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A MAXIMUM PRINCIPLE FOR NON-NEGATIVE

ZEROTH ORDER COEFFICIENT IN SOME

UNBOUNDED DOMAINS

Sungwon Cho

Abstract. We study a maximum principle for a uniformly elliptic
second order differential operator in nondivergence form. We allow
a bounded positive zeroth order coefficient in a certain type of un-
bounded domains. The results extend a result by J. Busca in a sense
of domains, and we present a simple proof based on local maximum
principle by Gilbarg and Trudinger with iterations.

1. Introduction

We study a linear differential operator of the second order in nondi-
vergence form. Formally, it can be written in the following form:

(1) L =
∑

1≤i,j≤n

aij(x)
∂2

∂xi∂xj
+
∑

1≤i≤n

bi(x)
∂

∂xi
+ c(x).

Here, ∂
∂xi

means the derivative with respect to xi direction, and

∂2

∂xi∂xj
=

∂

∂xi
(
∂

∂xj
).
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We impose a restriction on its second order coefficients aij as follows:
for some positive constant ν > 0,

(2) ν|ξ|2 ≤
∑

1≤i,j≤n

aij(x)ξiξj ≤ ν−1|ξ|2 for all ξ ∈ Rn, x ∈ Ω.

Here, Ω is a given domain, open and connected set in Rn, and Ω de-
notes a topological closure of Ω. The operator L satisfying (2), is called
uniformly elliptic and ν (uniformly) ellipticity constant.

Unless it is stated otherwise, throughout the paper, we assume that
the operator L acts on functions in W 2,n(Ω), which have the weak de-
rivative up to the second order and its up to n-th power functions are
integrable in a given domain in a Lebesgue sense.

Many researchers studied the operator, and there are a lot of known
results, including regularities, a priori estimates, the existence of the so-
lution to the corresponding boundary value problems. One may consult
details in [5–8].

Among various available results, we are interested in a maximum
(minimum) principle.

Theorem 1.1. Let Ω be a given domain, which is bounded in Rn,
and u ∈ W 2,n

loc (Ω) ∩ C(Ω) such that Lu ≥ 0 in Ω. Here, L has a form of
(1) satisfying (2) with c ≤ 0.

Then, the positive maximum of u is attained on ∂Ω.
Similarly, if Lu ≤ 0 in Ω, then, the negative minimum of u is attained

on ∂Ω.

For the proof, one may refer to the references above. As an easy
application, the uniqueness of the solution the corresponding Dirichlet
boundary value problem is immediate from Theorem 1.1 above if Lu = 0
and u = 0 on its boundary.

Here, the bounded condition of the given domain and the sign con-
dition of the zeroth order coefficient c are necessary. To illustrate these
facts, we present two examples.

Example 1.1. Consider the domain of the upper half space; R+ :=
{x ∈ Rn |xn > 0, x = (x1, x2, ..., xn)}. In addition, we let L = ∆, where
∆ is the Laplace operator:

∆ :=
∑

1≤i≤n

∂2

∂xi∂xi
.
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Note that L is reduced to ∆ when aij = δij, bi = 0, c = 0, and δij denotes
a Kronecker delta function.

Then u±(x) = ±xn satisfies ∆u± = 0, and u± = 0 on ∂Ω = {xn = 0}.
But neither the positive maximum of u+ nor the negative minimum of
u− is attained on ∂Ω, respectively.

Example 1.2. Let L := d2

dx2
+ 1 be defined in one dimensional real

space R, and u±(x) = ± sinx. Then Lu± = 0 in (0, π), u±(0) = u±(π) =
0. But neither the positive maximum of u+ nor the negative minimum
of u− is attained on ∂Ω, respectively.

In this paper, we are interested in a maximum principle in some un-
bounded domains, or with a possibly positive condition for the zeroth
order coefficient. In this direction, J. Busca obtained some results. To
present his results, we need to introduce a condition for the domain:

Definition 1.3. [2, p. 2027] We shall call a domain Ω in Rn narrow
with constants (ρ, δ), ρ > 0, 0 < δ < 1, if for any y ∈ Ω, there exists a
ball Bρy(y) centered at y with radius ρy ≤ ρ, such that

|Bρy(y) ∩ Ωc| ≥ δ|Bρy(y)|.

For an example, an infinite cylinder of radius r is narrow with (2r, 1
2
).

Now we are ready to state Busca’s result:

Theorem 1.2. [2, Theorem 1.3] Let Ω be a domain in Rn and L
satisfy (1), (2), and the following conditions on its coefficients:

(3) aij ∈ C(Ω), bi, c ∈ L∞(Ω) with |bi(x)|, c(x) ≤ b.

Let u ∈ W 2,n
loc (Ω) ∩ C(Ω) be such that

(4)


Lu ≤ 0 in Ω,

u ≥ 0 on ∂Ω,

u(x) ≥ −Ceµ|x| in Ω.

for some positive constants C and µ. Then, for any δ, 0 < δ < 1, there
exists ρ = ρ(n, b, ν, µ, δ) > 0 such that if Ω is narrow with constants
(ρ, δ), then u ≥ 0 in Ω.
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Remark 1.4. Under the same conditions to Theorem 1.2, if we apply
−u instead of u from (4), we obtain the following: if

(5)


Lu ≥ 0 in Ω,

u ≤ 0 on ∂Ω,

u(x) ≤ Ceµ|x| in Ω,

then u ≤ 0. It is immediate to see that this fact is equivalent to Theo-
rem 1.2.

In the same paper, Busca also treat the case of c ≤ 0:

Theorem 1.3. [2, Proposition 6.1] Let L and u satisfy the conditions
in Theorem 1.3 and assume c ≤ 0. Then there exists µ0 = µ0(n, b, ν) > 0
such that if u satisfies (4) with µ < µ0, then u ≥ 0 in Ω.

For the proof of Theorem 1.2, he used the so-called “local Maximum
Principle” [6, Theorem 9.26]. We state it below, Theorem 2.1.

Note that he assumed u ≥ −Ceµ|x|, thus u is possibly unbounded.
To treat an unboundedness of a supersolution, the following function is
used. He set

g(x) = cosh(βx1) · · · cosh(βxn),

where β > µ. He used the fact L̃(u
g
) ≤ 0 for some L̃.

In this paper, we also use the “local Maximum Principle” [6, Theorem
9.26], but with its iteration, we are able to present a simple proof without
a comparison function, Theorem 1.4. Note the necessary conditions
and differences of the dependences of constants in Theorem 1.2 and
Theorem 1.4 below. Also, we generalized the domain used by Busca. To
state the result specifically, we need to introduce another definition for
the domains.

Definition 1.5. Let δ be a fixed number between 0 and 1, R and R0

be a positive number, and Ω be a given domain. We say that Ω satisfies
condition (M) (or simply (M)-domain) relative to δ, R outside of BR0(0)
if for any x ∈ Ω and |x| > R0, there exists a ball BRx(x0) of radius Rx

centered at x0 such that Rx ≤ R and

(6) x ∈ BRx(x0) and |B2Rx(x0) \ Ω| ≥ δ|B2Rx|,

where | · | denotes a Lebesgue measure.
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Note that Definition 1.5 is more general than Definition 1.3. In fact,
if R0 = 0 and x = x0 for each x ∈ Ω, then (G)-domain is a narrow
domain.

We remark here that the definition is a modified one to our purpose
from [4, Definition 1.2], which originally used in [1, Theorem 2.5].

Note also that x ∈ BRx(x0) but B2Rx(x0) is used in the inequality.
One can replace B2Rx(x0) by BRx(x0) with a different constant δ. See
Remark 2.1 below.

In this paper, we improve the results: the coefficients are assumed to
satisfy:

(7) aij = aji, aij, bi, c ∈ L∞(Ω) with |bi(x)| ≤ b0, |c(x)| ≤ c0.

Compare (3) and (7), and see Remark 3.1. Now we state the main result
of the paper.

Theorem 1.4. Let the operator L satisfy (1), (2), (7) in Ω, and
u ∈ W 2,n

loc (Ω)∩C0(Ω) satisfy (5) for some µ > 0. Furthermore, we assume
that there exist positive constants p0, δ, R,R0 such that C(1−δ)1/p0 < 1,
where C is the constant from (8) of Theorem 2.1 corresponding to

n, ν, ( b0R
ν

)2, c0R
2

ν
, p0, and Ω is (M)-domain relative to δ, R outside of

BR0(0). Then, there exists µ0 depending on C, δ, p0, R such that µ0 > µ,
then u ≤ 0 in Ω.

An example showing that the existence of subsolution having expo-
nential decay is illustrated. See Example 3.2.

We also have to mention Cabre’s result [4, Corollary 7.1], which is
already appeared in [1]. See also [3]. X. Cabre obtained a result for
bounded subsolutions.

Theorem 1.5. [4, Corollary 7.1] Let 0 < δ < 1 be a fixed constant
and assume that c ≤ c0 in Ω, for a positive constant c0. Then there
exists a positive constant R∗, which depends only on n, ν, b0, c0, and δ
such that if the domain Ω satisfies condition (M) relative to δ, R∗, the
following form of maximum principle holds: for u ∈ W 2,n

loc (Ω),

sup
Ω
u <∞, Lu ≥ 0 in Ω, and lim supx→∂Ωu(x) ≤ 0

imply u ≤ 0 in Ω.

In fact, the condition for the domain is more general. See [4, Definition
1.2].
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We prepare some preliminaries in Section 2, where several remarks
regarding the properties of (M)-domain and a key lemma, Theorem 2.1,
are stated. The main result, Theorem 1.4 is proved in Section 3 along
with Theorem 3.1. To finish the introductory section, we list some no-
tations which will be used in the paper.

For the point x, y ∈ Rn, |x− y| denote the standard distance.
For Br(x0), we denote the open ball of radius r centered at x0 in Rn.

Namely, Br(x0) := {x ∈ Rn | |x− x0| < r}. For the ball centered at the
origin, we will sometimes omit the center, like Br.

For the set Ω, it is domain if the set Ω is open and connected. We
denote its topological boundary by ∂Ω, its topological closure by Ω, the
Lebesgue measure by |Ω| .

For u+, we denote the positive part of the given function u. Namely,
u+(x) = max{u, 0}.

2. Preliminaries

First, we make some remarks regarding the properties of (M)-domain.

Remark 2.1. One can replace 2Rx to Rx from the inequality (6) of
Definition 1.5. For this, note that

|B2Rx(x0) \ Ω| ≥ |BRx(x0) \ Ω| ≥ δ|BRx| ≥
δ

2n
|B2Rx|.

Thus in all, if

|BRx(x0) \ Ω| ≥ δ|BRx|,
then

|B2Rx(x0) \ Ω| ≥ δ′|B2Rx|
for some δ′ = δ

2n
.

Remark 2.2. Note that Definition 1.5 holds for any subdomain of
(M)-domain of Ω with the same constants δ, R. Namely, if Ω is (M)-
domain relative to δ, R outside of BR0(0), then any subdomain Ω′(⊂ Ω)
is (M)-domain relative to δ, R outside of BR0(0).

Remark 2.3. Note also that if Ω is (M)-domain relative δ, R outside
of BR0(0), then Ω is (M)-domain relative δ, R outside of BR1(0) for any
R1 ≥ R0.
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The following is the local boundary maximum principle by Gilbarg
and Trudinger [6, Theorem 9.26], which is a key ingredient of the results
of the paper.

Theorem 2.1. Let the operator L satisfy (1), (2), (7) in Ω, and
u ∈ W 2,n

loc (Ω) ∩ C0(Ω) satisfy Lu ≥ f in Ω, u ≤ 0 on B2R(y) ∩ ∂Ω where
f ∈ Ln(Ω) and B2R(y) is a ball in Rn. Then, for any p > 0, we have

(8) sup
Ω∩BR(y)

u ≤ C

{(
1

|B2R|

∫
B2R(y)∩Ω

(u+)p
)1/p

+
R

ν
‖f‖Ln(B2R(y)∩Ω)

}
,

where C = C(n, ν, ( b0R
ν

)2, c0R
2

ν
, p).

3. Main results

Proof of Theorem 1.4. Without loss of generality, we may assume that
u ≥ 0 in Ω. If not, we consider Ω ∩ {u > 0}, which will be denoted by
Ω from no on. If this set is empty, we have nothing to prove. By Re-
mark 2.2, Ω is a (M)-domain relative to δ, R outside of BR0(0). Let

M(r) = sup
∂Br(0)∩Ω

u.

By the maximum principle for a bounded domain, Theorem 1.1, M is
a monotone increasing function. We may assume that M(R0) > 0. If
not, we can choose R1 > R0 such that m(R1) > 0. If R1 does not exist,
it implies that u ≤ 0 in Ω. Note that Ω is (M)-domain relative to δ, R
outside of BR1(0) by Remark 2.3. We still denote R1 by R0 from now
on.

Choose any x ∈ Ω and |x| = R0 + 3kR for each positive integer k.
Then, by Definition 1.5, we have for some x0, Rx < R,

(9) x ∈ BRx(x0) and |B2Rx(x0) \ Ω| ≥ δ|B2Rx|.

Using (9), Theorem 2.1 with p = p0, |x− x0| < Rx, Rx < R.

u(x) ≤ sup
Ω∩BRx (x0)

u ≤ C

(
|B2Rx(x0) ∩ Ω|
|B2Rx|

)1/p0

sup
Ω∩B2Rx (x0)

u

≤ C(1− δ)1/p0 sup
Ω∩B3R(x)

u.
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By the given condition, β := C(1− δ)1/p0 < 1. Thus,

u(x) ≤ β sup
Ω∩B3R(x)

u.

Since x was an arbitrary on Ω ∩ ∂BR0+3kR(0), we have

(10) M(R0 + 3kR) ≤ βM(R0 + 3(k + 1)R).

For an arbitrary x ∈ Ω \ BR0(0), let |x| = r and R0 + 3kR ≤ r <
R0 +3(k+1)R for some positive integer k. Using the maximum principle
for the bounded domain, Theorem 1.1, (10),

M(r) ≥M(R0 + 3kR) ≥ (
1

β
)kM(R0) ≥ (

1

β
)
r−R0−3R

3R M(R0)

= C(R,R0, C, p0, δ)(e
ln 1
β )
|x|
3RM(R0).

By (5), M(R0) > 0, we have

M(r) ≤ C ′eµr,

which leads to a contradiction when we choose µ0 <
1

3R
ln 1

β
.

Remark 3.1. For Theorem 1.4, we replace the condition of |c(x)| ≤ c0

from (7) by c(x) ≤ c0. For this, note that c+(x) ≥ c(x) where c+(x) :=
max{c(x), 0}. Thus Lu ≥ f implies that L+u ≥ f in Ω∩{u > 0}, where

L+ =
∑

1≤i,j≤n

aij(x)
∂2

∂xi∂xj
+
∑

1≤i≤n

bi(x)
∂

∂xi
+ c+(x).

Also note that |c+(x)| ≤ c0 if c(x) ≤ c0. Hence, we can apply Theo-
rem 2.1.

Is is possible to have more than one solution having exponential decay,
which is illustrated in the following:

Example 3.2. Let Ω := {(x, y) ∈ R2 |x ∈ R, y ∈ (0, π
µ
)} and

u(x, y) = eµx sinµy. Then ∆u = 0, u ≥ 0 in Ω, u = 0 on ∂Ω. But
M(r) ∼ eµr.

If c0 ·R2 is sufficiently small, we have the following:

Theorem 3.1. Let the operator L satisfy (1), (2), (7) in Ω, and
u ∈ W 2,n

loc (Ω) ∩ C0(Ω) satisfy (5) for some µ > 0. Furthermore, we
assume that there exist positive constants p0, δ, R,R0 such that C(1 −
δ)1/p0 + 2c0R2

ν
|B1| < 1, where C is the constant from (8) of Theorem 2.1
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corresponding to n, ν, ( b0R
ν

)2, 0, p0, and Ω is (M)-domain relative to δ, R
outside of BR0(0). Then, there exists µ0 depending on C, δ, p0, R, c0, ν, n
such that µ0 > µ, then u ≤ 0 in Ω.

Proof of Theorem 3.1. The proof is similar to Theorem 1.4. We will
be brief. Without loss of generality, we assume that u > 0 in Ω. We
define a monotone increasing function M by

M(r) = sup
∂Br(0)∩Ω

u,

and we assume that M(R0) > 0. Choose any x ∈ Ω and |x| = R0 + 3kR
for each positive integer k. Note the fact that

Lu ≥ 0 iff and only if
∑

1≤i,j≤n

aij(x)
∂2

∂xi∂xj
u+

∑
1≤i≤n

bi(x)
∂

∂xi
u ≥ −cu.

Thus, by (7), we have L′u ≥ −cu ≥ −c0u where

L′ =
∑

1≤i,j≤n

aij(x)
∂2

∂xi∂xj
+
∑

1≤i≤n

bi(x)
∂

∂xi
.

Fix p = p0, and using |x− x0| < Rx, Theorem 2.1 with L′, Rx < R.

u(x) ≤ sup
Ω∩BRx (x0)

u ≤ C

(
|B2Rx(x0) ∩ Ω|
|B2Rx|

)1/p0

sup
Ω∩B2Rx (x0)

u

+
R

ν
· c0 · ‖u‖Ln(Ω∩B2Rx (x0))

≤ C(1− δ)1/p0 sup
Ω∩B3R(x)

u+
2c0R

2

ν
|B1| sup

Ω∩B3R(x)

u.

Thus, we have that

u(x) ≤ β sup
Ω∩B3R(x)

u,

where β := C(1 − δ)1/p0 + 2c0R2

ν
|B1| < 1. Now we follow the proof of

Theorem 1.4.
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