, and
|k| < 1. Suppose that the mapping f : X → Y satisfies the inequality

‖Dkf(x, y)‖ ≤ θ(‖x‖p + ‖y‖p)
for all x, y ∈ X, where θ > 0 and p ∈ [0, 2) ∪ (3,∞). Then there exists
a unique mapping F : X → Y such that

‖f(x)− F (x)‖ ≤


(|k|+1)θ‖x‖p
|k|3−|k|p if p > 3,

2θ‖x‖p
|k|p−|k|2 if 0 ≤ p < 2

for all x ∈ X and DkF (x, y) = 0 for all x, y ∈ X.

Proof. This corollary follows from Theorem 2.6 and Theorem 2.8, by
putting ϕ(x, y) := θ(‖x‖p + ‖y‖p), L := |k|2−p < 1 when p < 2, and
L := |k|p−3 < 1 when p > 3.

Corollary 2.11. Let X be a normed space and Y a Banach space.
Suppose that the mapping f : X → Y satisfies f(0) = 0 and the in-
equality

‖Dkf(x, y)‖ ≤ θ

for all x, y ∈ X, where θ > 0. Then there exists a unique quadratic and
cubic mapping F : X → Y such that

‖f(x)− F (x)‖ ≤


θ‖x‖p
1−|k|2 if |k| < 1,

θ(|k|+1)
2|k|(|k|2−1) if |k| > 1

for all x ∈ X.
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Franzens-Universitäet, Graz, Graz, Austria 346 (2004), 43–52.

[5] I.-S. Chang and Y.-S. Jung, Stability of a functional equation deriving from cubic
and quadratic functions, J. Math. Anal. Appl. 283 (2003), 491–500.

[6] Y.-J. Cho, M. Eshaghi Gordji, and S. Zolfaghari, Solutions and Stability of
Generalized Mixed Type QC Functional Equations in Random Normed Spaces,
J. Inequal. Appl. 2010 (2010), Art. ID 403101.

[7] S. Czerwik, On the stability of the quadratic mapping in the normed space, Abh.
Math. Sem. Hamburg, 62 (1992), 59–64.

[8] J. B. Diaz and B. Margolis, A fixed point theorem of the alternative for contrac-
tions on a generalized complete metric space, Bull. Amer. Math. Soc. 74 (1968),
305–309.
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