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CERTAIN RESULTS INVOLVING FRACTIONAL

OPERATORS AND SPECIAL FUNCTIONS

Arman Aghili

Abstract. In this study, the author provided a discussion on one
dimensional Laplace and Fourier transforms with their applications.
It is shown that the combined use of exponential operators and in-
tegral transforms provides a powerful tool to solve space fractional
partial differential equation with non - constant coefficients. The
object of the present article is to extend the application of the joint
Fourier - Laplace transform to derive an analytical solution for a va-
riety of time fractional non - homogeneous KdV. Numerous exercises
and examples presented throughout the paper.

1. Introduction and Definitions

In this section, we introduce here a method which is free of disad-
vantages and suitable for a wide range of boundary value problems for
fractional differential equations. The method uses the Laplace transform
technique and is based on the properties of the Laplace transforms.

Definition 1.1. The Laplace transform of the function f(t) is de-
fined as follows

L{f(t)} =

∫ ∞
0

e−stf(t)dt := F (s).
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If L{f(t)} = F (s), then L−1{F (s)} is given by [3]

f(t) =
1

2πi

∫ c+i∞

c−i∞
estF (s)ds,

where F (s) is analytic in the region Re(s) > c.

In the literature, there are many different definitions of the fractional
derivative, all of which generalize on the usual integer order derivative.
We will consider here the so called Riemann - Liouville and Caputo
derivatives.

Definition 1.2. If the function φ(t) belongs to C[a, b] and a < t < b,
then the left Riemann-Liouville fractional integral of order α > 0 is de-
fined as

IRL,αa {φ(t)} =
1

Γ(α)

∫ t

a

φ(ξ)

(t− ξ)1−αdξ. (1.3)

Definition 1.3. The left Riemann-Liouville fractional derivative of
order α > 0 is defined as following [8,9].

DRL,α
a φ(x) = 1

Γ(1−α)
d
dx

∫ x
a

Φ(ξ)
(x−ξ)αdξ, (1.4)

it follows that DRL,α
a φ(x) exists for all φ(x) belongs to C[a, b] ,and a <

x < b .

Note: A very useful fact about the R- L operators is that they
satisfy semi-group properties of fractional integrals. The special case of
the fractional derivative when
α = 0.5 is called semi-derivative.

Definition 1.4. The left Caputo fractional derivative of order α
(0 < α < 1) of φ(x) is defined as follows [8,9]

DC,α
a φ(x) = 1

Γ(1−α)

∫ x
a

1
(x−ξ)αφ

′(ξ)dξ. (1.5)

In recent years, a growing number of works by many researchers from
various fields of sciences and engineering deal with fractional differential
and integral equations which means equations involving derivatives and
integrals of non - integer order. These new models are more adequate
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than the previously used integer order models. One of the most interest-
ing applications of the Laplace transforms is solving linear differential
equations with discontinuous forcing functions which are common place
in mechanical systems and circuit analysis problems. Recently [10], the
authors used Yang- Laplace transform method to solve Volterra and
Abels integro-differential equations of fractional order.

Example 1.1 Let us consider the following fractional differential
equation under non-zero initial condition

DC,α
t y(t) + βy(t) = λχ[0,a], y(0) = 1, t > 0, α = 0.5.

Note. Observe that the characteristic function χ[0,a] is discontinuous
but not differentiable at t = a.
The above fractional equation has the following formal solution.

y(t) = eβ
2tErfc(β

√
t) +

λ

β
− λeβ

2t

β
Erfc(β

√
t)− .....

..− λ
∫ t

a

(
1√

π(t− ξ)
− aea2(t−ξ)Erfc(a(

√
t− ξ)))dξ.

Solution. Let us take the Laplace transform of the above fractional
differential equation term wise and using boundary condition, we get the
following

sαY (s)− sα−1 + βY (s) =
λ(1− e−as)

s
,

let us put α = 0.5 we arrive at

(
√
s+ β)Y (s) =

1√
s

+
λ

s
(1− e−as).

Solving the above equation, yields

Y (s) =
1√

s(
√
s+ β)

+
λ

s(
√
s+ β)

− λe−as

s(
√
s+ β)

.

At this stage, taking the inverse Laplace transform of the above relation,
leads to

y(t) = eβ
2tErfc(β

√
t) +

λ

β
− λeβ

2t

β
Erfc(β

√
t)− .....

..− λ
∫ t

a

(
1√

π(t− ξ)
− aea2(t−ξ)Erfc(a(

√
t− ξ)))dξ.
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Let us evaluate the Laplace transform of the Krätzel function Zν
ρ (ξ).

Definition 1.5. By definition, Krätzel function Zν
ρ (ξ) is as follows

[9]

Zν
ρ (ξ) =

∫ ∞
0

e−u
ρ− ξ

u

u1−ν du.

Krätzel function was introduced by E.Krätzel as a kernel of the integral
transform

(Kν
ρφ)(ξ) =

∫ ∞
0

Zν
ρ (ξt)φ(t)dt.

We note that the Krätzel function occurs in the study of astrophysical
thermonuclear functions, which are derived on the basis of Boltzmann-
Gibbs statistical mechanics. It is also important to note that, the Krätzel
function Zν

1 (ξ) is related to the modified Bessel function of second kind
Kν or Macdonald’s function. Note that this function is useful in chemical
physics. Some authors, deduced explicit forms of Krätzel function in
terms of the generalized Wright function,[8].
The Laplace transform of the Krätzel function is defined as follows

L{Zν
ρ (ξ)} =

∫ ∞
0

e−sξ(

∫ ∞
0

e−u
ρ− ξ

u

u1−ν du)dξ,

by changing the order of integration, the following relationship will be
obtained

L{Zν
ρ (ξ)} =

∫ ∞
0

e−u
ρ

u1−ν (
u

su+ 1
)du =

∫ ∞
0

(
uνe−u

ρ

su+ 1
)du.

Let us take s = 0 , after integration and simplifying, we arrive at

L{Zν
ρ (ξ)}s=0 =

∫ ∞
0

Zν
ρ (ξ)dξ =

∫ ∞
0

(uνe−u
ρ

)du =
1

ρ
Γ(
ν + 1

ρ
).

At this point, if we differentiate the above relation with respect to ν, we
get ∫ ∞

0

Z∗,νρ (ξ)dξ =
1

ρ2
Γ′(

ν + 1

ρ
).
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1. In special case ρ = 1 after simplifying,∫ ∞
0

Z∗,ν1 (ξ)dξ = Γ′(1 + ν).

2. In special case ν = 0 and ρ = 1 after simplifying, we get the following
integral representation for the Euler constant γ∫ ∞

0

Z∗,01 (ξ)dξ = Γ′(1) = −γ.

Note: In the above relation γ = 0.57721566...., stands for the Euler -
Mascheroni constant.

2. Evaluation of Integrals by Means of The Laplace Trans-
form

The integral transform technique is one of the most useful tools of
applied mathematics employed in many branches of engineering and sci-
ence.

Problem 2.1. Let us evaluate the following integrals

I1 =

∫ ∞
0

e−βx cosmx

xρ
dx , I2 =

∫ ∞
0

e−βx sinmx

xρ
dx , 0 < ρ < 1.(1)

Solution. Let us define the following integral

I = I1 − iI2 =

∫ ∞
0

e−(β+im)xx−ρdx.

Recall the definition of the Laplace transform, it is easily verified that

I = L{x−ρ; s = β + im} =
Γ(1− ρ)

(β + im)1−ρ = Γ(1− ρ)e(ρ−1)log(β+im).

The last equation holds because ξb = eb ln ξ, on the other hand we know
that
Log(β + im) = ln(

√
m2 + β2) + i arctan(m

β
) then we obtain

I = Γ(1− ρ)e(ρ−1) ln(
√
m2+β2)+i(ρ−1) arctan(m

β
),
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consequently

I1 = Γ(1− ρ)e(ρ−1) ln(
√
m2+β2) cos((ρ− 1) arctan(

m

β
)),

and

I2 = Γ(1− ρ)e(ρ−1) ln(
√
m2+β2) sin((ρ− 1) arctan(

m

β
)).

Let us consider the special case, ρ = 1
n

, β = 0, we have

I1 =

∫ ∞
0

cosmx

x
1
n

dx = Γ(1− 1

n
)m−1+ 1

n cos((1− 1

n
)
π

2
) = Γ(1− 1

n
)m−1+ 1

n sin(
π

2n
),

and

I2 =

∫ ∞
0

sinmx

x
1
n

dx = −Γ(1− 1

n
)m−1+ 1

n sin((1− 1

n
)
π

2
) = Γ(1− 1

n
)m−1+ 1

n cos(
π

2n
).

Kelvin functions: Kelvin functions ber(x) and bei(x), are defined as
[3]

ber(x) = ReJ0(i
√
ix) , bei(x) = ImJ0(i

√
ix).

We know that L{J0(2
√
at); t→ s} = e−

a
s

s
let a = i3 to get

L{bei(2
√
t)} = Im

(
e−

i3
s

s

)
= 1

s
sin 1

s
, L{ber(2

√
t)} = Re

(
e−

i3
s

s

)
=

1
s

cos 1
s
.

Example 2.1. The following integral identity holds true

I =

∫ ∞
0

e−βt
2

ber(2
√
t)dt =

1

2

√
π

β
cos(

1

2
√
β

).(2)

Solution. Let us define the following integral

I(x) =

∫ ∞
0

e−βt
2

ber(2
√
xt)dt.

Taking the Laplace transform w.r.t x, and using table of the Laplace
transform leads to

L{I(x);x→ s} =
1

s

∫ ∞
0

e−βt
2

cos
t

s
dt,
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consequently, by evaluation of the above integral, we get L{I(x)} =
1
2s

√
π
β
e
− 1

4βs2 , using the fact that L{xp−1} = Γ(p)
sp

, we arrive at

I(x) = L−1{1

2

√
π

β

+∞∑
k=0

(−1)k

s(4βs2)k
} =

1

2

√
π

β

+∞∑
k=0

(−1)kx2k

(4β)kΓ(2k + 1)
=

1

2

√
π

β
cos(

x

2
√
β

).

Now, let us choose x = 1 to get the desired identity as below

I =
1

2

√
π

β

+∞∑
k=0

(−1)k

(4β)kΓ(2k + 1)
=

1

2

√
π

β
cos(

1

2
√
β

).

Lemma 2.1. The following exponential operator relations hold true

1. exp(±λ d
dt

)Ψ(t) = Ψ(t±λ).

2. exp(±λt d
dt

)Ψ(t) = Ψ(te±λ).

3. exp(±λ d

tdt
Ψ(t)) = Ψ(

√
t2 ± λ2).

4. exp(λq(t)
d

dt
)Ψ(t) = Ψ(Q(F (t) + λ)).

Where F (t) is a primitive function of (q(t))−1 and Q(t) is the inverse
function of F (t).

Proof. See[4,5,6]

Lemma 2.2. Let us assume that L(φ(t)) = Φ(s), then we have the
following relations

1. e−ωs
β

=
1

π

∫ ∞
0

e−r
β(ωcosβπ)sin(ωrβsinβπ)(

∫ ∞
0

e−sτ−rτdτ)dr.

2. L−1(Φ(
√
s) =

1

2t
√
πt

∫ ∞
0

ue−
u2

4t φ(u)du.

3. e−k
√
s =

∫ ∞
0

k

2ξ
√
πξ
e−sξ−

k2

4ξ dξ.

Proof. See [1,2].
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Lemma 2.3. The following exponential identity holds true.

1. 1√
1
2ξ

d
dξ

exp(−λ
2

2ξ
d
dξ

)φ(ξ) = 1√
π

∫∞
λ2

1√
x−λ2φ(

√
ξ2 − x))dx.

Proof. Let us consider the following elementary integral∫ ∞
λ2

e−qx√
x− λ2

dx =

√
π
√
q
e−λ

2q,(3)

in the above integral, let us choose q = 1
2ξ

d
dξ

, we get the following relation

√
π√

1
2ξ

d
dξ

e
−λ2
2ξ

d
dξφ(ξ) =

∫ ∞
λ2

dx
e−

x
2ξ

d
dξ

√
x− λ2

φ(ξ),(4)

after simplifying, we arrive at

1√
1
2ξ

d
dξ

exp(
−λ2

2ξ

d

dξ
)φ(ξ) =

1√
π

∫ ∞
λ2

1√
x− λ2

φ(
√
ξ2 − x))dx.(5)

Problem 2.2. Let us solve the following space fractional linear PDE
with non - constant coefficients by means of the fractional exponential
operator method

√
xDR.L,0.5

x u− βtβ−1u+ ut = 0,
u(x, 0) = φ(x).

Solution. In order to solve the above space fractional PDE, by solving
the first order FPDE with respect to t, we get the formal solution as
follows

u(x, t) = et
β
e−t
√
xDR.L,0.5x φ(x),

the right hand side of the above equation can be simplified using the
third identity of the Lemma 2.2, then, by replacing s = Dx , k = t

√
x,

we get the solution as below

u(x, t) = et
β ∫∞

0
t
√
x

2ξ
√
πξ
e−ξ∂x−

(t
√
x)2

4ξ dξφ(x),

after simplifiying, we arrive at

u(x, t) = et
β ∫∞

0
t
√
x

2ξ
√
πξ
e−

xt2

4ξ φ(x− ξ)dξ.
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Lemma 2.4. The following exponential identity holds true

1. exp(−λ
√

d

dx
)Ψ(x) =

λ√
π

∫ ∞
0

rJ0(λr)(

∫ ∞
0

e−ηr
2

√
η

Ψ(x− η)dη)dr.

Proof. Let us start with the following Laplace transform identity

L(J0(rt)) =

∫ ∞
0

e−ptJ0(rt)dt =
1√

p2 + r2
.

The left hand side can be rewritten as Hankel transform of the exponen-
tial function of order zero as below∫ ∞

0

e−pt

t
tJ0(rt)dt = H0(

e−pt

t
) =

1√
p2 + r2

,

upon inversion of the Hankel transforms of order zero, we get the fol-
lowing ∫ ∞

0

1√
r2 + p2

rJ0(tr)dr =
e−pt

t
.

At this stage, let us put p2 = s in the above relation to obtain

e−t
√
s = t

∫ ∞
0

rJ0(tr)(r2 + s)−
1
2dr,

in the above identity, let us choose s = d
dx

and t = λ, then we get the
following exponential identity

e−λ
√

d
dxΨ(x) = λ

∫ ∞
0

rJ0(λr)((r2 +
d

dx
)−

1
2 Ψ(x))dr,

in order to find the result of the action of the operator over the function,
we use the following well known elementary identity

ξ−ν =
1

Γ(ν)

∫ ∞
0

e−ξuuν−1du, ν > 0,

by choosing ν = 1
2

and ξ = r2 + d
dx

, and in view of the Lemma 2.1. we
get the following relation

exp(−λ
√

d

dx
)Ψ(x) =

λ√
π

∫ ∞
0

rJ0(λr)(

∫ ∞
0

e−ηr
2

√
η

Ψ(x− η)dη)dr.
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Theorem 2.1. The following exponential identity holds true

1. exp(−λ
√

d

dx
)Ψ(x) =

λ1−ν2ν√
π

∫ ∞
0

rν+1Jν(λr)(

∫ ∞
0

e−ηr
2

η0.5−ν Ψ(x− η)dη)dr.

Proof. Let us start with the following Laplace transform identity

L(tνJν(rt)) =

∫ ∞
0

e−pttνJν(rt)dt =
(2r)νΓ(ν + 0.5)√
π(p2 + r2)ν+0.5

.

The left hand side can be rewritten as Hankel transform of exponential
function of order ν as below∫ ∞

0

e−pt

t1−ν
tJν(rt)dt = Hν(

e−pt

t1−ν
) =

2νrνΓ(ν + 0.5)√
π(p2 + r2)ν+0.5

,

upon inversion of the Hankel transform of order ν, we get the following∫ ∞
0

2νrνΓ(ν + 0.5)√
π(r2 + p2)ν+0.5

rJν(tr)dr =
e−pt

t1−ν
.

At this point, let us put p2 = s in the above relation to get

e−t
√
s = t1−ν

2νΓ(ν + 0.5)√
π

∫ ∞
0

rν+1Jν(tr)(r
2 + s)−(ν+ 1

2
)dr,

in the above identity, let us choose s = d
dx

and t = λ, then we get the
following exponential identity

e−λ
√

d
dxΨ(x) = λ1−ν 2νΓ(ν + 0.5)√

π

∫ ∞
0

rν+1Jν(λr)((r
2+

d

dx
)−(ν+ 1

2
)Ψ(x))dr,

in order to find the result of the action of the operator over the function,
we use the following well known elementary identity

ξ−δ =
1

Γ(δ)

∫ ∞
0

e−ξηηδ−1dη, δ > 0,

by choosing δ = ν + 1
2

and ξ = r2 + d
dx

, in view of the Lemma 2.1. we
have the following

exp(−λ
√

d

dx
)Ψ(x) =

λ1−ν2ν√
π

∫ ∞
0

rν+1Jν(λr)(

∫ ∞
0

e−ηr
2

η0.5−ν Ψ(x− η)dη)dr.
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Note. The Hankel transforms arise naturally in solving boundary
value problems formulated in cylindrical coordinates. They also occur
in other applications such as determining the oscillations of heavy chain
suspended from one end.

Solution to Singular Integral Equation with Kernel of Kelvin’s
Functions.
Problem 2.3. Let us consider the following singular integral equation√

2

π

∫ +∞

0

φ(t) bei(2
√
ξt)dt = J0(2

√
kξ),

the formal solution is as follows

φ(t) =

√
2

π

t

t2 + k2
.

Solution. By taking the Laplace transform of each term in the above
equation, we find√

2

π

∫ +∞

0

φ(t) L{bei(2
√
ξt); ξ− > s}dt = L{J0(2

√
kξ) : ξ− > s},

or √
2

π

∫ +∞

0

φ(t) {1

s
sin

t

s
}dt =

e−
k
s

s
.

For the sake of simplicity, let us take

1

s
= ω.

Then we get √
2

π

∫ +∞

0

φ(t) sinωt dt = e−kω,

the left hand side by definition is the Fourier sine transform of certain
functions, so that

Fs{φ(t); t− > ω} = e−kω.

Using the inversion formula for the Fourier sine transform to obtain

φ(t) =

√
2

π

∫ +∞

0

e−kω sin(tω)dω,

or

φ(t) =

√
2

π

t

t2 + k2
.
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Corollary 2.1. We have the following integral representation for
the Bessel’s function of order zero.

J0(2
√
kξ) =

2

π

∫ +∞

0

t

t2 + k2
bei(2

√
ξt)dt.

Let us solve the following partial differential equation with non - constant
coefficients by means of exponential operators method.

Example 2.2. Let us solve the following initial value problem

ut = αλtλ−1u− β

x
ux, α, β > 0, λ > 1, u(x, 0) = ψ(x).

Solution. In order to solve the above PDE, we can rewrite the above
PDE in the following form

∂u

∂t
= (αλtλ−1 − β

x

∂

∂x
)u,

by solving the first order PDE with respect to t, we get the formal
solution as follows

u(x, t) = eαt
λ
e−

βt
x

d
dxψ(x),

the right hand side of the above equation can be treated using third part
of the Lemma 2.1.

u(x, t) = eαt
λ

ψ(
√
x2 − β2t2).

Note. It is easy to verify that

u(x, 0) = ψ(x).

3. Stieltjes transform

Definition 3.1. The Stieltjes transform is defined as follows [7]

S{f(t), s} =

∫ ∞
0

f(t)dt

t+ s
.

It is well known that the second iterate of the Laplace transform is the
Stieltjes transform, that is

L2{f(t); s} = L{L{f(t);u}, s} = S{f(t), s} = F (s).

The complex inversion formula for the Stieltjes transform is defined as
follows



Fractional operators with applications 499

f(t) =S−1{F (s), t} = L−1{L−1{F (p); s}, t}

=
1

2πi

∫ c+i∞

c−i∞
est

(
1

2πi

∫ c′+i∞

c′−i∞
F (p)epsdp

)
ds.

Example 3.1. The following identity holds true

L{Zν
ρ (ξ)} =

1

s
S{uνe−uρ :

1

s
}.

Solution.

L{Zν
ρ (ξ)} =

∫ ∞
0

e−u
ρ

u1−ν (
u

su+ 1
)du =

∫ ∞
0

(
uνe−u

ρ

su+ 1
)du =

1

s
S{uνe−uρ :

1

s
}.

Lemma 3.1. Let us assume that Lf(t) = F (s), L[g(t)] = G(s) and
Sf(t) = H(r), then we have the following integral relation∫ ∞

0

F (s)G(s)ds =

∫ ∞
0

g(r)H(r)dr.

Provided that all integrals involved converge absolutely.

Proof. It is not difficult to verify.

Note.The above Lemma has an interesting application as below

Example 3.2. Let us take f(t) = J0(2
√
αt), g(t) = ( t

β
)
ν
2 Iν(2

√
βt),

then we have L(J0(2
√
αt)) = F (s) = e−

α
s

s
, L(( t

β
)
ν
2 Iν(2

√
βt)) = G(s) =

e
β
s

sν+1 and
H(r) = Sf(t) = K0(2

√
αr), by setting the above information in the

Lemma 3.1., we arrive at∫ ∞
0

(
e−

α
s

s
)(
e
β
s

sν+1
)ds =

∫ ∞
0

(
r

β
)
ν
2 Iν(2

√
βr)K0(2

√
αr)dr.

After evaluating the first integral, we obtain∫ ∞
0

(
r

β
)
ν
2 Iν(2

√
βr)K0(2

√
αr)dr =

Γ(ν + 1)

(α− β)ν+1
, , α > β ≥ 0.
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4. Main Results

In [8]the authors established explicit solutions of Cauchy type prob-
lems for fractional diffusion - wave partial differential equations involv-
ing the Riemann - Liouville fractional derivatives of order α > 0. They
also considered fractional differential equations involving the partial Ca-
puto fractional derivative with respect to time, t and the Laplacian with
respect to x, with order n− 1 ≤ α < n. They applied the joint Laplace-
Fourier integral transforms to construct analytic solutions of Cauchy
type and Cauchy problems for fractional diffusion - wave and evolution
equations.

Solution to Time Fractional Linearized KdV via The Joint
Laplace- Fourier Transform.

The KdV equations are attracting many researchers, and a great deal
of works has already been done in some of these equations. In this
section, we will implement the joint Laplace- Fourier transforms to con-
struct an exact solution for a variety of the KdV equation with the time
fractional derivative in the Caputo sense.
To the best of our knowledge, this kind of Kdv equation has not been
studied in any detail.

Problem 4.1. Solving the following time fractional non-homogeneous
linearized KdV, is not yet considered

cD
1
2
t u+ αu+ βux + γuxxx = φ(x)

u(x, 0) = f(x).

Solution. By taking the joint Laplace - Fourier transform of equation
and using boundary condition, we get the following transformed equation

ˆ̄U(w, s) =
1√
s

F (w)√
s+ (iwβ − iγw3 − α)

+
1

s

Φ(w)√
s+ (iwβ − iγw3 − α)

.

For the sake of simplicity, let us assume that τ = iwβ − iγw3 − α,
and using the inverse Laplace transform of the transformed equation to
obtain

Û(w, t) = L−1{ 1√
s

F (w)√
s+ τ

+
Φ(w)

s(
√
s+ τ)

; s− > t},
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or

Û(w, t) = (
1√
πt

)∗ F (w)

2t
√
πt

∫ +∞

0

e−( ξ
2

4t
+τξ)dξ+h(t)∗ Φ(w)

2t
√
πt

∫ +∞

0

e−( ξ
2

4t
+τξ)dξ.

At this stage, inverting the Fourier transform to get

u(x, t) =
1√
2π

∫ +∞

−∞
e(−ixw){( 1√

πt
) ∗ F (w)

2t
√
πt

∫ +∞

0

e−( ξ
2

4t
+τξ)dξ}dw+

+
1√
2π

∫ +∞

−∞
e(−ixw){h(t) ∗ Φ(w)

2t
√
πt

∫ +∞

0

e−( ξ
2

4t
+τξ)dξ}dw.

By setting τ = iwβ − iγw3 − α, and changing the order of integration,
we have

u(x, t) = (
1√
πt

)∗ 1

2t
√
πt

∫ +∞

0

e−( ξ
2

4t
){ 1√

2π

∫ +∞

−∞
F (w)e−(ixw−τξ) dw}dξ+

+h(t) ∗ 1

2t
√
πt

∫ +∞

0

e−( ξ
2

4t
){ 1√

2π

∫ +∞

−∞
Φ(w)e−(ixw−τξ) dw}dξ,

equivalently

u(x, t) = (
1√
πt

)∗ 1

2t
√
πt

∫ +∞

0

e−( ξ
2

4t
+αξ){ 1√

2π

∫ +∞

−∞
F (w)e−i(x+ξβ)wei(γξ)w

3

dw}dξ

+h(t) ∗ 1

2t
√
πt

∫ +∞

0

e−( ξ
2

4t
+αξ){ 1√

2π

∫ +∞

−∞
Φ(w)e−i(x+ξβ)wei(γξ)w

3

dw}dξ.

The interior integrals can be evaluated by convolution for the Fourier
transform as below

u(x, t) = (
1√
πt

)∗ 1

2t
√
πt

∫ +∞

0

e−( ξ
2

4t
+αξ){ 1√

2π

∫ +∞

−∞

f(x+ βξ − ϕ)
3
√

3γξ
Ai(

ϕ+ βξ
3
√

3γξ
) dϕ}dξ.

+h(t)∗ 1

2t
√
πt

∫ +∞

0

e−( ξ
2

4t
+αξ){ 1√

2π

∫ +∞

−∞

φ(x+ βξ − ϕ)
3
√

3γξ
Ai(

ϕ+ βξ
3
√

3γξ
) dϕ}dξ.

Note: Let us consider the special case

β = α = 0, γ =
1

3
.

We get the simple standard time fractional non homogeneous KdV,

cD
1
2
t u+ 1

3
uxxx = φ(x),

u(x, 0) = f(x),
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with the following solution

u(x, t) = (
1√
πt

)∗ 1

2t
√
πt

∫ +∞

0

e−( ξ
2

4t
){ 1√

2π

∫ +∞

−∞

f(x− ϕ)
3
√
ξ

Ai(
ϕ
3
√
ξ

) dϕ}dξ

+h(t) ∗ 1

2t
√
πt

∫ +∞

0

e−( ξ
2

4t
){ 1√

2π

∫ +∞

−∞

φ(x− ϕ)
3
√
ξ

Ai(
ϕ
3
√
ξ

) dϕ}dξ.

5. Conclusion

The paper is devoted to study the Laplace, Stieltjes integral trans-
forms and their applications in evaluating the integrals. The one dimen-
sional Laplace and Fourier transforms provide a powerful method for
analyzing linear systems. The main purpose of this work is to develop
methods for evaluating some special integrals, and solution to a variety
of non homogeneous KdV equation with fractional derivative. We hope
that it will also benefit many researchers in the disciplines of engineering,
applied mathematics, and mathematical physics.
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